Skip to main content
Log in

Computational existence proofs for spherical t-designs

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Spherical t-designs provide quadrature rules for the sphere which are exact for polynomials up to degree t. In this paper, we propose a computational algorithm based on interval arithmetic which, for given t, upon successful completion will have proved the existence of a t-design with (t + 1)2 nodes on the unit sphere \({S^2 \subset \mathbb{R}^3}\) and will have computed narrow interval enclosures which are known to contain these nodes with mathematical certainty. Since there is no theoretical result which proves the existence of a t-design with (t + 1)2 nodes for arbitrary t, our method contributes to the theory because it was tested successfully for t = 1, 2, . . . , 100. The t-design is usually not unique; our method aims at finding a well-conditioned one. The method relies on computing an interval enclosure for the zero of a highly nonlinear system of dimension (t + 1)2. We therefore develop several special approaches which allow us to use interval arithmetic efficiently in this particular situation. The computations were all done using the MATLAB toolbox INTLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alefeld G., Herzberger J.: Introduction to Interval Computations. Computer Science and Applied Mathematics. Academic Press, New York (1983)

    Google Scholar 

  2. Bannai E., Bannai E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30, 1392–1425 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Böhm H.: Evaluation of arithmetic expressions with maximum accuracy. In: Kulisch, U., Miranker, W.L. (eds) A New Approach to Scientific Computing, pp. 121–137. Academic Press, New York (1983)

    Google Scholar 

  4. Chen X., Womersley R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44, 2326–2341 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Delsarte P., Goethals J.M., Seidel J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Frommer, A., Lang, B.: Fast and accurate multi-argument interval evaluation of polynomials. In: Proceedings of the 12th GAMM—IMACS international symposium on scientific computing, computer arithmetic and validated numerics (SCAN 2006), p. 31, Los Alamitos, CA, USA, 2006. IEEE Computer Society

  7. Golub G.H., Van Loan C.F.: Matrix Computations. 3rd edn. The Johns Hopkins Univ. Press, Baltimore (1996)

    MATH  Google Scholar 

  8. Hardin R.H., Sloane N.J.A.: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom. 15, 429–441 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis (2005). http://www.mat.univie.ac.at/~neum/ms/notation.pdf

  10. Klatte R., Kulisch U.W., Wiethoff A., Lawo Ch., Rauch M.: C-XSC. A C++ Class Library for Extended Scientific Computing. Springer, Berlin (1993)

    MATH  Google Scholar 

  11. Korevaar J., Meyers J.L.H.: Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere. Integral Transform. Spec. Funct. 1, 105–117 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krämer, W., Hofschuster, W.: C-XSC 2.0: A C++ library for extended scientific computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical Software With Result Verification. International Dagstuhl Seminar, Dagstuhl Castle, Germany, January 19–24, 2003. Revised papers. Lecture Notes in Computer Science, vol. 2991, pp. 15–35. Springer, Berlin (2004)

  13. Krämer W., Popova E.D.: Zur Berechnung von verlässlichen Außen- und Inneneinschließungen bei parameterabhängigen linearen Gleichungssystemen. Proc. Appl. Math. Mech. 4, 670–671 (2004)

    Article  Google Scholar 

  14. Krawczyk R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4, 187–201 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  15. Popova E.D.: Parametric interval linear solver. Numer. Algorithms 37, 345–356 (2004)

    Article  MATH  Google Scholar 

  16. Rump S.M.: Solving algebraic problems with high accuracy. In: Kulisch, U., Miranker, W.L. (eds) A New Approach to Scientific Computation, pp. 51–120. Academic Press, New York (1983)

    Google Scholar 

  17. Rump, S.M.: Verification methods for dense and sparse systems of equations. In: Herzberger, J. (ed.) Topics in Validated Computations, Stud. Comput. Math., vol. 5, pp. 63–135. Elsevier, Amsterdam (1994)

  18. Rump S.M.: Expansion and estimation of the range of nonlinear functions. Math. Comput. 65(216), 1503–1512 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rump S.M.: INTLAB—interval laboratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer, Dordrecht (1999)

    Google Scholar 

  20. Seymour P.D., Zaslavsky T.: Averaging sets: a generalization of mean values and spherical designs. Adv. Math. 52, 213–240 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sloan I.H., Womersley R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comp. Math. 21, 102–125 (2004)

    Article  MathSciNet  Google Scholar 

  22. Sloan I.H., Womersley R.S.: A variational characterization of spherical designs. J. Approx. Theory 159, 308–318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Womersley, R.S.: Interpolation and cubature on the sphere. http://web.maths.unsw.edu.au/~rsw/Sphere/Extremal/New/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Frommer.

Additional information

Dedicated to Götz Alefeld on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Frommer, A. & Lang, B. Computational existence proofs for spherical t-designs. Numer. Math. 117, 289–305 (2011). https://doi.org/10.1007/s00211-010-0332-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0332-5

Mathematics Subject Classification (2000)

Navigation