Skip to main content
Log in

A geometric approach for Hermite subdivision

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a non-stationary, non-uniform scheme for two-point Hermite subdivision. The novelty of this approach relies on a geometric interpretation of the subdivision steps—related to generalized Bernstein bases—which permits to overcome the usually unavoidable analytical difficulties. The main advantages consist in extra smoothness conditions, which in turn produce highly regular limit curves, and in an elegant structure of the subdivision—described by three de Casteljau type matrices. As a by-product, the scheme is inherently shape preserving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carnicer J., Mainar E., Pena J.M.: Critical length for design purposes and extended Chebyshev spaces. Constr. Approx. 20, 55–71 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carnicer J., Pena J.M.: Shape-preserving representations and optimality of the Bernstein basis. Adv. Comput. Math. 1, 173–196 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Costantini P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 426–446 (2000)

    Article  MathSciNet  Google Scholar 

  4. Costantini P., Lyche T., Manni C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Costantini P., Manni C.: Geometric construction of generalized cubic splines. Rend. Mat. 26, 327–338 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Costantini P., Manni C.: On constrained nonlinear Hermite subdivision. Constr. Approx. 28, 291–331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Costantini, P., Manni, C.: Curve and surface construction using Hermite subdivision schemes. J. Comput. Appl. Math. doi:10.1016/j.cam.2009.02.096 (2009)

  8. de Boor C.: Cutting corners always work. Comput. Aided Geom. Des. 4, 125–131 (1987)

    Article  MATH  Google Scholar 

  9. de Boor C.: Local corner cutting corners and the smoothnes of the limiting curve. Comput. Aided Geom. Des. 7, 389–397 (1990)

    Article  MATH  Google Scholar 

  10. Delbourgo R., Gregory J.A.: Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comput. 6, 967–976 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubuc S.: Scalar and Hermite subdivision schemes. Appl. Comp. Harmon. Anal. 21, 376–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dubuc S., Merrien J.-L.: A 4-point Hermite subdivision scheme. In: Lyche, T., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces, Innovative Applied Mathematics, pp. 113–122. Vanderbilt University Press, Nashville (2001)

    Google Scholar 

  13. Goodman T.N.T., Mazure M.L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gori L., Pitolli F.: A class of totally positive refinable functions. Rend. Mat. 20, 305–322 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters, Wellesley (1993)

    MATH  Google Scholar 

  16. Lyche T., Merrien J.L.: C 1 Interpolatory subdivision with shape constraints for curves. SIAM J. Numer. Anal. 44, 1095–1121 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mazure M.L.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Merrien J.-L.: A family of Hermite interpolants by bisection algorithms. Numer. Algorithms 2, 187–200 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merrien J.-L.: Interpolants d’Hermite C 2 obtenus par subdivision. M2AN Math. Model. Numer. Anal. 33, 55–65 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Merrien J.-L., Sablonniere P.: Monotone and convex C 1 Hermite interpolants generated by a subdivision scheme. Constr. Approx. 19, 279–298 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pelosi, F., Sablonniere, P.: C 1 GP Hermite Interpolants Generated by a Subdivision Scheme. J. Comput. Appl. Math. doi:10.1016/j.cam.2007.09.013 (2007)

  22. Peña, J.M. (eds): Shape Preserving Representations in Computer-Aided Geometric Design. Nova Science Publishers, Inc, Commack (1999)

    MATH  Google Scholar 

  23. Sablonniere P.: Bernstein-type bases and corner cutting algorithms for C 1 Merrien’s curves. Adv. Comput. Math. 20, 229–246 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schweikert D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Costantini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantini, P., Manni, C. A geometric approach for Hermite subdivision. Numer. Math. 115, 333–369 (2010). https://doi.org/10.1007/s00211-009-0280-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0280-0

Mathematics Subject Classification (2000)

Navigation