Skip to main content
Log in

Finite element methods for semilinear elliptic stochastic partial differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study finite element methods for semilinear stochastic partial differential equations. Error estimates are established. Numerical examples are also presented to examine our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.A. (1975). Sobolev Spaces. Academic, New York

    MATH  Google Scholar 

  2. Allen E.J., Novosel S.J. and Zhang Z. (1998). Finite element and difference approximation of some linear stochastic partial differential equations. Stochastic Stochastic Rep. 64: 117–142

    MATH  MathSciNet  Google Scholar 

  3. Babuska I., Tempone R. and Zouraris G. (2004). Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42: 800–825

    Article  MATH  MathSciNet  Google Scholar 

  4. Benth F.E. and Gjerde J. (1998). Convergence rates for finite element approximations of stochastic partial differential equations. Stochastics Stochastics Rep. 63: 313–326

    MATH  MathSciNet  Google Scholar 

  5. Brenner S. and Scott L.R. (1994). The Mathematical Theory of Finite Element Methods. Springer, Heidelberg

    MATH  Google Scholar 

  6. Buckdahn, R., Pardoux, E.: Monotonicity methods for white noise driven quasi-linear PDEs. Diffusion processes and related problems in analysis, vol. 1 (Evaston IL, 1989), Progr. Probab. 22, Birkhauser, Boston, 1990, pp. 219–233

  7. Cao Y. (2006). On Convergence Rate of Wiener-Ito Expansion for generalized random variables. Stochastics 78(3): 179–187

    MATH  MathSciNet  Google Scholar 

  8. Courant R. and Hilbert D. (1953). Methods of Mathematical Physics, vol. 1. Interscience, New York

    Google Scholar 

  9. Du Q. and Tianyu Z. (2002). Numerical approximation of some linear stochastic partial differential equations driven by special additive noise. SIAM J. Numer. Anal. 4: 1421–1445

    Article  Google Scholar 

  10. Grisvard P. (1985). Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program, Boston

    MATH  Google Scholar 

  11. Gyöngy I. (1999). Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11: 1–37

    Article  MATH  MathSciNet  Google Scholar 

  12. Gyöngy I. and Martinez T. (2006). On the approximation of solutions of stochastic partial differential equations of elliptic type. Stochastics 78(4): 213–231

    MATH  MathSciNet  Google Scholar 

  13. Hausenblas E. (2003). Approximation for semilinear stochastic evolution equations. Potential Anal. 18: 141–186

    Article  MATH  MathSciNet  Google Scholar 

  14. Hou T., Kim H., Rozovskii B. and Zhou H. (2004). Wiener chaos expansions and numerical solutions randomly forced equations of fluid mechanics. Inter. J. Comp. Math. Appl. 4: 1–14

    Google Scholar 

  15. Keese A., Matthies H. (2003) Parallel computation of stochastic groundwater flow. NIC Symposium 2004, Proceedings, John von Neumann Institute for Computing, Julich, NIC series 20, 399–408

  16. KloedenEckhard Platen P.E. (1992). Numerical Solution of Stochastic Differential Equations. Springer, Heidelberg

    Google Scholar 

  17. Le Maitre O., Knio O., Najm H. and Ghanem R. (2001). A stochastic projection method for fluid flow: Basic formulation. J. Comp. Phys. 173: 481–511

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions J.L. (1969). The Method of Quasi-reversibility; applications to Partial Differential Equations. American Elsevier Pub. Co., New York

    Google Scholar 

  19. Shardlow, T.: Modified Equation for Stochastic Differential Equation. MCCM preprint No. 455, 2004

  20. Shardlow T. (2003). Weak Convergence of A Numerical Method for A Stochastic Heat Equation. BIT Numer. Math. 43: 179–193

    Article  MATH  MathSciNet  Google Scholar 

  21. Thething T.G. (2000). Solving Wick-stochastic boundary value problem using a finite element method. Stochastics Stochastics Rep. 70: 241–270

    MathSciNet  Google Scholar 

  22. Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1180, Springer, Heidelberg, pp. 265–439 (1986)

  23. Xiu D. and Karniadakis G.E. (2003). Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comp. Phys. 187: 137–167

    Article  MATH  MathSciNet  Google Scholar 

  24. Yan, Y.: The Finite Element Method for a Linear Stochastic Parabolic Partial Differential Equation Driven by Additive Noise. Chalmers Finite Element Center, Chalmers University of Technology, Preprint #7 (2003)

  25. Yan, Y.: A Finite Element Method for a Nonlinear Stochastic Parabolic Equation. Chalmers Finite Element Center, Chalmers University of Technology, Preprint #8 (2003)

  26. Zeidler E. (1985). Nonlinear functional analysis and its applications II/B: nonlinear monotone operators. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhao Cao.

Additional information

This research is supported by Air Force Office of Scientific Research under the grant number FA9550-05-1-0133 and 985 Project of Jilin University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Yang, H. & Yin, L. Finite element methods for semilinear elliptic stochastic partial differential equations. Numer. Math. 106, 181–198 (2007). https://doi.org/10.1007/s00211-007-0062-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0062-5

Mathematics Subject Classification (2000)

Navigation