Skip to main content
Log in

A unifying theory of a posteriori error control for discontinuous Galerkin FEM

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A unified a posteriori error analysis is derived in extension of Carstensen (Numer Math 100:617–637, 2005) and Carstensen and Hu (J Numer Math 107(3):473–502, 2007) for a wide range of discontinuous Galerkin (dG) finite element methods (FEM), applied to the Laplace, Stokes, and Lamé equations. Two abstract assumptions (A1) and (A2) guarantee the reliability of explicit residual-based computable error estimators. The edge jumps are recast via lifting operators to make arguments already established for nonconforming finite element methods available. The resulting reliable error estimate is applied to 16 representative dG FEMs from the literature. The estimate recovers known results as well as provides new bounds to a number of schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ainsworth M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45, 1777–1798 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Braess D., Carstensen C., Reddy B.D.: Uniform convergence and a posteriori error estimators for the enhanced strain finite element method. Numer. Math. 96, 461–479 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    MATH  Google Scholar 

  5. Bustinza R., Gatica G.N., Cockburn B.: An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems. J. Sci. Comput. 22–23, 147–185 (2005)

    Article  MathSciNet  Google Scholar 

  6. Becker R., Hansbo P., Larson M.G.: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 192, 723–733 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous finite elements for diffusion problems. In Atti Convegno in onore di F. Brioschi (Milan, 1991), Istituto Lambardo, Accademia di Scienze e Lettere, Milan, Italy (1991), pp. 197–217

  8. Brezzi F., Manzini G., Marini D., Pietra P., Russo A.: Discontinuous finite elements for elliptic problems. Numer. Methods Partial Differ. Equ. 16, 365–378 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baumann C.E., Oden J.T.: A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bassi F., Rebay S.: A higher order accurate discontinuous Galerkin finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Braess D.: Finite Elements. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  12. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A higher-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dilbelius, G. (eds.) Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen, Belgium (1997)

  13. Babuska I., Zlamal M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carstensen, C.L.: Numerical analysis of the primal problem of elastoplasticity with hardening. Numer. Math 82(4), 577–597 (1999) MR 2000d:74070

    Google Scholar 

  15. Carstensen C.L.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Carstensen C., Dolzmann G.: A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81, 187–209 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Carstensen, C., Funken, S.A.: Constants in Clément-interpolation error and residual-based a posteriori error estimates in finite element methods. East-West J. Numer. Math. 8(3):153–175 (2000) MR 2002a:65173

    Google Scholar 

  18. Cockburn B., Schötzau D., Kanschat G., Schwab C.: Local discontinuous Galerkin methods for the Stokes systems. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite element methods. J. Numer. Math. 107(3), 473–502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Carstensen C., Jensen M.: Averaging techniques for reliable and efficient a posteriori finite element error control: analysis and applications. Contemp. Math. 383, 15–34 (2006)

    MathSciNet  Google Scholar 

  21. Cockburn B., Kanschat G., Schötzau D., Schwab C.: Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195, 3184–3204 (2006)

    Article  MATH  Google Scholar 

  22. Clément P.: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 2, 77–84 (1975)

    Google Scholar 

  23. Cockburn B., Shu C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Douglas, J. Jr., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. Lecture Notes in Physics, vol. 58, pp. 207–216. Springer, Berlin (1976)

  25. Hansbo P., Larson M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Houston P., Schötzau D., Wihler T.P.: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. J. Sci. Comput. 22–23, 347–370 (2005)

    Google Scholar 

  27. Houston P., Schötzau D., Wihler T.P.: An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity. Comput. Methods Appl. Mech. Eng. 195, 3224–3246 (2006)

    Article  MATH  Google Scholar 

  28. Karakashian O.A., Pascal F.: A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Melenk J.M., Wohlmuth B.: On residual-based aposteriori error estimation in hp-FEM. Adv. Comput. Math. 15, 311–331 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Riviere B., Wheeler M.F., Girault V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3, 337–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schötzau D., Schwab C., Toselli A.: Mixed hp-dGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)

    Article  MATH  Google Scholar 

  32. Toselli A.: hp-Discontinuous Galerkin approximations for Stokes problems. Math. Models Methods Appl. Sci. 12, 1565–1616 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wihler T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75, 1087–1102 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Carstensen.

Additional information

C. Carstensen and M. Jensen supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin and the Hausdorff Institute of Mathematics in Bonn, Germany.

C. Carstensen, T. Gudi, and M. Jensen supported by DST-DAAD (PPP-05) project no. 32307481.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carstensen, C., Gudi, T. & Jensen, M. A unifying theory of a posteriori error control for discontinuous Galerkin FEM. Numer. Math. 112, 363–379 (2009). https://doi.org/10.1007/s00211-009-0223-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0223-9

Mathematics Subject Classification (2000)

Navigation