Skip to main content
Log in

Which spaces for design?

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We determine the largest class of spaces of sufficient regularity which are suitable for design in the sense that they do possess blossoms. It is the class of all spaces containing constants of which the spaces derived under differentiation are Quasi Extended Chebyshev spaces, i.e., they permit Hermite interpolation, Taylor interpolation excepted. It is also the class of all spaces which possess Bernstein bases, or of all spaces for which any associated spline space does possess a B-spline basis. Note that blossoms guarantee that such bases are normalised totally positive bases. They even are the optimal ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carnicer J.-M., Peña J.-M.: Total positivity and optimal bases. In: Gasca, M., Micchelli , C.A.(eds) Total Positivity and its Applications, pp. 133–155. Kluwer, Dordrecht (1996)

    Google Scholar 

  2. Costantini P.: On monotone and convex spline interpolation. Math. Comp. 46, 203–214 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Costantini P.: Shape preserving interpolation with variable degree polynomial splines. In: Hoscheck, J., Kaklis, P.(eds) Advanced Course on FAIRSHAPE, pp. 87–114. B.G. Teubner, Stuttgart (1996)

    Google Scholar 

  4. Costantini P.: Variable degree polynomial splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L.(eds) Curves and Surfaces with Applications in CAGD., pp. 85–94. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  5. Costantini P.: Curve and surface construction using variable degree polynomial splines. Comp. Aided Geom. Des. 17, 419–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Costantini, P., Manni, C.: On constrained nonlinear Hermite subdivision. Const. Approx. (to appear)

  7. Costantini P., Lyche T., Manni C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goodman T.N.T., Mazure M.-L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kaklis P.D., Pandelis D.G.: Convexity preserving polynomial splines of non-uniform degree. IMA J. Num. Anal. 10, 223–234 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Karlin S.: Total Positivity. Stanford Univ. Press, Stanford (1968)

    MATH  Google Scholar 

  11. Karlin S.J., Studden W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley Interscience, New York (1966)

    MATH  Google Scholar 

  12. Kayumov A., Mazure M.-L.: Chebyshevian splines: interpolation and blossoms. Comptes Rendus Acad. Sci. 344, 65–70 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Lyche T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–178 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. MacDonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    Google Scholar 

  15. Mazure M.-L.: Quasi-Chebyshev splines with connexion matrices. Application to variable degree polynomial splines. Comp. Aided Geom. Des. 18, 287–298 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mazure M.-L.: Blossoms and optimal bases. Adv. Comp. Math. 20, 177–203 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mazure M.-L.: Chebyshev spaces and Bernstein bases. Const. Approx. 22, 347–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mazure, M.-L.: Ready-to-blossom bases in Chebyshev spaces. In: Jetter, K., Buhmann, M., Haussmann, W., Schaback, R., Stoeckler, J. (eds.) Topics in Multivariate Approximation and Interpolation, vol. 12, pp. 109–148. Elsevier, Amsterdam (2006)

  19. Mazure M.-L.: On Chebyshevian spline subdivision. J. Approx. Theory 143, 74–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mazure, M.-L.: Understanding recurrence relations for Chebyshevian B-splines via blossoms. J. Comp. Appl. Math. (to appear)

  21. Mazure M.-L.: On dimension elevation in Quasi extended Chebyshev spaces. Num. Math. 109, 459–475 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mazure, M.-L., Pottmann, H.: Tchebycheff curves. In: Total positivity and its applications, pp. 187–218. Kluwer, Dordrecht (1996)

  23. Pottmann H.: The geometry of Tchebycheffian splines. Comp. Aided Geom. Des. 10, 181–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ramshaw L.: Blossoms are polar forms. Comp. Aided Geom. Des. 6, 323–358 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schumaker L.L.: Spline Functions. Wiley Interscience, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazure, ML. Which spaces for design?. Numer. Math. 110, 357–392 (2008). https://doi.org/10.1007/s00211-008-0164-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0164-8

Mathematics Subject Classification (2000)

Navigation