Skip to main content
Log in

Numerical analysis of a multiscale finite element scheme for the resolution of the stationary Schrödinger equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A numerical method for the resolution of the one-dimensional Schrödinger equation with open boundary conditions was presented in N. Ben Abdallah and O. Pinaud (Multiscale simulation of transport in an open quantum system: resonances and WKB interpolation. J. Comp. Phys. 213(1), 288–310 (2006)). The main attribute of this method is a significant reduction of the computational cost for a desired accuracy. It is based particularly on the derivation of WKB basis functions, better suited for the approximation of highly oscillating wave functions than the standard polynomial interpolation functions. The present paper is concerned with the numerical analysis of this method. Consistency and stability results are presented. An error estimate in terms of the mesh size and independent on the wavelength λ is established. This property illustrates the importance of this method, as multiwavelength grids can be chosen to get accurate results, reducing by this manner the simulation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Abdallah, N.: On a multidimensional Schrödinger–Poisson scattering model for semiconductors. J. Math. Phys. 41(3–4), 4241–4261 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Abdallah, N., Degond, P., Markowich, P.A.: On a one-dimensional Schrödinger–Poisson scattering model. ZAMP 48, 35–55 (1997)

    Article  MathSciNet  Google Scholar 

  3. Ben Abdallah, N., Pinaud, O.: A mathematical model for the transient evolution of a resonant tunneling diode. C. R. Math. Acad. Sci. Paris 334(4), 283–288 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Ben Abdallah, N., Pinaud, O.: Multiscale simulation of transport in an open quantum system: resonances and WKB interpolation. J. Comp. Phys. 213(1), 288–310 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold, A.: Mathematical concepts of open quantum boundary conditions. Transp. Theory Stat. Phys. 30(4–6), 561–584 (2001)

    Article  MATH  Google Scholar 

  6. Fischetti, M.V.: Theory of electron transport in small semiconductor devices using the Pauli master equation. J. Appl. Phys. 83, 270–291 (1998)

    Article  Google Scholar 

  7. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62(3), 745–791 (1990)

    Article  Google Scholar 

  8. Giladi, E., Keller, J.B.: A hybrid numerical asymptotic method for scattering problems. J. Comput. Phys. 174(1), 226–247 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II. The h-p version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lent, C.S., Kirkner, D.J.: The quantum transmitting boundary method. J. Appl. Phys. 67, 6353–6359 (1990)

    Article  Google Scholar 

  12. Negulescu, C., Ben Abdallah, N., Mouis, M.: An accelerated algorithm for ballistic quantum transport simulations in 2D nanoscale MOSFETs. J. Comp. Phys. 255(1), 74–99 (2007)

    MathSciNet  Google Scholar 

  13. Nier, F.: A stationary Schrödinger–Poisson system arising from the modelling of electronic devices. Forum Math. 2(5), 489–510 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comput. Phys. 202(1), 150–180 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Polizzi, E., Ben Abdallah, N.: Self-consistent three dimensional models for quantum ballistic transport in open systems. Phys. Rev. B 66, 245301 (2002)

    Article  Google Scholar 

  16. Polizzi, E.: Modélisation et simulations numériques du transport quantique balistique dans les nanostructures semi-conductrices. PhD Thesis, INSA Toulouse (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Negulescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negulescu, C. Numerical analysis of a multiscale finite element scheme for the resolution of the stationary Schrödinger equation. Numer. Math. 108, 625–652 (2008). https://doi.org/10.1007/s00211-007-0132-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0132-8

Mathematics Subject Classification (2000)

Navigation