Skip to main content
Log in

Rational quadrature formulae on the unit circle with arbitrary poles

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Interpolatory quadrature rules exactly integrating rational functions on the unit circle are considered. The poles are prescribed under the only restriction of not lying on the unit circle. A computable upper bound of the error is obtained which is valid for any choice of poles, arbitrary weight functions and any degree of exactness provided that the integrand is analytic on a neighborhood of the unit circle. A number of numerical examples are given which show the advantages of using such rules as well as the sharpness of the error bound. Also, a comparison is made with other error bounds appearing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achieser N.I. (1992). Theory of Approximation. Dover, New York

    Google Scholar 

  2. Alfaro M.P., Bello Hernández M., Montaner J.M. and Varona J.L. (2005). Some asymptotic properties for orthogonal polynomials with respect to varying measures. J. Approx. Theory 135: 22–34

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker G.A. (2000). Defects and the convergence of Padé approximants. Acta Appl. Math. 61: 37–52

    Article  MATH  MathSciNet  Google Scholar 

  4. Brent R.P. (2002). Algorithms for Minimization Without Derivatives. Dover, New York

    MATH  Google Scholar 

  5. Bultheel A., González-Vera P., Hendriksen E. and Njåstad O. (1992). The computation of orthogonal rational functions and their interpolating properties. Numer. Algorithms 2: 85–114

    Article  MATH  MathSciNet  Google Scholar 

  6. Bultheel A., González-Vera P., Hendriksen E. and Njåstad O. (1994). Quadrature formulas on the unit circle based on rational functions. J. Comput. Appl. Math. 50: 159–170

    Article  MATH  MathSciNet  Google Scholar 

  7. Bultheel A., González-Vera P., Hendriksen E. and Njåstad O. (1999). Orthogonal Rational Functions. Cambridge Monographs on Applied and Computational Mathematics, vol. 5. Cambridge University Press, Cambridge

    Google Scholar 

  8. Bultheel A., González-Vera P., Hendriksen E. and Njåstad O. (2000). Interpolation by rational functions with nodes on the unit circle. Acta Appl. Math. 61: 101–118

    Article  MATH  MathSciNet  Google Scholar 

  9. Bultheel A., González-Vera P., Hendriksen E. and Njåstad O. (1998). Orthogonal rational functions and interpolatory product rules on the unit circle II. Quadrature Conv. Anal. (Munich) 18: 185–200

    MATH  Google Scholar 

  10. Bultheel A., González-Vera P., Hendriksen E. and Njåstad O. (2000). Orthogonal rational functions and interpolatory product rules on the unit circle III. Conv. Gen. Sequences. Anal. (Munich) 20: 99–120

    MATH  Google Scholar 

  11. de la Calle Ysern B. (2005). Error bounds for rational quadrature formulae of analytic functions. Numer. Math. 101: 251–271

    Article  MATH  MathSciNet  Google Scholar 

  12. Conway J.B. (1978). Functions of One Complex Variable I. Springer, New York

    Google Scholar 

  13. Daruis L. and González-Vera P. (2001). Szegő polynomials and quadrature formulas on the unit circle. Appl. Numer. Math. 36: 79–112

    Article  MathSciNet  Google Scholar 

  14. Daruis L. and González-Vera P. (2002). Interpolatory quadrature formulas on the unit circle for Chebyshev weight functions. Numer. Math. 90: 641–664

    Article  MATH  MathSciNet  Google Scholar 

  15. Daruis L., González-Vera P. and Njåstad O. (2002). Szegő quadrature formulas for certain Jacobi-type weight functions. Math. Comp. 71: 683–701

    Article  MATH  MathSciNet  Google Scholar 

  16. Davis P.J. (1975). Interpolation and Approximation. Dover, New York

    MATH  Google Scholar 

  17. Bultheel A., González-Vera P. and Deun J. (2005). On computing rational Gauss–Chebyshev quadrature formulas. Math. Comp. 75: 307–326

    Article  Google Scholar 

  18. Duren P.L. (2000). Theory of H P Spaces. Dover, New York

    Google Scholar 

  19. Gautschi W. (1981) A survey of Gauss-Christoffel quadrature formulae. In: Butzer P.L., Fehěrs, F., Christoffel, E.B. (eds.) The influence of his work on mathematical and physical sciences. Birkhäuser, Basel, pp 72–147

  20. Gautschi W. (1999). Algorithm 793: GQRAT—Gauss quadrature for rational functions. ACM Trans. Math. Softw. 25: 213–239

    Article  MATH  MathSciNet  Google Scholar 

  21. Gautschi W., Gori L. and Lo Cascio M.L. (2000). Quadrature rules for rational functions. Numer. Math. 86: 617–633

    Article  MATH  MathSciNet  Google Scholar 

  22. Glader C. (1999). A two-parameter family of orthogonal polynomials with respect to a Jacobi-type weight on the unit circle. J. Math. Anal. Appl. 240: 583–599

    Article  MATH  MathSciNet  Google Scholar 

  23. González-Vera P., Njåstad O.,, Santos-León and J.C. (1996). Some results about numerical quadrature on the unit circle. Adv. Comput. Math. 5: 297–328

    Article  MATH  MathSciNet  Google Scholar 

  24. Jones W.B., Njåstad O. and Thron W.J. (1989). Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle. Bull. Lond. Math. Soc. 21: 113–152

    Article  MATH  Google Scholar 

  25. Jones W.B. and Waadeland H.   (1994). Bounds for remainder term in Szegő quadrature on the unit circle. In: Zahar, R.V.M. (eds) Aproximation and Computation: A Festschrift in Honor of Walter Gautschi, International Series of Numerical Mathematics, vol. 119, pp 325–342. Birkhäuser, Basel

    Google Scholar 

  26. Lether F.G. (1977). Substructing out complex singularities in numerical integration. Math. Comp. 31: 223–229

    Article  MATH  MathSciNet  Google Scholar 

  27. Magnus A.P.: Semiclassical orthogonal polynomials on the unit circle. MAPA 3072, Special Topics on Approximation Theory. Unpublished Technical Report (1999) http://www.math.ucl.ac.be/membres/ magnus/num3/m3xxx99.pdf

  28. Remmert R. (1998). Classical Topics in Complex Function Theory. Springer, New York

    MATH  Google Scholar 

  29. Santos-León J.C. (2001). Computation of integrals over the unit circle with nearby poles. Appl. Numer. Math. 36: 179–195

    Article  MATH  MathSciNet  Google Scholar 

  30. Santos-León, and J.C. (2001). Error bounds for interpolatory quadrature rules on the unit circle. Math. Comp. 70: 281–296

    Article  MATH  MathSciNet  Google Scholar 

  31. Sloan I.H. and Smith W.E. (1982). Properties of interpolatory product integration rules. SIAM J. Numer. Anal. 19: 427–442

    Article  MATH  MathSciNet  Google Scholar 

  32. Stahl H. (1997). The convergence of Padé approximants to functions with branch points. J. Approx. Theory 91: 139–204

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. de la Calle Ysern.

Additional information

The work of the first author was supported by the Dirección General de Investigación, Ministerio de Educación y Ciencia, under grants MTM2006-13000-C03-02 and MTM2006-07186 and by UPM and Comunidad de Madrid under grant CCG06-UPM/MTM-539. The work of the second author was partially supported by the Dirección General de Investigación, Ministerio de Educación y Ciencia, under grant MTM2005-08571.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Calle Ysern, B., González-Vera, P. Rational quadrature formulae on the unit circle with arbitrary poles. Numer. Math. 107, 559–587 (2007). https://doi.org/10.1007/s00211-007-0102-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0102-1

Mathematics Subject Classification (2000)

Navigation