Skip to main content
Log in

Second-order nonsmooth optimization for H synthesis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The standard way to compute H feedback controllers uses algebraic Riccati equations and is therefore of limited applicability. Here we present a new approach to the H output feedback control design problem, which is based on nonlinear and nonsmooth mathematical programming techniques. Our approach avoids the use of Lyapunov variables, and is therefore flexible in many practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apkarian P. and Noll D. (2006). Controller design via nonsmooth multi-directional search. SIAM J. Control Optim. 44(6): 1923–1949

    Article  MATH  Google Scholar 

  2. Apkarian P. and Noll D. (2006). Nonsmooth H synthesis. IEEE Trans. Autom. Control 51(1): 71–86

    Article  Google Scholar 

  3. Apkarian P. and Noll D. (2006). Nonsmooth optimization for multidisk H synthesis. Eur. J. Control 12(3): 229–244

    Article  Google Scholar 

  4. Apkarian P. and Noll D. (2007). Nonsmooth optimization for multiband frequency domain control design. Automatica 43(4): 724–731

    Article  MATH  Google Scholar 

  5. Apkarian P., Noll D., Thevenet J.-B. and Tuan H.D. (2004). A spectral quadratic SDP method with applications to fixed-order H 2 and H synthesis. Eur. J. Control 10(6): 527–538

    Article  Google Scholar 

  6. Apkarian P. and Tuan H.D. (2000). Robust control via concave minimization—local and global algorithms. IEEE Trans. Autom. Control 45(2): 299–305

    Article  MATH  Google Scholar 

  7. Balakrishnan V., Boyd S. and Balemi S. (1991). Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems. Int. J. Robust Nonlinear Control 1(4): 295–317

    Article  MATH  Google Scholar 

  8. Bompart, V., Apkarian, P., Noll, D.: Nonsmooth techniques for stabilizing linear systems. In: Proceedings of the American Control Conference, New York (2007)

  9. Boyd S. and Balakrishnan V. (1990). A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L -norm. Syst. Control Lett. 15(1): 1–7

    Article  MATH  Google Scholar 

  10. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. In: SIAM Studies in Applied Mathematics, vol 15. SIAM, Philadelphia (1994)

  11. Bruinsma N.A. and Steinbuch M. (1990). A fast algorithm to compute the H -norm of a transfer function matrix. Syst. Control Lett. 14(5): 287–293

    Article  MATH  Google Scholar 

  12. Conn, A., Gould, N., Toint, Ph.: Trust-region methods. In: MPS-SIAM Series on Optimization, Philadelphia (2000)

  13. Fares B., Apkarian P. and Noll D. (2001). An augmented Lagrangian method for a class of LMI-constrained problems in robust control. Int. J. Control 74(4): 348–360

    Article  MATH  Google Scholar 

  14. Fares B., Noll D. and Apkarian P. (2002). Robust control via sequential semidefinite programming. SIAM J. Control Optim. 40(6): 1791–1820

    Article  MATH  Google Scholar 

  15. Fletcher R. (1985). Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23(4): 493–513

    Article  MATH  Google Scholar 

  16. Gahinet, P., Apkarian, P.: Numerical computation of the L -norm revisited. In: Proceedings of the IEEE Conference on Decision and Control, Tucson, pp 2257–2258 (1992)

  17. Golub G. and Van Loan C. (1989). Matrix Computations. Johns Hopkins University Press, Baltimore, London

    MATH  Google Scholar 

  18. Hettich R. and Kortanek K. (1993). Semi-infinite programming: theory, methods and applications. SIAM Rev. 35(3): 380–429

    Article  MATH  Google Scholar 

  19. Jarre F. (1993). An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAM J. Control Optim. 31(5): 1360–1377

    Article  MATH  Google Scholar 

  20. Jongen H.Th., Meer K. and Triesch E. (2004). Optimization Theory. Kluwer, Dordrecht

    MATH  Google Scholar 

  21. Kato T. (1980). Perturbation theory for linear operators. Springer, New York

    MATH  Google Scholar 

  22. Laub A. (1981) Efficient multivariable frequency response computations. IEEE Trans. Autom. Control 26(2), 407–408

    Article  Google Scholar 

  23. Leibfritz, F.: COMPl e ib: COnstrained Matrix-optimization Problem ph library—a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Technical report, Universität Trier (2003)

  24. Leibfritz F. and Mostafa E.M.E. (2002). An interior-point constrained trust region method for a special class of nonlinear semi-definite programming problems. SIAM J. Optim. 12(4): 1048–1074

    Article  MATH  Google Scholar 

  25. Leibfritz F. and Mostafa E.M.E. (2003). Trust region methods for solving the optimal output feedback design problem. Int. J. Control 76(5): 501–519

    Article  MATH  Google Scholar 

  26. MacFarlane A.G.J. and Hung Y.S. (1983). Analytic properties of the singular value of a rational matrix. Int. J. Control 37(2): 221–234

    MATH  Google Scholar 

  27. Mayne D.Q. and Polak E. (1975). Algorithms for the design of control systems subject to singular value inequalities. IEEE Trans. Autom. Control AC-20(4): 546–548

    Google Scholar 

  28. Nocedal J. and Wright S. (1999). Numerical Optimization. Springer, New York

    MATH  Google Scholar 

  29. Noll D. and Apkarian P. (2005). Spectral bundle methods for nonconvex maximum eigenvalue functions: second-order methods. Math. Program. Ser. B 104(2): 729–747

    Article  MATH  Google Scholar 

  30. Noll D., Torki M. and Apkarian P. (2004). Partially augmented Lagrangian method for matrix inequality constraints. SIAM J. Optim. 15(1): 161–184

    Article  MATH  Google Scholar 

  31. Overton M.L. (1983). A quadratically convergent method for minimizing a sum of Euclidean norms. Math. Program. 27: 34–63

    Article  MATH  Google Scholar 

  32. Overton M.L. (1988). On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J. Matrix Anal. Appl. 9(2): 256–268

    Article  MATH  Google Scholar 

  33. Polak E. and Wardi Y. (1982). A nondifferentiable optimization algorithm for the design of control systems subject to singular value inequalities over a frequency range. Automatica 18(3): 267–283

    Article  MATH  Google Scholar 

  34. Safonov, M.G., Goh, K.C., Ly, J.H.: Control system synthesis via bilinear matrix inequalities. In: Proceedings of the American Control Conference, pp 45–49 (1994)

  35. Shapiro A. (1997). First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(2): 301–320

    Google Scholar 

  36. Thevenet J.-B., Noll D. and Apkarian P. (2006). Nonlinear spectral SDP method for BMI-constrained problems: applications to control design. In: Braz, J., Araújo, H., Vieira, A., and Encarnação, B. (eds) Informatics in Control, Automation and Robotics I., pp 61–72. Springer, Heidelberg

    Chapter  Google Scholar 

  37. Tuan H.D., Apkarian P. and Nakashima Y. (2000). A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities. Int. J. Robust Nonlinear Control 10(7): 561–578

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominikus Noll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bompart, V., Noll, D. & Apkarian, P. Second-order nonsmooth optimization for H synthesis. Numer. Math. 107, 433–454 (2007). https://doi.org/10.1007/s00211-007-0095-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0095-9

Keywords

Navigation