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Abstract In this paper we obtain convergence results for the fully discrete projection
method for the numerical approximation of the incompressible Navier–Stokes equa-
tions using a finite element approximation for the space discretization. We consider
two situations. In the first one, the analysis relies on the satisfaction of the inf-sup
condition for the velocity-pressure finite element spaces. After that, we study a fully
discrete fractional step method using a Poisson equation for the pressure. In this case
the velocity-pressure interpolations do not need to accomplish the inf-sup condition
and in fact we consider the case in which equal velocity-pressure interpolation is used.
Optimal convergence results in time and space have been obtained in both cases.

Mathematics Subject Classification (2000) 35Q30 · 65M12 · 65M60

1 Introduction

1.1 State of the art

The description of incompressible flow problems is determined by the Navier–Stokes
equations. The numerical approach to this system of partial difference equations is a
difficult task that has focused an active research in the last decades. The incompres-
sibility constraint couples the velocity and pressure calculation, being its numerical
solution expensive. Furthermore, the velocity and pressure interpolation spaces must
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534 S. Badia, R. Codina

satisfy a compatibility condition for standard discretizations such as the Galerkin
method.

This work is devoted to the analysis of the most classical pressure segregation
method. Since its appearance in the late 1960’s, with the pioneering works of Chorin
[4] and Temam [26], this method has enjoyed a widespread popularity. Its key feature is
the decoupling of the velocity and pressure calculation, yielding an important reduction
of computational cost.

Another interesting issue of the classical projection method is its inherent pressure
stability. It can be seen by numerical experimentation that equal order velocity and
pressure space approximations lead to stable systems, so that the discrete inf-sup
condition can be violated. A complete study of the machinery that makes the fully
discretized projection method stable was developed in [6] and extended in [7]. The
characterization of the stabilizer motivated the stabilization method proposed in [8,9].

The fractional step method has been studied analytically in order to prove conver-
gence and obtain error estimates. For periodic boundary conditions and a centered
finite difference space approximation Chorin proved in [5] that the convergence was
of first order in the time step size ∆t , provided ∆t = O(h2), h being the diameter of the
space discretization. A proof of convergence of the semi-discrete (space continuous)
projection method to a continuous solution u(t) was given by Temam (see [26]) in a
general setting.

The pioneering work of Shen [24] analyzed the semi-implicit version of the semi-
discrete projection method, i.e. taking the convective term as un · ∇ ûn+1 (see the
notation introduced below). He obtained the first error estimates for the velocity,
but in a weak norm, L2(0, T ; L2(Ω)) (these spaces are defined later on). The proof
of the error estimates in this work is plagued by a mistake when using dual norms
which was originally observed by Guermond [15]. In [25] these errors were corrected.
Furthermore, for obtaining the pressure estimates, pt ∈ L2(0, T ; H1(Ω)/R) has to
be assumed. This requirement is not appropriate, because of the lack of compatibility
with the given data at time t → 0 (see [27]).

Rannacher proposed an alternative version of the projection method in [23]. In this
new format the end-of-step velocity disappears, and the problem can be understood
as a penalized method with a lag in the evaluation of the pressure in the momentum
equation. Based on this approach, Prohl obtained sharp error estimates for the semi-
discrete in time projection method (see [22]). For instance, first order error estimates
for the velocity were obtained with a stronger norm, L∞(0, T ; L2(Ω)).

A modified scheme was proposed and analyzed by Shen [24]. It consists of introdu-
cing in the momentum equation an approximation of the pressure, more specifically,
the term ∇ pn . This method is usually called incremental projection method. As before,
the pressure can be obtained from a Poisson equation. However, the value obtained in
this case is a correction of the pressure δpn+1 instead of the total pressure pn+1. This
scheme is also called pressure correction method. Shen obtained improved error esti-
mates for this method in [24]. Both the intermediate ûn+1 and end-of-step un+1 velo-
cities are first order approximations to the continuous velocities in L∞(0, T ; L2(Ω)).
Error estimates for a fully discrete incremental scheme were introduced in [16,17].
Therein, the pressure is not calculated from a Poisson equation, but from a Stokes
problem. This analysis requires velocity and pressure interpolations satisfying the inf-
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Convergence analysis of the fully discrete first order projection method 535

sup condition for obtaining error estimates of first order in the time step size and of
optimal order in the mesh size.

1.2 Novel results, road map of the proofs and outline of the article

Even though the semi-discretized (in time) version of the classical projection method
has attracted a lot of research, its fully discretized version has not been fairly analyzed.
The present work has been carried out with the aim to perform the very first analysis of
this widely used method discretized in space using finite elements. Furthermore, at the
fully discrete level we can address questions that do not have sense at the semi-discrete
level. Probably the most salient is: is it possible to get optimal error estimates without
relying on the inf-sup condition? In order to answer this question, we have obtained
error estimates when using a pressure Poisson equation (the most appealing scheme
from a computational point of view) without relying on the inf-sup condition. Another
aspect of special interest is the analysis of the algebraic projection method (see [21]).
A main difference of this method (split at the fully discrete level) with respect to the
classical one is the fact that with this method the end-of-step velocity satisfies the full
Dirichlet boundary conditions. We point out how this fact affects the analysis.

Let us sketch the main results of this paper, and the strategy pursued for the ob-
tention of these results. We start introducing an auxiliary problem that consists of a
semi-discrete (in time) projection method with the peculiarity that the convective term
is evaluated exactly, that is, using the continuous velocity. In Sect. 4 we list optimal
convergence and stability results. Then, in Sect. 5 we compare the fully discrete pro-
jection method with this auxiliary problem, relying on the inf-sup condition. Finally,
we analyze the most widely used version of the projection method, when the pressure
is obtained from a Poisson equation, not relying on the inf-sup condition any more
(Sect. 6). The introduction of the auxiliary problem (one of the key ideas of the proof)
is justified when bounding the error related to the convective term, where H2(Ω)-
stability of the semi-discrete solution is required. In Table 1 we have summarized the
main results in order to provide the reader with a road map for the subsequent analysis.

The paper is organized as follows: Assumptions for the continuous solution of the
Navier–Stokes equations are stated and some regularity properties are presented in
Sect. 2. The fractional step method to be analyzed is presented in Sect. 3. In Sect. 4 we
introduce the auxiliary problem and some convergence and stability results are stated.

Table 1 List of main results
Method Main result Label

Semi-discrete auxiliary problem Stability Lemma 1

Convergence Corollary 1

Fully discrete projection method

(with inf-sup) Convergence Corollary 2

Fully discrete projection method

(without inf-sup) Convergence Corollary 3
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536 S. Badia, R. Codina

Section 5 is devoted to the analysis of the fully discrete projection scheme satisfying
the inf-sup condition. The fully discrete projection scheme using a Poisson equation
for the pressure is presented in Sect. 6.

2 Problem statement and preliminaries

The evolution equations for an incompressible fluid moving in a domain Ω of R
d

(d = 2 or 3) in a time interval [0, T ] consists of finding a velocity u and a pressure p
such that

∂t u − ν∆u + u · ∇u + ∇ p = f in Ω × (0, T ), (1a)

∇ · u = 0 in Ω × (0, T ), (1b)

u = 0 on Γ × (0, T ), (1c)

u(x, 0) = u0 in Ω × {0}. (1d)

where f is the force vector, ν is the kinematic viscosity, u0 the initial condition and
Γ = ∂Ω . We will use ∂t or a subscript t to denote the temporal partial derivative.

In order to obtain the weak form of problem (1) we need to introduce some notation.
We denote by L p(Ω), 1 < p < ∞, the space of real functions defined on Ω with
the p-th power absolutely integrable with respect to the Lebesgue measure. The space
L∞(Ω) consists of essentially bounded functions in Ω . The case p = 2 is of special
interest; L2(Ω) is a Hilbert space endowed with the scalar product (u, v) and its
induced norm ‖u‖0. The Sobolev space W m,p(Ω) is the space of functions in L p(Ω)

whose weak derivatives of order less than or equal to m belong to L p(Ω), m being
an integer and 1 ≤ p ≤ ∞. It is a Banach space with norm denoted by ‖ · ‖m,p.
When p = 2, the space W m,2(Ω) = Hm(Ω) is a Hilbert space endowed with a
scalar product and its associated norm ‖ · ‖m . Furthermore, we denote by H1

0 (Ω)

the space of functions of H1(Ω) vanishing on Γ and by H−1(Ω) its dual space. In
general, duality pairings will be denoted with the symbol 〈·, ·〉. We point out that the
seminorn |u|1 = ‖∇u‖0 in H1(Ω) is a norm in H1

0 (Ω). From now onwards we will
not distinguish between ‖u‖1 and ‖∇u‖0 for u ∈ H1

0 (Ω).
We shall often consider d-dimensional vector functions with components in one

of these spaces. We shall indicate them by boldface letters, for instance Hm(Ω) =
(Hm(Ω))d . In the next, we will not distinguish between scalar products or norms for
scalar or vector-valued functions.

Let us introduce some convenient spaces for the treatment of the incompressibility
constraint. The first one is

H(div,Ω) := {u ∈ L2(Ω) | ∇ · u ∈ L2(Ω)},

which is a Hilbert space with norm ‖u‖div = ‖u‖0 + ‖∇ · u‖0 and

H0(div,Ω) := {u ∈ H(div,Ω) | n · u|Γ = 0}.
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Convergence analysis of the fully discrete first order projection method 537

We also define the spaces whose functions are weakly divergence-free,

J0 := {u ∈ L2(Ω) | ∇ · u = 0, n · u|Γ = 0}, (2)

and

J1 := {u ∈ H1
0(Ω) | ∇ · u = 0}.

Since J0 is a closed subspace of L2(Ω), this space can be decomposed as L2(Ω) =
J0 ⊕ J⊥

0 , where

J⊥
0 := {u ∈ L2(Ω) | u = ∇ p, p ∈ H1(Ω)}. (3)

We define PJ 0
as the orthogonal L2(Ω)-projector onto J0. This operator, known as

the Leray operator, is of main importance, and the basis of the original projection
methods (see [4] and [26]). It is obviously continuous in L2(Ω) by its definition. In
fact, for Ω being an open bounded set of class Cr+1, being r an integer ≥1, the operator
PJ 0

also maps Hr (Ω) into itself and is continuous with respect to ‖ · ‖r (see [28]),
that is to say, there exists a constant C > 0 such that:

‖PJ 0
v‖r ≤ C‖v‖r ∀v ∈ Hr (Ω). (4)

We need to introduce two forms associated with the different terms of the equation
in their weak form, defined on the appropriate spaces. Let us start with the form related
to the viscous term,

a(u, v) := ν(∇u,∇v), ∀u, v ∈ H1
0(Ω).

This is a bilinear continuous form on H1
0(Ω), which is coercive with respect to ‖·‖1.

The second form to be introduced is required for the pressure gradient and the
incompressibility constraint,

b(v, q) := −(q,∇ · v), ∀v ∈ H1
0(Ω), ∀q ∈ L2(Ω).

It is also continuous with respect to the norms ‖q‖0 and ‖v‖1.
Finally we introduce the trilinear form associated to the convective term in its

standard form,

c(u, v,w) =
∫

Ω

(u · ∇v) · w, ∀u, v ∈ H1(Ω), ∀w ∈ H1
0(Ω)

which is also continuous and well defined on these spaces. If u ∈ J1, the form is
skew-symmetric in its two last arguments,

c(u, v, v) = 0, ∀u ∈ J1, ∀v ∈ H1
0(Ω).
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Let us introduce some continuity properties that will be used hereafter, (see [10]):

c(u, v,w) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C‖u‖1‖v‖1‖w‖1,

C‖u‖0‖v‖2‖w‖1,

C‖u‖2‖v‖1‖w‖0,

C‖u‖0‖v‖1‖w‖2,

C‖u‖2‖v‖0‖w‖1.

The skew-symmetric form, introduced by Temam in [28],

c̃(u, v,w) = 1

2
(c(u, v,w) − c(u,w, v)),

∀u ∈ H1(Ω), v,w ∈ H1
0(Ω), is also used in the following. The previous boun-

dedness properties of c are also inherited by c̃. In any case the symbol ˜ will be
omitted.

For the treatment of evolutionary problems, we require the following notation.
Given T > 0, 1 ≤ p < ∞ and X a Banach space with norm ‖ · ‖X , let L p(0, T ; X)

be the space of functions f : (0, T ) → X such that
‖ f ‖L p(0,T ;X) = (

∫ T
0 ‖ f (s)‖p

X ds)1/p < ∞. In the case of p = ∞, we demand the
property sup0≤s≤T ‖ f (s)‖X ≤ ∞. These spaces will be often employed.

In addition, we define the Stokes operator

Au = −PJ 0
∆u ∀u ∈ J1 ∩ H2(Ω),

which is an unbounded positive self-adjoint closed operator onto J0. The operator
A−1 is the inverse of the Stokes operator A and is compact in J0. Given u ∈ J0, by
definition of A, z = A−1u is the solution of the following Stokes problem:

− ∆z + ∇ξ = u in Ω,

∇ · z = 0 in Ω, (5)

z = 0 on ∂Ω.

When Ω is of class C2, or is a convex polygon or polyhedron (see [18]), there exists
a constant C > 0 such that

‖A−1u‖s ≤ C‖u‖s−2 for s = 1, 2. (6)

Furthermore, from (5) it follows that (A−1u, u) = ‖A−1u‖2
1, and then it is easily seen

that

‖u‖2
J ′

1
= (A−1u, u),

for all u ∈ J0 (remember that ‖∇u‖0 is identified with the norm in H1
0(Ω)).
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Convergence analysis of the fully discrete first order projection method 539

Assuming u0 ∈ H1
0 and f ∈ L2(0, T ; H−1(Ω)), and if Ω is bounded and

Lipschitz continuous, problem (1) has at least one solution u ∈ L∞(0, T ; L2(Ω)) ∩
L2(0, T ; H1

0(Ω)) (see [28]).
For the convergence analysis in this paper we assume more regularity of the solution.

We assume that u(t) and p(t) satisfy

(R1) u(t) ∈ C(0, T ; J1)∩ L∞(0, T ; H2(Ω)), p ∈ L∞(0, T ; H1(Ω))∩C(0, T ; L2

(Ω)/R)

(R2a) ũ ∈ L∞(0, T ; L2(Ω))

(R2b) ũ ∈ L2(0, T ; H1
0(Ω)).

Assumptions (R1), (R2a) and (R2b) can be proven assuming for the data

u0 ∈ H2(Ω) ∩ J1, f (t) ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),

and, if d = 3, we also need to assume

u(t) ∈ L∞(0, T ; H1(Ω)),

as it is proved in [18]. The last assumption can be replaced by a condition that is
satisfied if ν is large enough or if f (t) and u0 are small enough for a Ω of class
C2 (see [28, Theorems 3.7 and 3.8]). The next assumption will be needed in the
convergence analysis.

Assumption 1 Concerning the regularity of the data we assume that:

f ∈ C0(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),

ft , ft t ∈ L∞(0, T ; L2(Ω)),

u0 ∈ H2(Ω) ∩ J1,

and, if d = 3,

u(t) ∈ L∞(0, T ; H1(Ω)).

This implies the regularity properties (R1), (R2a) and (R2b). Furthermore, the follo-
wing assumption concerning the regularity of the domain Ω is used,

Assumption 2 The inverse of the Stokes operator A−1 verifies the regularity property
(6), with s = 2.

If Ω is of class C2 this assumption is satisfied.
In order to avoid any incompatible condition as t → 0, let us introduce the weighting

function λ := min{t, t0} and its discrete counterpart λn := min{tn, t0}, where t0 > 0
is fixed. It allows us to obtain error estimates without taking care of what happens near
t = 0 (see [22]).

To define the order of approximation of time integration schemes for time-dependent
partial differential equations, the following terminology is used: Given a Banach space
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X equipped with ‖ · ‖X , a continuous function f : [0, T ] −→ X and two real
numbers 0 < p < ∞ and α > 0, for a time step size ∆t > 0, let tn = n∆t
for n = 0, . . . , N = [T/∆t] − 1. A sequence { f n}N

n=1 is said to be an α-th order
approximation of f in 
p(X) if there exists a constant C independent of ∆t such that

(
N∑

n=1

∆t‖ f (tn+1) − f n+1‖p
X

)1/p

< C∆tα.

Moreover, { f n}N
n=1 is said to be an α-th order approximation of f in 
∞(X) if there

exists a constant C independent of ∆t and n such that

‖ f (tn+1) − f n+1‖X < C∆tα ∀n = 0, . . . , N .

For the stability result we will use the skew-symmetric (in its last two arguments)
part of the convective form c in the analysis of the fully discrete problem.

From here onwards C denotes a positive constant, not necessarily the same at
different appearances. Moreover, we denote by N = [T/∆t] − 1.

3 Fractional step method

Classical fractional step methods are based on the orthogonal decomposition L2(Ω) =
J0 ⊕ J⊥

0 [see (3) and (4)] which derives from a theorem due to Ladyzenskaya (see
[20]). This theorem is based on the classical Helmholtz decomposition of a vector
field into the sum of a solenoidal field and a gradient of a scalar function and a more
general theorem proved by De Rham (see [11]).

Hence, in the projection method an intermediate velocity obtained from the mo-
mentum equation without the pressure term is decomposed into a solenoidal field, the
velocity, and the gradient of a scalar field, the pressure. We present this method in its
semi-discrete version in time.

This procedure involves two basic steps. The first step consists of finding an inter-
mediate velocity ûn+1 such that:

1

∆t
(ûn+1 − un) − ν∆ûn+1 + ûn+1 · ∇ ûn+1 = f n+1, (7a)

ûn+1|Γ = 0. (7b)

In (7a) the convective term is treated implicitly. Alternatively, explicit and semi-
implicit approaches can be used. Note that the full Dirichlet boundary conditions
are imposed on ûn+1. The weak form of this equation is required for the numerical
approximation. Its weak formulation consists of: find ûn+1 ∈ H1

0(Ω) such that

1

∆t
(ûn+1 − un, v) + a(ûn+1

, v) + c(ûn+1
, ûn+1

, v) = 〈 f n+1, v〉, (8)
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Convergence analysis of the fully discrete first order projection method 541

∀v ∈ H1
0(Ω). Temam [28] proposed the use of the skew-symmetric form of the

convective term in (8). This form is usually assumed in order to obtain stability bounds
for the solution of implicit projection methods.

The second step of the method consists of finding an end-of-step velocity un+1 and
a pressure pn+1 such that

1

∆t
(un+1 − ûn+1

) + ∇ pn+1 = 0, (9a)

∇ · un+1 = 0, (9b)

n · un+1|Γ = 0, 7 (9c)

which is equivalent to find the projection of ûn+1 onto the space J0 [see (2)],

un+1 = PJ 0
(ûn+1

).

We point out that at this step only the normal component of the velocity is prescribed.
Then, the end-of-step velocity un+1 does not satisfy the proper boundary conditions.
Hence, we infer easily from (7b) and (9c) that the pressure is satisfying on the Dirichlet
boundary an artificial Neumann condition,

n · ∇ pn+1|Γ = 0.

This is one of the most controversial points of the classical projection method. There
has been much speculation about whether the pressure pn+1 is a good approximation
to the exact pressure p(tn+1) or not (see [29]). It is conjectured by Rannacher in [23]
and by Gresho in [14] that the non-physical boundary condition lives only in a narrow
boundary layer of width O(

√
ν∆t).

The main interest of the projection method is the possible uncoupling of the pressure
from the velocity in its numerical approximation. It is achieved by taking the divergence
of (9a), obtaining a Pressure Poisson Equation for the pressure,

∆pn+1 = 1

δt
∇ · ûn+1

, (10a)

n · ∇ pn+1|Γ = 0. (10b)

Once the pressure pn+1 is calculated, the end-of-step velocity is recovered from (9a).

4 Analysis of a semi-discrete projection-like problem

In this section we list some optimal convergence results and stability results for an
auxiliary problem that can be identified as a semi-discrete projection method evaluating
exactly the convective term. The proof of these results is fairly standard. We refer to
[1] for the detailed analysis of this auxiliary problem that has not been included here
for the sake of brevity. In fact, these results have been obtained pursuing the analysis
carried out by Prohl in [22] for the semi-discrete projection method with the only
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diference that now the convective term does not introduce any error to the system. In
order to obtain strong stability bounds in Lemma 1, special attention has been paid for
the regularity of the semi-discrete derivatives.

Let us start introducing the auxiliary problem at the continuous level. It consists of
finding ŵ

n+1 ∈ H1
0(Ω), wn+1 ∈ H(div,Ω) and φn+1 ∈ H1

0 (Ω)/R such that,

1

δt
(ŵ

n+1 − wn) − ν∆ŵ
n+1 + u(tn+1) · ∇u(tn+1) = f (tn+1), (11a)

1

δt
(wn+1 − ŵ

n+1
) + ∇φn+1 = 0, (11b)

∇ · wn+1 = 0, (11c)

with boundary conditions

ŵ
n+1|Γ = 0, (11d)

n · wn+1|Γ = 0. (11e)

We characterize the projection-like problem with some estimates for the auxiliary
unknowns. But first we state a new assumption concerning the regularity of the domain.

Assumption 3 Expression (4) holds for r = 2.

If Ω is of class C3 this assumption and Assumption 2 are satisfied.

Lemma 1 (Stability) Under Assumptions 1 and 2, the following stability results hold

max
0≤n≤N

{
‖ŵn+1‖2

2 + ‖∇φn+1‖2
0 + ‖ 1

δt

(
wn+1 − ŵ

n+1
)
‖0

}
≤ C,

for ∆t > 0 small enough. Furthermore, under Assumption 3

max
0≤n≤N

‖wn+1‖2 ≤ C.

Remark 1 These sharp stability bounds are a key feature of our auxiliary problem and
the justification of its introduction. In the convergence analysis of the fully discrete
method developed later these properties will be exploited in order to obtain a bound
for the error related to the convective term.

We end the section with a convergence result for the projection-like system. This
result is basic for the obtention of convergence results for the fully discrete projection
method.
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Convergence analysis of the fully discrete first order projection method 543

Corollary 1 (Convergence) Under Assumptions 1, 2 together with the regularity
assumption ∂3

t f (t) ∈ L∞(0, T ; L2(Ω)), the following convergence results hold,

max
0≤n≤N

{‖u(tn+1) − ŵ
n+1‖0 + ‖u(tn+1) − wn+1‖0} ≤ C∆t,

max
0≤n≤N

{‖u(tn+1) − ŵ
n+1‖1 + λn+1‖p(tn+1) − φn+1‖0} ≤ C

√
∆t,

for ∆t > 0 small enough.

5 Convergence results satisfying the inf-sup condition

In this section we obtain optimal convergence results for the projection method with
a velocity-pressure interpolation satisfying the inf-sup condition. Furthermore, the
end-of-step velocity and the pressure are solved in a coupled way. It implies that the
end-of-step velocity is weakly divergence free. The classical first order fractional step
method, also called projection method, in its fully discretized version reads as follows:
find the solution (ûn+1

h , un+1
h , pn+1

h ) ∈ Vh,0 × Yh,0 × Qh such that,

1

δt
(ûn+1

h −un
h, vh)+ν(∇ ûn+1

h ,∇vh)+c(ûn+1
h , ûn+1

h , vh)=〈 f (tn+1), vh〉,∀vh ∈Vh,0

(12a)
1

δt
(un+1

h − ûn+1
h , yh) + (∇ pn+1

h , yh) = 0, ∀ yh ∈ Yh,0, (12b)

(∇ · un+1
h , qh) = 0, ∀qh ∈ Qh . (12c)

where Vh,0, Yh,0, Qh are classical finite element approximation spaces of H1
0(Ω),

H0(div,Ω) and L2(Ω)/R (see [3]). Let us also consider Vh a finite element approxi-
mation of H1(Ω).

For the analysis in this section we need Assumptions 1 and 2 stated in the previous
section and the additional assumptions on the space discretization listed below.

Let us denote by Bh the discrete operator

Bh : Vh,0 → Q′
h | 〈Bh(vh), qh〉Q′

h×Qh
= b(vh, qh) (13)

∀v ∈ Vh,0 and ∀qh ∈ Qh , where Q′
h is the dual space of Qh .

Assumption 4 There exists a constant βd independent of the mesh size h such that

inf
qh∈Qh

sup
vh∈Vh,0

b(vh, qh)

‖vh‖Vh,0‖qh‖Qh/ ker Bt
h

≥ βd > 0.

We are relying on the inf-sup condition for the analysis of this section.
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Assumption 5 The discrete space Vh,0 is a subspace of Yh,0, so that

Vh,0 ⊆ Yh,0.

Assumption 6 The family of finite element partitions {h}h>0 is quasi-uniform.

This assumption is needed because if it holds the following inverse estimate (see [3])
can be used: given vh ∈ Vh,0, there exists a constant C independent of the mesh size
h such that

‖vh‖1 ≤ C

h
‖vh‖0.

Assumption 7 There exists a constant C > 0 independent of h and ∆t such that

∆t ≥ Ch2.

The proofs of convergence results for this method rely on the auxiliary problem pro-
posed and analyzed in the previous section. We compare the solution of the fully
discrete projection method with the solution of the auxiliary problem for which we
have optimal convergence results.

Let us denote the discrete velocity and pressure errors:

ên+1
d = ŵ

n+1 − ûn+1
h ,

en+1
d = wn+1 − un+1

h ,

rn+1
d = φn+1 − pn+1

h ,

that are governed by the system obtained subtracting (12) from (11),

1

δt
(ên+1

d − en
d , vh)+ν(∇ ên+1

d ,∇vh) = c(ûn+1
h , ûn+1

h , vh)−c(u(tn+1), u(tn+1), vh)

(14a)
1

δt
(en+1

d − ên+1
d , yh) + (∇rn+1

d , yh) = 0, (14b)

(∇ · en+1
d , qh) = 0. (14c)

Likewise, we introduce the continuous velocity errors:

ên+1
c = u(tn+1) − ŵ

n+1
,

en+1
c = u(tn+1) − wn+1.

We also use the following notation for the interpolation error:

Ĩn(h) = 1

h
inf

vh∈Vh,0

‖ŵn+1 − vh‖0 + 1

h
inf

yh∈Yh,0

‖wn+1 − yh‖0

+ inf
vh∈Vh,0

‖ŵn+1 − vh‖1 + inf
qh∈Qh

‖φn+1 − qh‖0
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Convergence analysis of the fully discrete first order projection method 545

Remark 2 We note that the interpolation error introduced is related to the solution of
the auxiliary problem. This is optimal in the case of div-stable first order elements,
e.g. the P+

1 − P1 mini-element. When using higher order elements, as the P2 − P1,
further regularity on the semi-discrete unknown would allow to improve the overall
convergence rate.

Under the discrete inf-sup condition, optimal order approximations of so-lenoidal
vector fields can be achieved by means of discretely divergence free finite element
functions, that is, xh ∈ ker Bh . In fact, one has the following result (see [13]).

Lemma 2 Let u ∈J1 and assume that discrete spacesVh,0 andQh satisfy Assumption 4
and 6. Then,

inf
xh∈ker Bh

‖u − xh‖1 ≤ C inf
vh∈Vh,0

‖u − vh‖1.

Moreover, under Assumption 2 we also have,

inf
xh∈ker Bh

‖u − xh‖0 ≤ Ch inf
vh∈Vh,0

‖u − vh‖1.

A first error estimate showing that {ûn+1
h }n=0,...,N and {un+1

h }n=0,...,N are first
order approximations to {u(tn+1)}n=0,...,N with respect to the norm associated to

∞(L2(Ω)) ∩ 
2(H1(Ω)) is established in the following theorem.

Theorem 1 Being valid Assumptions 1, 2, 4, 5, 6 and 7, we have

max
0≤n≤N

{‖eN+1
d ‖2

0 + ‖êN+1
d ‖2

0} +
N∑

n=0

ν∆t‖ên+1
d ‖2

1

+
N∑

n=0

{‖en+1
d − ên+1

d ‖2
0 + ‖ên+1

d − en+1
d ‖2

0}

+
N∑

n=0

∆t2‖rn+1
d ‖2

0 ≤ C(Ĩ(h)2 + ∆t2),

for ∆t > 0 small enough.

Proof Taking ∆t(vh − ûn+1
h ) as a test function in (14a), we obtain

1

2

(
‖ên+1

d ‖2
0 − ‖en

d‖2
0 + ‖ên+1

d − en
d‖2

0

)
+ ν∆t‖ên+1

d ‖2
1

= ∆tc(ûn+1
h , ûn+1

h , vh − ûn+1
h ) − ∆tc(u(tn+1), u(tn+1), vh − ûn+1

h )

+ (ên+1
d − en

d , ŵ
n+1 − vh) + ν∆t(∇ ên+1

d ,∇(ŵ
n+1 − vh)). (15)
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546 S. Badia, R. Codina

We combine the nonlinear terms as follows:

−c(u(tn+1), u(tn+1), vh − ûn+1
h ) + c(ûn+1

h , ûn+1
h , vh − ûn+1

h )

= − c(u(tn+1), ên+1
c , vh − ûn+1

h ) − c(ûn+1
h , ên+1

d , vh − ûn+1
h )

− c (ên+1
c , ŵ

n+1
, vh − ûn+1

h ) − c(ên+1
d , ŵ

n+1
, vh − ûn+1

h )

= − c(u(tn+1), ên+1
c , ên+1

d )+c(u(tn+1), ên+1
c , ŵ

n+1−vh)−c(ŵn+1
, ên+1

d , ên+1
d )

+ c(ŵn+1
, ên+1

d , ŵ
n+1 − vh)+c(ên+1

d , ên+1
d , ên+1

d )−c(ên+1
d , ên+1

d , ŵ
n+1−vh)

− c(ên+1
c , ŵ

n+1
, ên+1

d ) + c(ên+1
c , ŵ

n+1
, ŵ

n+1 − vh)

− c(ên+1
d , ŵ

n+1
, ên+1

d ) + c(ên+1
d , ŵ

n+1
, ŵ

n+1 − vh).

Every nonlinear term can be appropriately bounded as follows:

−c(u(tn+1), ên+1
c , ên+1

d ) ≤ C‖u(tn+1)‖2‖ên+1
c ‖0‖ên+1

d ‖1

≤ C‖ên+1
c ‖2

0 + 1

8
ν‖ên+1

d ‖2
1

≤ C∆t2 + 1

8
ν‖ên+1

d ‖2
1,

c(u(tn+1), ên+1
c , ŵ

n+1 − vh) ≤ C‖u(tn+1)‖2‖ên+1
c ‖0‖ŵn+1 − vh‖1

≤ C‖ên+1
c ‖2

0 + C‖ŵn+1 − vh‖2
1

≤ C∆t2 + C‖ŵn+1 − vh‖2
1,

−c(ŵn+1
, ên+1

d , ên+1
d ) = 0,

c(ŵn+1
, ên+1

d , ŵ
n+1 − vh) ≤ ‖ŵn+1‖1‖ên+1

d ‖1‖ŵn+1 − vh‖1

≤ 1

8
ν‖ên+1

d ‖2
1 + C‖ŵn+1 − vh‖2

1,

c(ên+1
d , ên+1

d , ên+1
d ) = 0,

−c(ên+1
d , ên+1

d , ŵ
n+1 − vh) ≤ C‖ên+1

d ‖1‖ên+1
d ‖1‖ŵn+1 − vh‖1

≤ 1

8
ν‖ên+1

d ‖2
1 + Cν‖ên+1

d ‖2
1‖ŵn+1 − vh‖2

1,

−c(ên+1
c , ŵ

n+1
, ên+1

d ) ≤ C‖ên+1
c ‖0‖ŵn+1‖2‖ên+1

d ‖1

≤ C‖ên+1
c ‖2

0 + 1

8
ν‖ên+1

d ‖2
1

≤ C∆t2 + 1

8
ν‖ên+1

d ‖2
1,

c(ên+1
c , ŵ

n+1
, ŵ

n+1 − vh) ≤ C‖ên+1
c ‖0‖ŵn+1‖2‖ŵn+1 − vh‖1

≤ C‖ên+1
c ‖2

0 + C‖ŵn+1 − vh‖2
1

≤ C∆t2 + C‖ŵn+1 − vh‖2
1,

−c(ên+1
d , ŵ

n+1
, ên+1

d ) ≤ ‖ên+1
d ‖0‖ŵn+1‖2‖ên+1

d ‖1

≤ C‖en+1
d ‖2

0 + C‖en+1
d − ên+1

d ‖2
0 + 1

8
ν‖ên+1

d ‖2
1,
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c(ên+1
d , ŵ

n+1
, ŵ

n+1 − vh) ≤ ‖ên+1
d ‖0‖ŵn+1‖2‖ŵn+1 − vh‖1

≤ C∆t‖ên+1
d ‖2

0 + C‖ŵn+1 − vh‖2
1.

The rest of the terms can also be bounded,

(ên+1
d − en

d , ŵ
n+1 − vh) ≤ 1

3
‖ên+1

d − en
d‖2

0 + C
∆t

h2 ‖ŵn+1 − vh‖2
0,

ν(∇ ên+1
d ,∇(ŵ

n+1 − vh)) ≤ 1

8
ν‖ên+1

d ‖2
1 + C‖ŵn+1 − vh‖2

1,

where Assumption 7 is used for the first inequality.
Using all these inequalities in (15), invoking the stability estimates for ên+1

d and
adding up from n = 0 to n = N , we get

1

2

N∑
n=0

(
‖ên+1

d ‖2
0 − ‖en

d‖2
0 + ‖ên+1

d − en
d‖2

0

)
+

N∑
n=0

ν∆t‖ên+1
d ‖2

1

≤ C∆t2 + 6

8

N∑
n=0

ν∆t‖ên+1
d ‖2

1 + 1

3

N∑
n=0

‖ên+1
d − en

d‖2
0

+ C
N∑

n=0

∆t
(
‖en+1

d ‖2
0 + ‖en+1

d − ên+1
d ‖2

0

)
+ C(1 +

N∑
n=0

ν∆t‖ên+1
d ‖2

1)Ĩ(h)2

≤ C(Ĩ(h)2 + ∆t2) + 6

8

N∑
n=0

ν∆t‖ên+1
d ‖2

1 + 1

3

N∑
n=0

‖ên+1
d − en

d‖2
0

+ C
N∑

n=0

∆t
(
‖en+1

d ‖2
0 + ‖en+1

d − ên+1
d ‖2

0

)
. (16)

Taking ∆t(xh − un+1
h ) as test function in (14b) (valid due to Assumption 3), where

xh ∈ ker Bh , we obtain

1

2

(
‖en+1

d ‖2
0 − ‖ên+1

d ‖2
0 + ‖en+1

d − ên+1
d ‖2

0

)
= (en+1

d − ên+1
d ,wn+1 − xh).

The optimal approximation properties for functions xh ∈ ker Bh allow us to bound
the RHS, obtaining

1

2

(
‖en+1

d ‖2
0 − ‖ên+1

d ‖2
0 + ‖en+1

d − ên+1
d ‖2

0

)
≤ C∆tIn(h)2 + 1

3‖en+1
d − ên+1

d ‖2
0.

Adding up from n = 0 to n = N , we get

1

2

N∑
n=0

(
‖en+1

d ‖2
0−‖ên+1

d ‖2
0+‖en+1

d − ên+1
d ‖2

0

)
≤C Ĩ(h)2+ 1

3

N∑
n=0

‖en+1
d − ên+1

d ‖2
0. (17)
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Adding (16) and (17), using the discrete Gronwall lemma (see [19]) and cancelling
some terms we obtain the error estimates for the velocity. For the pressure error we
take benefit from the inf-sup condition stated in Assumption 4, equation (14b) and the
bounds for the velocity errors. ��
Theorem 1 establishes optimal convergence results for the approximated velocity when
the classical first order projection method in its fully discretized form is used.

We end our analysis with a corollary that gives the convergence results obtained for
the fully discrete fractional step method relying on the inf-sup condition. It is a direct
consequence of Corollary 1 and Theorem 1 using the triangle inequality.

Corollary 2 (Convergence) Under the assumption of Theorem 1 and the regularity
assumption ∂3

t f (t) ∈ L∞(0, T ; L2(Ω)) the following error estimates hold,

max
0≤n≤N

{
‖u(tn+1) − un+1

h ‖0 + ‖u(tn+1) − ûn+1
h ‖0 + √

∆t‖u(tn+1) − ûn+1
h ‖1

}

+ λn+1
√

∆t

(
N∑

n=0

∆t‖p(tn+1) − pn+1
h ‖2

0

)1/2

≤ C(Ĩ(h) + ∆t),

for ∆t > 0 small enough.

6 Convergence results for a stabilized scheme using the pressure Poisson
equation

In order to obtain the pressure of the system analyzed in the previous section, a Stokes-
like problem has to be solved. On the other hand, for the fractional step method studied
in this section only a simple Poisson equation must be solved. This so-called Pressure
Poisson equation is by far the most used approach, not only for its low computational
cost, but also because of its inherent stability studied in [6,7]. At the continuous level,
these two approximations are equivalent assuming some regularity properties. But at
the fully discrete level, the second procedure introduces a perturbation term in the
mass conservation equation.

In this section we analyze a fully discrete fractional step method using a Poisson
equation for the pressure. In Sect. 4 we have obtained error estimates for the auxiliary
problem at the continuous level and now we compare the fully discrete fractional step
method with the auxiliary problem. We begin the analysis of the discrete problem
stating the new assumptions we have had to use:

Assumption 8 There exist α− > 0 and α+ > 0 independent of h such that:

α−h2 ≤ ∆t ≤ α+h2.

This assumption dictates the behaviour of ∆t . It could seem a very restrictive hypo-
thesis, but we will see in the following analysis that ∆t is playing the same role as the
numerical stabilization parameter of stabilized finite element methods for which this
assumption is mandatory (see [2]).
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Convergence analysis of the fully discrete first order projection method 549

Assumption 9 As in [8,9], let ∇Qh denote the space

∇Qh = {vh ∈ L2(Ω) | vh = ∇qh, qh ∈ Qh}

and define the space Eh by

Eh = Vh + ∇Qh ⊂ L2(Ω).

We consider three mutually orthogonal subspaces Eh,i of Eh defined by

Eh,1 = Vh,0, Eh,2 = V⊥
h,0 ∩ Vh, Eh,3 = V⊥

h ∩ Eh

so that

Eh = Eh,1 ⊕ Eh,2 ⊕ Eh,3.

For i = 1, 2, 3 we call �i the L2-projection of Eh onto Eh,i , and for i �= j , �i j =
�i +� j and Eh,i j = Eh,i ⊕ Eh, j . We assume that there is a constant β0 independent
of h such that

‖∇qh‖0 ≤ β0‖�13(∇qh)‖0 ∀qh ∈ Qh,

that is to say, that the second component of the decomposition of every ∇qh in Eh can
be bounded in terms of the other two. This condition can also be written in the form

inf
qh∈Qh

sup
vh∈Eh,13

b(vh, qh)

‖vh‖1‖qh‖0
≥ β0 > 0, (18)

in a similar way to the classical inf-sup condition. However, this requirement is weaker
since the space where the supremum is taken, Eh,13, is larger than in a classical case,
Vh,0 = Eh,1. Condition (18) was analized in [8], where it was shown to be satisfied
by equal order simplicial finite element interpolations.

From the previous definitions we can easily see that,

�3(∇qh) = �⊥
h (∇qh), (19)

for all qh ∈ Qh , �h(·) being the L2-projection onto the finite element space Vh . We
will also use the projector �Yh,0(·), that consist of the L2-projection onto the finite
element space Yh,0. The equations for the intermediate and end-of-step velocities are
(12a) and (12c), respectively. The difference with respect to the previous section is the
continuity equation, that now is replaced by a Pressure Poisson equation obtained by
testing (10a) with qh ∈ Qh and seeking a pressure pn+1

h ∈ Qh such that

(∇ · ûn+1
h , qh) + ∆t(∇ pn+1

h ,∇qh) = 0. (20)
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An alternative version of the pressure Poisson equation more appropriate for the
following analysis is obtained using (12b), which implies that

ûn+1
h = un+1

h + ∆t�Yh,0(∇ pn+1
h ).

Using that in (20) we get

(∇ · un+1
h , qh) − ∆t(�Yh,0(∇ pn+1

h ),∇qh) + ∆t(∇ pn+1
h ,∇qh)

= (∇ · un+1
h , qh) + ∆t(�⊥

Yh,0
(∇ pn+1

h ),∇qh) = 0.

Then, the fully discrete method to be analyzed consists of finding ûn+1
h ∈ Vh,0,

un+1
h ∈ Yh,0 and pn+1

h ∈ Qh such that:

1

δt
(ûn+1

h −un
h, vh)+ν(∇ ûn+1

h ,∇vh)+c(ûn+1
h , ûn+1

h , vh) = 〈 f (tn+1), vh〉, (21a)

1

δt
(un+1

h − ûn+1
h , yh) + b( yh, pn+1

h ) = 0, (21b)

(∇ · un+1
h , qh) + ∆t(�⊥

Yh,0
(∇ pn+1

h ),∇qh) = 0, (21c)

where we have taken the advection velocity implicitly. However, a straightforward
extension of the analysis that follows allows to obtain the same estimates for the
explicit case.

Subtracting (21) from the weak form of (11), it can be seen that the discrete errors
satisfy the following system, which holds for all (vh, yh, qh) ∈ Vh,0 × Yh,0 × Qh :

1

δt
(ên+1

d − en
d , vh) + ν(∇ ên+1

d ,∇vh) = c(ûn+1
h , ûn+1

h , vh)

−c(u(tn+1), u(tn+1), vh), (22a)
1

δt
(en+1

d − ên+1
d , yh) + (∇rn+1

d , yh) = 0, (22b)

(∇ · en+1
d , qh) − ∆t(�⊥

Yh,0
(∇ pn+1

h ),∇qh) = 0, (22c)

where we have denoted the error sequences as in the previous section. We also use the
following notation for the interpolation error:

Ĩn(h) = 1

h
inf

vh∈Vh,0

‖ŵn+1 − vh‖0+ 1

h
inf

yh∈Yh,0

‖wn+1 − yh‖0+ inf
vh∈Vh,0

‖ŵn+1 − vh‖1

+ inf
qh∈Qh

‖φn+1 − qh‖0+h inf
qh∈Qh

‖φn+1 − qh‖1+h inf
yh∈Yh,0

‖∇φn+1 − yh‖0

Ĩ(h) = max
0≤n≤N

Ĩn(h).

The last term of Ĩn(h) differs from the expression used in the previous analysis (under
the inf-sup condition). This term is of special interest, as it will be commented below.
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Again, the fact that this interpolation function depends on the auxiliary unknowns
does not affect the convergence resutls, due to Assumption 8 and Theorem 1.

Before proving the error estimates, we need a previous lemma that gives us a bound
for the pressure error. The lemma reads as follows:

Lemma 3 Under Assumption 9, the following bound holds in the range 0 ≤ n ≤ N:

‖∇rn+1
d ‖0 ≤ C

(
1

h
Ĩn(h) + 1

δt
‖en+1

d − ên+1
d ‖0 + ‖�3(∇ pn+1

h )‖0

)

for all ∆t > 0.

Proof By the triangle inequality and previous definitions, we have

‖∇rn+1
d ‖0 = ‖∇(φn+1 − pn+1

h )‖0

≤ ‖∇φn+1 − �12(∇qh)‖0 + ‖�1(∇qh − ∇ pn+1
h )‖0

+‖�2(∇qh − ∇ pn+1
h )‖0 + ‖�3(∇ pn+1

h )‖0

= Ĩ + ĨI + ĨII + ĨV.

We bound these terms separately. For the first term we can easily obtain,

Ĩ ≤ ‖�3(∇φn+1)‖0 + ‖�12(∇φn+1 − ∇qh)‖0

≤ ‖�3(∇φn+1 − yh)‖0 + ‖φn+1 − qh‖1

≤ ‖∇φn+1 − yh‖0 + ‖φn+1 − qh‖1,

for all yh ∈ Yh,0 ⊂ Eh,12 For the second term we have,

(ĨI)2 = ‖�1(∇qh − ∇ pn+1
h )‖2

0 = (∇qh − ∇ pn+1
h ,�1(∇qh − ∇ pn+1

h ))

= (∇qh − ∇φn+1,�1(∇qh − ∇ pn+1
h )) + (∇rn+1

d ,�1(∇qh − ∇ pn+1
h ))

= ĨIa + ĨIb.

The first term is easily bounded,

ĨIa ≤ ‖φn+1 − qh‖1‖�1(∇qh − ∇ pn+1
h )‖0.

For the second term, we take yh = �1(∇qh − ∇ pn+1
h )) in (22b), obtaining

ĨIb = (∇rn+1
d ,�1(∇qh − ∇ pn+1

h ))

= − 1

δt
(en+1

d − ên+1
d ,�1(∇qh − ∇ pn+1

h ))

≤ 1

δt
‖en+1

d − ên+1
d ‖0‖�1(∇qh − ∇ pn+1

h )‖0.
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Then,

ĨI ≤ ‖φn+1 − qh‖1 + 1

δt
‖en+1

d − ên+1
d ‖0.

Moreover, due to Assumption 9 we can obtain

ĨII ≤ C(‖�1(∇qh − ∇ pn+1
h )‖0 + ‖�3(∇qh − ∇ pn+1

h )‖0)

≤ C(ĨI + ‖�3(∇qh)‖0 + ‖�3(∇ pn+1
h )‖0)

≤ C (̃I + ĨI + ‖∇φn+1 − ∇qh‖0 + 2‖�3(∇ pn+1
h )‖0).

Then, taking the infimum with respect to qh ∈ Qh , we prove the statement of the
theorem. ��

The error estimates we want to obtain are established in the next theorem:

Theorem 2 Under Assumptions 1, 2, 8, 6 and 9, we have

max
0≤n≤N

{‖eN+1
d ‖2

0 + ‖êN+1
d ‖2

0} +
N∑

n=0

ν∆t{‖ên+1
d ‖2

1 + ‖en+1
d ‖2

1}

+
N∑

n=0

{‖en+1
d − ên+1

d ‖2
1 + ‖ên+1

d − en+1
d ‖2

1}

+
N∑

n=0

∆t2‖∇rn+1
d ‖2

0 ≤ C(Ĩ(h)2 + ∆t2)

for ∆t > 0 small enough.

Proof The first step of this proof is similar to that in Theorem 1. We take ∆t(vh−ûn+1
h )

as a test function in (22a). Using some bounds from Theorem 1, invoking the stability
estimates for ên+1

d and adding up from n = 0 to n = N , we get

1

2

N∑
n=0

(
‖ên+1

d ‖2
0 − ‖en

d‖2
0 + ‖ên+1

d − en
d‖2

0

)
+

N∑
n=0

ν∆t‖ên+1
d ‖2

1

≤ C(Ĩ(h)2 + ∆t2) + 6

8

N∑
n=0

ν∆t‖ên+1
d ‖2

1 + 1

3

N∑
n=0

‖ên+1
d − en

d‖2
0

+C
N∑

n=0

∆t
(
‖en+1

d ‖2
0 + ‖en+1

d − ên+1
d ‖2

0

)
. (23)
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The proof goes on taking ∆t(vh − un+1
h ) as a test function in (22b), getting

1

2

(
‖en+1

d ‖2
0 − ‖ên+1

d ‖2
0 + ‖en+1

d − ên+1
d ‖2

0

)
+ ∆t(∇rn+1

d , en+1
d )

= (en+1
d − ên+1

d ,wn+1 − vh) + ∆t(∇rn+1
d ,wn+1 − vh). (24)

We bound the first term as follows,

(en+1
d − ên+1

d ,wn+1 − vh) ≤ 1

6
‖en+1

d − ên+1
d ‖2

0 + C
∆t

h2 ‖wn+1 − vh‖2
0.

Using Lemma 3 we can bound the second term in the RHS of (24),

(∇rn+1
d ,wn+1 − vh) ≤ C‖∇rn+1

d ‖0‖wn+1 − vh‖0

≤ C(Ĩn(h) + 1

δt
‖en+1

d − ên+1
d ‖0 + ‖�3(∇ pn+1

h )‖0)‖wn+1 − vh‖0

≤ C Ĩn(h)2 + 1

6∆t
‖en+1

d − ên+1
d ‖2

0 + ∆t

3
‖�3(∇ pn+1

h )‖2
0.

Adding up from n = 0 to n = N , we get

1

2

N∑
n=0

(
‖en+1

d ‖2
0 − ‖ên+1

d ‖2
0 + ‖en+1

d − ên+1
d ‖2

0

)
+

N∑
n=0

∆t(∇rn+1
d , en+1

d )

≤ 1

3

N∑
n=0

‖en+1
d − ên+1

d ‖2
0 + C Ĩ(h)2 + 1

3

N∑
n=0

∆t2‖�3(∇ pn+1
h )‖2

0. (25)

Now we take ∆t(qh − pn+1
h ) as a test function in (22c), obtaining

∆t(∇ · en+1
d , rn+1

d ) + ∆t2‖�⊥
Yh,0

(∇ pn+1
h )‖2

0

= ∆t(∇ · en+1
d , φn+1 − qh) + ∆t2(�⊥

Yh,0
(∇ pn+1

h ),∇qh)

= ∆t(∇ · en+1
d , φn+1 − qh) − ∆t2(�⊥

Yh,0
(∇ pn+1

h ), yh − ∇qh) (26)

for any function yh ∈ Yh,0. We bound the first term of the RHS invoking Assumption 8,

(∇ · en+1
d , φn+1 − qh) = −(en+1

d − ên+1
d ,∇φn+1 − ∇qh) + (∇ · ên+1

d , φn+1 − qh)

≤ 1

8
ν‖ên+1

d ‖2
1 + C‖φn+1 − qh‖2

0 + 1

6∆t
‖en+1

d − ên+1
d ‖2

0

+Ch2‖φn+1 − qh‖2
1,
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and using the triangular inequality and Young’s inequality, we have,

−(�⊥
Yh,0

(∇ pn+1
h ), yh − ∇qh)) ≤ ‖�⊥

Yh,0
(∇ pn+1

h )‖0‖ yh − ∇qh‖0

≤ 1

3
‖�⊥

Yh,0
(∇ pn+1

h )‖2
0 + C

h2

∆t
‖∇φn+1 − yh‖2

0 + C
h2

∆t
‖φn+1 − qh‖2

1.

Adding up from n = 0 to n = N , we have

N∑
n=0

∆t
(
∇ · en+1

d , rn+1
d

)
+

N∑
n=0

∆t2‖�⊥
Yh,0

(∇ pn+1
h )‖2

0

≤ 1

8

N∑
n=0

ν∆t‖ên+1
d ‖2

1 + 1

6

N∑
n=0

‖en+1
d − ên+1

d ‖2
0

+
N∑

n=0

∆t2

3
‖�⊥

Yh,0
(∇ pn+1

h )‖2
0 + C Ĩ(h)2. (27)

Taking into account the fact that Yh,0 ⊂ Vh , we can easily infer that, for any function
qh ∈ Qh ,

‖�3(∇qh)‖0 = ‖�⊥
h (∇qh)‖0 ≤ ‖�⊥

Yh,0
(∇qh)‖0. (28)

Summing up (23), (25) and (27), using (28) and applying Gronwall’s lemma we finally
get

‖eN+1
d ‖2

0 +
N∑

n=0

(
‖ên+1

d − en
d‖2

0 + ‖en+1
d − ên+1

d ‖2
0

)
+

N∑
n=0

ν∆t‖ên+1
d ‖2

1

+
N∑

n=0

∆t2‖�⊥
Yh,0

(∇ pn+1
h )‖2

0 ≤ C(Ĩ(h)2 + ∆t2). (29)

From the first and third term of the left hand side of (29) we get the bound for ‖êN+1
d ‖0.

The bound for the pressure error is straightforward from Lemma 3, (28) and (29). This
completes the proof of the theorem. ��

The previous a priori error estimate is optimal.

Remark 3 The new term of the interpolation error function,

h inf
yh∈Yh,0

‖∇φn+1 − yh‖0

keeps the optimality of the error bound. Nevertheless, from the previous theorem we
can infer that, if we decide to seek the end-of-step velocity un+1

h in the finite element
space Vh,0 (that is, to impose Dirichlet boundary conditions over un+1

h ), the situation
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gets worse. This is the case of pressure segregation methods obtained at the discrete
level. The error estimates for a first order fractional step method obtained at the dicrete
level is optimal (under Assumption 8) only for linear elements. The problem arises
from the fact that now the new interpolation term is:

h inf
vh,0∈Vh,0

‖∇φn+1 − vh‖0.

That is the approximation of a function in L2(Ω) that does not have to vanish on the
boundary (in fact, its trace is not even defined, but only its normal component) by
finite element functions vh ∈ Vh,0 with zero trace. Let us consider a finite element
function xh ∈ Vh , and the unique decomposition:

xh = xh,0 + xh,Γ (30)

where xh,0 ∈ Vh,0 and xh,Γ is a finite element function that vanishes at the inner nodes.
From basic properties of finite element shape functions and local inverse inequalities
(see [12]) we can easily get:

‖xh,Γ ‖0 ≤ Ch1/2‖xh‖L2(Γ ). (31)

Then, we can easily bound the error term under consideration as:

h inf
vh∈Vh,0

‖∇φn+1 − vh‖0 ≤ h inf
vh∈Vh

{
‖∇φn+1 − vh‖0 + Ch1/2‖vh‖L2(Γ )

}
.

This result does not allow to improve a h3/2 order of accuracy in space and we are not
aware of any improved error estimate for this expression. This misbehavior would be
particularly relevant for high order incremental projection methods.

We end our analysis with a corollary that gives the convergence results obtained for
the fully discrete fractional step method using a Pressure Poisson equation.

Corollary 3 (Convergence) Under the assumptions of Theorem 2 and the regularity
assumption ∂3

t f (t) ∈ L∞(0, T ; L2(Ω)), the following error estimates hold:

max
0≤n≤N

{
‖u(tn+1) − un+1

h ‖0 + ‖u(tn+1) − ûn+1
h ‖0 + √

∆t‖u(tn+1) − ûn+1
h ‖1

}

+λn+1
√

∆t

(
N∑

n=0

∆t‖p(tn+1) − pn+1
h ‖2

0

)1/2

≤ C(Ĩ(h) + ∆t),

for ∆t > 0 small enough.
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7 Conclusions

We have obtained optimal convergence and stability results for the fully discrete
version of the classical first order projection method. The strategy pursued is based on
the introduction of an auxiliary problem that has allowed the analysis of the final
discrete problem. Using this strategy not only optimal error estimates have been
obtained under the inf-sup condition, but also using a pressure Poisson equation
(exploiting the inherent pressure of the system that we get by introducing this equation).
As far as we know this is the first attempt for the obtention of convergence results for the
fully discrete projection method and also the first one without the inf-sup assumption.

Moreover we have infered from the numerical analysis that projection methods
obtained by splitting the discrete system, where Dirichlet boundary conditions are
applied over the the end-of-step velocity, show optimal convergence only for linear
elements.
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