Skip to main content
Log in

Superconvergence in the generalized finite element method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of the existence of superconvergence points of approximate solutions, obtained from the Generalized Finite Element Method (GFEM), of a Neumann elliptic boundary value problem. GFEM is a Galerkin method that uses non-polynomial shape functions, and was developed in (Babuška et al. in SIAM J Numer Anal 31, 945–981, 1994; Babuška et al. in Int J Numer Meth Eng 40, 727–758, 1997; Melenk and Babuška in Comput Methods Appl Mech Eng 139, 289–314, 1996). In particular, we show that the superconvergence points for the gradient of the approximate solution are the zeros of a system of non-linear equations; this system does not depend on the solution of the boundary value problem. For approximate solutions with second derivatives, we have also characterized the superconvergence points of the second derivatives of the approximate solution as the roots of a system of non-linear equations. We note that smooth generalized finite element approximation is easy to construct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M., Oden J.T. (2000). A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York

    MATH  Google Scholar 

  2. Andreev A.B., Lazarov R.D. (1988). Superconvergence of the gradient for quadratic triangular finite elements. Numer. Methods PDEs 4: 15–32

    MATH  Google Scholar 

  3. Babuška I., Banerjee U., Osborn J. (2004). Generalized finite element methods: Main ideas, results, and perspective. Int. J. Comput. Methods 1(1): 1–37

    Article  Google Scholar 

  4. Babuška I., Caloz G., Osborn J. (1994). Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31: 945–981

    Article  Google Scholar 

  5. Babuška I., Melenk J.M. (1997). The partition of unity finite element method. Int. J. Numer. Meth. Eng. 40: 727–758

    Article  Google Scholar 

  6. Babuška I., Strouboulis T. (2001). The Finite Element Method and Its Reliability. Oxford University Press, London

    Google Scholar 

  7. Babuška I., Strouboulis T., Upadhyay C.S. (1994). A model study of the quality of a posteriori error estimators for finite element solutions linear elliptic problems. Error estimation in the interior of patchwise uniform grid of triangles. Comput. Methods Appl. Mech. Eng. 114: 307–378

    Article  Google Scholar 

  8. Babuška I., Strouboulis T., Upadhyay C.S. (1997). A model study of the quality of a posteriori error estimators for finite element solutions linear elliptic problems, with particular reference to the behavior near the boundary. Int. J. Numer. Meth. Eng. 40: 2521–2577

    Article  Google Scholar 

  9. Babuška, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K.: Superconvergence in the finite element method by computer-based proof. USACM Bull. 7(3), (1994)

  10. Babuška I., Strouboulis T., Upadhyay C.S., Gangaraj S.K. (1996). Computer based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace’s, Poison’s and the elasticity equations. Numer. Methods PDEs 12: 347–392

    Google Scholar 

  11. Bramble J.H., Schatz A.H. (1977). Higher order local accuracy by averaging in the finite element method. Math. Comp. 31: 94–111

    Article  MATH  Google Scholar 

  12. Brenner S.C., Scott L.R. (2002). The Mathematical Theory of Finite Element Methods. Springer, New York

    MATH  Google Scholar 

  13. Chen C.M. (2001). Structure Theory of Superconvergence of Finite Elements (in Chinese). Hunan Science and Technology Press, Changsha

    Google Scholar 

  14. Chen C.M., Huang Y.Q. (1995). High Accuracy Theory of Finite Element Methods (in Chinese). Hunan Science and Technology Press, Changsha

    Google Scholar 

  15. Douglas, J. Jr., Dupont, T.: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems. In: Topics in Numerical Analysis (Proc. Roy. Irish Acad. Conf., Univ. Coll., Dublin, 1972), pp. 89–92. Academic, London (1973)

  16. Douglas J. Jr., Dupont T., Wheeler M.F. (1974). An l estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numer. 8: 61–66

    Google Scholar 

  17. Duarte, C.A., Migliano, D.Q., Becker, E.B.: A technique to combine meshfree and finite element based partition of unity approximations. to be published

  18. Edwards H.C. (1996). C finite element basis functions. Technical Report 96–45. TICAM, University of Texas at Austin

    Google Scholar 

  19. Křížek M. (2005). Superconvergence phenomenon on three-dimensional meshes. Int. J. Numer. Anal.Model. 2(1): 43–56

    Google Scholar 

  20. Křížek, M., Neittaanmäki, P.: Bibliography on superconvergence. In: Proc. Conf. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, pp. 315–348. Marcel Dekker, New York (1998)

  21. Lancaster P., Salkauskas K. (1986). Curve and Surface Fitting: An Introduction. Academic, London

    MATH  Google Scholar 

  22. Lesaint P., Zlámal M. (1979). Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numer. 13: 139–166

    MATH  Google Scholar 

  23. Lin, Q., Yan, N.N.: The Construction and Analysis for Efficient Finite Elements. Hebei Univ. Publ. House, (1996)

  24. Melenk J.M., Babuška I. (1996). The partition of unity finite element method: Theory and application. Comput. Methods Appl. Mech. Eng. 139: 289–314

    Article  MATH  Google Scholar 

  25. Nitsche J.A., Schatz A.H. (1974). Interior estimates for Ritz-Galerkin methods. Math. Comp. 28(128): 937–958

    Article  MATH  Google Scholar 

  26. Oganesjan L.A., Ruhovec L.A. (1969). An investigation of the rate of convergence of variational difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fiz. 9: 1102–1120

    Google Scholar 

  27. Schatz, A.H.: Pointwise error estimates, superconvergence and extrapolation. In: Proc. Conf. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, pp. 237–247. Marcel Dekker, New York (1998)

  28. Schatz A.H., Sloan I.H., Wahlbin L.B. (1996). Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal. 33: 505–521

    Article  MATH  Google Scholar 

  29. Schatz A.H., Wahlbin L.B. (1977). Interior maximum-norm estimates for finite element methods. Math. Comp. 31(138): 414–442

    Article  MATH  Google Scholar 

  30. Schatz A.H., Wahlbin L.B. (1995). Interior maximum-norm estimates for finite element methods, Part II. Math. Comp. 64(221): 907–928

    Article  MATH  Google Scholar 

  31. Shepard, D.: A two-dimensional interpolation function for irregularly spaced points. Proc. ACM Nat. Conf. pp. 517–524 (1968)

  32. Stein E.M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton

    MATH  Google Scholar 

  33. Thomée V. (1977). High order local approximations to derivatives in the finite element method. Math. Comp. 31: 652–660

    Article  MATH  Google Scholar 

  34. Thomée V. (1980). Negative norm estimates and superconvergence in Galerkin methods for parabolic problems. Math. Comp. 34: 93–113

    Article  MATH  Google Scholar 

  35. Wahlbin L.B. (1995). Superconvergence in Galerkin Finite Element Methods. Springer, Heidelberg

    MATH  Google Scholar 

  36. Zhang Z. (1998). Derivative superconvergent points in finite element solutions of Poisson’s equation for the serendipity and intermediate families—A theoretical justification. Math. Comp. 67: 541–552

    Article  MATH  Google Scholar 

  37. Zhang Z. (2002). Derivative superconvergent points in finite element solutions of harmonic functions—A theoretical justification. Math. Comp. 71: 1421–1430

    Article  MATH  Google Scholar 

  38. Zhu Q.D., Lin Q. (1989). The Superconvergence Theory of the Finite Element Method (in Chinese). Hunan Science and Technology Publishing House, Changsha

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Banerjee.

Additional information

I. Babuška’s research was partially supported by NSF Grant # DMS-0341982 and ONR Grant # N00014-99-1-0724.

U. Banerjee’s research was partially supported by NSF Grant # DMS-0341899.

J. E. Osborn’s research was supported by NSF Grant # DMS-0341982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babuška, I., Banerjee, U. & Osborn, J.E. Superconvergence in the generalized finite element method. Numer. Math. 107, 353–395 (2007). https://doi.org/10.1007/s00211-007-0096-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0096-8

Mathematics Subject Classification (2000)

Navigation