Skip to main content
Log in

Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the Navier–Stokes equations in a two- or three-dimensional domain provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns, the vorticity, the velocity and the pressure, and prove the existence of a solution for this problem. Next we propose a discretization by spectral methods which relies on this formulation. In the two-dimensional case, we prove quasi-optimal error estimates for the three unknowns. We conclude with some numerical experiments.

Résumé

Nous considérons les équations de Navier–Stokes dans un domaine biou tri-dimensionnel, munies de conditions aux limites non usuelles portant sur la composante normale de la vitesse et la ou les composantes tangentielles du tourbillon. Nous écrivons une formulation variationnelle de ce problème qui comporte trois inconnues indépendantes: le tourbillon, la vitesse et la pression. Nous prouvons que ce problème admet au moins une solution. Nous proposons une discrétisation par méthodes spectrales construite à partir de cette formulation. Dans le cas bidimensionnel, nous établissons des majorations quasi-optimales de l'erreur pour les trois inconnues. Nous concluons par quelques expériences numériques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amara, M., Capatina-Papaghiuc, D., Chacón-Vera, E., Trujillo, D.: Vorticity–velocity–pressure formulation for Navier–Stokes equations. Comput. Vis. Sci. 6, 47–52 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amara, M., Capatina-Papaghiuc, D., Trujillo, D.: Stabilized finite element method for Navier–Stokes equations with physical boundary conditions, Math. Comput. (to appear)

  3. Amara, M., Chacón-Vera, E., Trujillo, D.: Vorticity–velocity–pressure formulation for the Stokes problem. Math. Comput. 73, 1673–1697 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amoura, K., Bernardi, C., Chorfi, N.: Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem, submitted

  5. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bègue, C., Conca, C., Murat, F., Pironneau, O.: Les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression. In: Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. IX, 1988, pp. 179–264

  7. Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem, SIAM J. Numer. Anal. (to appear)

  8. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev world, Internal Report, Laboratoire Jacques-Louis Lions. Université Pierre et Marie Curie 2003

  9. Bernardi, C., Girault, V., Raviart, P.-A.: Incompressible Viscous Fluids and their Finite Element Discretizations (in preparation)

  10. Bernardi, C., Maday, Y.: Spectral Methods. In the Handbook of Numerical Analysis V, P.G. Ciarlet, J.-L. Lions (eds.), North-Holland, 1997, pp. 209–485

  11. Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions, Numer. Math. 36, 1–25 (1980)

    MATH  MathSciNet  Google Scholar 

  12. Costabel, M.: A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Meth. Appl. Sci. 12, 365–368 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Costabel, M., Dauge, M.: Espaces fonctionnels Maxwell: Les gentils, les méchants et les singularités, unpublished

  14. Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne, (eds.) Topics in Computational Wave Propagation, Springer, 2004 pp. 125–161

  15. Dubois, F.: Vorticity–velocity–pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25, 1091–1119 (2002)

    Article  MATH  Google Scholar 

  16. Dubois, F., Salaün, M., Salmon, S.: Vorticity–velocity–pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures. Appl. 82, 1395–1451 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and algorithms. Springer, Berlin Heidelberg New York, (1986)

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman (1985)

  19. Maday, Y., Rønquist, E.M.: Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comp. Meth. Appl. Mech. Engrg. 80, 91–115 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nédélec, J.-C.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Salmon, S.: Développement numérique de la formulation tourbillon–vitesse–pression pour le problème de Stokes, Thesis, Université Pierre et Marie Curie, Paris (1999)

  22. Talenti, G.: Best constant in Sobolev inequality. Ann. Math. Pura ed Appl. 110 serie IV, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Bernardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azaïez, M., Bernardi, C. & Chorfi, N. Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations. Numer. Math. 104, 1–2 (2006). https://doi.org/10.1007/s00211-006-0684-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0684-z

Keywords

Navigation