Skip to main content
Log in

An oscillation-free adaptive FEM for symmetric eigenvalue problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A refined a posteriori error analysis for symmetric eigenvalue problems and the convergence of the first-order adaptive finite element method (AFEM) is presented. The H 1 stability of the L 2 projection provides reliability and efficiency of the edge-contribution of standard residual-based error estimators for P 1 finite element methods. In fact, the volume contributions and even oscillations can be omitted for Courant finite element methods. This allows for a refined averaging scheme and so improves (Mao et al. in Adv Comput Math 25(1–3):135–160, 2006). The proposed AFEM monitors the edge-contributions in a bulk criterion and so enables a contraction property up to higher-order terms and global convergence. Numerical experiments exploit the remaining L 2 error contributions and confirm our theoretical findings. The averaging schemes show a high accuracy and the AFEM leads to optimal empirical convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. In: Pure and Applied Mathematics. Wiley-Interscience, New York (2000)

  2. Alberty J., Carstensen C., Funken S.A.: Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20(2–3), 117–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alberty J., Carstensen C., Funken S.A., Klose R.: Matlab implementation of the finite element method in elasticity. Computing 69(3), 239–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol II, pp. 641–787. North-Holland, Amsterdam (1991)

  5. Babuška I., Osborn J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52(186), 275–297 (1989)

    MATH  Google Scholar 

  6. Bangerth W., Rannacher R.: Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2003)

    Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

  8. Carstensen C.: An adaptive mesh-refining algorithm allowing for an H 1 stable L 2 projection onto Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen C.: All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comput. 73(247), 1153–1165 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Carstensen C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100(4), 617–637 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cascon J.M., Kreuzer C., Nochetto R.H., Siebert K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chatelin F.: Spectral approximation of linear operators. Computer Science and Applied Mathematics. Academic Press, New York (1983)

    Google Scholar 

  13. Durán R.G., Padra C., Rodríguez R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giani S., Graham I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heuveline V., Rannacher R.: A posteriori error control for finite approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15(1–4), 107–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Knyazev A.V.: New estimates for Ritz vectors. Math. Comput. 66(219), 985–995 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knyazev A.V., Osborn J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Larson M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Larsson, S., Thomée, V.: Partial differential equations with numerical methods. In: Texts in Applied Mathematics, vol. 45. Springer, Berlin (2003)

  20. Mao D., Shen L., Zhou A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math. 25(1–3), 135–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raviart P.A., Thomas J.M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maî trise. Masson, Paris (1983)

    Google Scholar 

  22. Sauter S.: hp-finite elements for elliptic eigenvalue problems: error estimates which are explicit with respect to λ, h, and p. SIAM J. Numer. Anal. 48(1), 95–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  24. Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, New York (1996)

    MATH  Google Scholar 

  25. Walsh T.F., Reese G.M., Hetmaniuk U.L.: Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Eng. 196(37–40), 3614–3623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Carstensen.

Additional information

Supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin and the Hausdorff Institute for Mathematics in Bonn, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carstensen, C., Gedicke, J. An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 118, 401–427 (2011). https://doi.org/10.1007/s00211-011-0367-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0367-2

Mathematics Subject Classification (2000)

Navigation