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Abstract. In this paper we propose a stabilized conforming finite volume element method for the Stokes

equations. On stating the convergence of the method, optimal a priori error estimates in different norms are

obtained by establishing the adequate connection between the finite volume and stabilized finite element
formulations. A superconvergence result is also derived by using a postprocessing projection method. The

stabilization of the continuous lowest equal order pair finite volume element discretization (P1 − P1) is
achieved by enriching the velocity space with bubble-like functions. Finally, some numerical experiments

that confirm the predicted behavior of the method are provided.

1. Introduction

Finite volume element methods (FVEM) [6], also known as marker and cell methods, generalized differ-
ence methods [24], finite volume methods [23, 32], covolume methods [7] or box methods [3, 11], are approxi-
mation methods that could be placed somehow in between classical finite volume schemes and standard finite
element (FE) methods. Roughly speaking, the FVEM is able to keep the simplicity and conservativity of
finite volume methods and at the same time permits a natural development of error analysis in the L2−norm
as in standard FE methods. This is basically achieved by introducing a transfer map which allows to rewrite
the FE formulation as its finite-volume-like counterpart, i.e., using piecewise constant test functions. The
usual difficulty in the analysis of finite volume methods consists in that trial and test functions lie in different
spaces and are associated with different meshes. In the FVEM approach, a complementary dual mesh is also
constructed, and this is commonly done by connecting the barycenters of the triangles in the FE mesh, with
the midpoints of the associated edges (see [7, 10, 20, 23]). However, one of the most appealing features is
that the approximate solution is found in the same subspace used in the construction of the FE method. In
fact, FVE methods might be regarded as a special class of Petrov-Galerkin methods where the trial function
spaces are connected with the test functions’ spaces associated with the dual partition induced by the control
volumes [21, 23]. Moreover, the approach used herein (based on the relation between finite volume and FE
approximations) possesses the appealing feature of being locally conservative.

As for the numerical approximation of Stokes equations, numerous methods have been proposed, analyzed
and tested (for an overview, the reader is referred to [18] and the references therein). In the framework of
finite volume methods, recent contributions include the work by Gallouët et al. [17] which treat the nonlinear
case based on Crouzeix-Raviart elements, Nicase and Djadel [25] prove different error estimates for a finite
volume scheme by using nonconforming elements, Eymard et al. [14] obtained error estimates for a stabilized
finite volume scheme based on the Brezzi-Pitkäranta method. Regarding FVE approximations for the Stokes
problem, in his early paper, Chou [7] used nonconforming piecewise linear elements for velocity and piecewise
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constant for pressure. In the contribution by Ye [30], the analysis is carried out for both conforming and
nonconforming elements on triangles and rectangles. We also mention the recent work of Li and Chen [23]
who advanced a FVE method based on a stabilization method that uses the residual of two local Gauss
integration formulae on each finite element.

In this paper we will devote ourselves to the study of a particular stabilized FVE method constructed on
the basis of a conforming finite element formulation where the velocity and pressure fields are approximated
by piecewise linear polynomials. Since the considered approximation of the Stokes equations is based on the
pair P1−P1 that does not satisfy the discrete inf-sup condition (see [18]), one of the most common remedies
consists in including a stabilization technique, i.e., to add a mesh dependent term to the usual formulation.
One of the motivations for keeping the unstable pair of lowest equal order elements, is that they allow a more
efficient implementation, by achieving a reduction of the number of unknowns in the final systems. Among
the wide class of stabilized FE formulations available from the literature, such as Streamline-Upwind/Petrov-
Galerkin (SUPG), Galerkin-Least-Squares (GLS) and other methods (see for instance [27, Sect. 9.4] and
the references therein), in this paper we include a stabilization technique similar to the one introduced by
Franca et al. [16], in which a Petrov-Galerkin approach is used to enrich the trial space with bubble functions
being solutions to a local problem involving the residual of the momentum equation, which can be solved
analytically. As recently proposed by Araya et al. [2], by enriching the velocity space using a multiscale
approach combined with static condensation, the resulting FE method includes the classical GLS additional
terms at the element level and a suitable jump term on the normal derivative of the velocity field at the
element boundaries. For the latter, the stabilization parameter is known exactly.

For our method, the essential point is to appropriately connect the FE and FVE formulations. After
establishing such relationship we deduce the corresponding optimal a priori error estimates for the new
stabilized FVE method using a usual approach for classical FE methods. In contrast to classical finite
volume schemes, the velocity fluxes will not be discretized in a finite-difference fashion. This fact plays
an important role at the implementation stage as well, since all the information corresponding to the dual
partition, needed for the derivation of the FVE formulation can be retrieved from the information on the
edges of the primal mesh.

Another important novel ingredient of this paper is the superconvergence analysis of the approximate
solution. The main goal is to improve the current accuracy of the approximation by applying a postprocessing
technique constructed on the basis of a projection method presented in [19, 29, 22, 31]. Super-convergence
properties of FVE approximations in the nonconforming and conforming cases were first studied in the
recent works by Cui and Ye [10] and Wang and Ye [29]. The technique consists in projecting the FVE
space to another approximation space (possibly of higher order) related to a coarser mesh. A detailed study
including the analysis of a posteriori error estimates for FVE methods in the spirit of [5, 12], and adaptivity
following [8] have been postponed for a forthcoming paper. Further efforts are also being made to extend
the analysis herein presented to the transient Navier-Stokes equations.

The remainder of the paper is organized as follows. In the next section, a set up of some preliminary
results and notations concerning the spaces involved in the analysis is followed by a detailed description
of the model problem and the FE discretization used as reference. Further, some auxiliary lemmas are
also provided in that section. Next, the stabilized finite volume formulation that we will employ and its
corresponding link with the reference finite element method are provided in Section 3. The main results of
the paper, namely the convergence analysis of the stabilized finite volume element approximation, are proved
in Section 4, and additional superconvergence estimates are given in Section 5. Finally, Section 6 is devoted
to the presentation of an illustrative numerical test which confirms the expected rates of convergence and
superconvergence.
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2. Preliminaries

The standard notation will be used for Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, L2
0(Ω) = {v ∈ L2(Ω) :∫

Ω
v = 0} and Sobolev functional spaces Hm(Ω), H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}, where Ω is an open,
bounded and connected subset of R2 with polygonal boundary ∂Ω. Further, let us denoteHm(Ω) = Hm(Ω)2,
and in general M will denote the corresponding vectorial counterpart of the scalar space M . For a subset
R ⊂ Ω, (·, ·)R denotes the L2(R)–inner product. In addition, Pr(R) will represent the space of polynomial
functions of degree s ≤ r on R.

2.1. The Boundary Value Problem. Let us consider the following steady state Stokes problem with
Dirichlet boundary conditions: Find u, p such that

−ν∆u+∇p = f in Ω, (2.1)

∇·u = 0 in Ω, (2.2)

u = 0 on ∂Ω. (2.3)

This linear problem describes the steady motion of an incompressible viscous fluid. As usual, the sought
quantities are the vectorial velocity field u, the scalar pressure p, the prescribed external force f and the
constant fluid viscosity ν > 0. Multiplying (2.1) by a test function v, (2.2) by a test function q, integrating by
parts both equations over Ω and summing the result, one obtains the weak formulation of problem (2.1)-(2.3):
Find (u, p) ∈H1

0(Ω)× L2
0(Ω) such that

ν (∇u,∇v)Ω − (p,∇·v)Ω + (q,∇·u)Ω = (f ,v)Ω ∀(v, q) ∈H1
0(Ω)× L2

0(Ω). (2.4)

This model problem is well-posed (see e.g. [18] for details on the analysis).

Throughout the paper, C > 0 will denote a constant depending only on the data (ν,Ω,f) and not on the
discretization parameters.

2.2. Finite Element Approximation. Let Th be a regular triangulation of Ω constructed by closed triangle
elements K with boundary ∂K. We fix the numbering sj , j = 1, . . . , Nh of all nodes or vertices of Th. With
Eh we denote the set of edges of Th, while E int

h will denote the edges of Th that are not part of ∂Ω. In addition,
hK denotes the diameter of the element K, and the mesh parameter is given by h = maxK∈Th

{hK}. By
Vh and Qh we will denote the standard linear finite element spaces for the approximation of velocity and
pressure on the triangulation Th, respectively. These spaces are defined as

Vh = {v ∈H1
0(Ω) ∩C0(Ω̄) : v|K ∈ P1(K)2 for all K ∈ Th}

provided with the basis {φj}j , and

Qh = {q ∈ L2
0(Ω) ∩ C0(Ω) : q|K ∈ P1(K) for all K ∈ Th}.

It is well known that with this choice of FE spaces, the classic Galerkin formulation of the problem: Find
(uh, ph) ∈ Vh ×Qh such that

ν (∇uh,∇vh)Ω − (ph,∇·vh)Ω + (qh,∇·uh)Ω = (f ,vh)Ω ∀(vh, qh) ∈ Vh ×Qh,

does not satisfy the discrete inf-sup condition. To overcome this difficulty, we include a stabilization cor-
rection similar to that introduced in [2]. In that paper, and differently than other stabilization techniques
available, the stabilization parameter corresponding to the jump terms is known. Moreover, the trial velocity
space is enriched with a function that does not vanish on the element boundary, which is split into a bubble
part and an harmonic extension of the boundary condition. An essential point in our analysis is based on
one of the formulations presented in [2]. The main ingredients of that idea are included here for sake of
completeness.
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Figure 1. Two neighboring elements K1,K2 ∈ Th (with outer normals n1,n2) sharing the
edge F ∈ E int

h .

Let H1(Th) denote the space of functions whose restriction to K ∈ Th belongs to H1(K), and Eh ⊂
H1(Th) be a finite dimensional space, called multiscale space such that Eh ∩ Vh = {0}, and consider the
following Petrov-Galerkin formulation: Find (uh + ue, ph) ∈ [Vh ⊕Eh]×Qh such that

ν (∇(uh + ue),∇v)Ω − (ph,∇·v)Ω + (qh,∇· (uh + ue))Ω = (f ,v)Ω,

for all (v, qh) ∈ [Vh ⊕ E0
h] × Qh, where E0

h denotes the space of functions in H1(Th) whose restriction to
K ∈ Th belongs to H1

0(K). Notice that trial and test function spaces do not coincide. The Petrov-Galerkin
scheme above can be equivalently written as: Find (uh + ue, ph) ∈ [Vh ⊕Eh]×Qh such that

ν (∇(uh + ue),∇va)Ω − (ph,∇·va)Ω + (qh,∇· (uh + ue))Ω = (f ,va)Ω,

ν (∇(uh + ue),∇vb)K − (ph,∇·vb)K = (f ,vb)K ,
(2.5)

for all va ∈ Vh, qh ∈ Qh, vb ∈ H1(K), K ∈ Th. Since for every K ∈ Th, ∇·uh|K ∈ R and vb|∂K = 0, the
second equation in (2.5) corresponds to the weak form of the following problem

−ν∆ue +∇p = f + ν∆uh in K ∈ Th,
ue = ge on F ⊂ ∂K ∈ Th,

(2.6)

where ge is the solution of the following one-dimensional Poisson problem on E int
h :

−ν∂ssge =
1
hF

[[ν∂nuh + pI · n]]F on F ∈ E int
h ,

ge = 0 at the endpoints of F .
(2.7)

Here s is the curvilinear abscissa of F , while [[w]]F denotes the jump of w ∈H1(Ω) across the edge F , that
is

[[w]]F = (w|K1)|F · n1 + (w|K2)|F · n2, (2.8)

where K1,K2 ∈ Th are such that K1 ∩K2 = F and n1,n2 are the exterior normals to K1,K2 respectively
(see Figure 1). If F lies on ∂Ω, then we take [[w]]F = w ·n. Note that the conformity of the enriched space for
the bubble-part of the velocity is achieved via the non-homogeneous transmission condition on E int

h defined
by (2.6)-(2.7). Now, on each K ∈ Th set ue|K = uKe + u∂Ke . Therefore, from (2.6) we have the auxiliary
problems:

−ν∆uKe = f + ν∆uh −∇p in K ∈ Th,
uKe = 0 on ∂K ∈ Th,

and

−ν∆u∂Ke = 0 in K ∈ Th,

u∂Ke = ge on ∂K ∈ Th.
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These problems are wellposed, and this implies that the second equation in (2.5) is satisfied. Then the
enriched part of the solution is completely identified. A static condensation procedure (see the detailed
development in [2]) allows to derive the following stabilized method: Find (uh, ph) ∈ Vh ×Qh such that

ν (∇uh,∇vh)Ω − (ph,∇·vh)Ω + (qh,∇·uh)Ω +
∑
K∈Th

h2
K

8ν
(−ν∆uh +∇ph, ν∆vh +∇qh)K

+
∑

F∈Eint
h

hF
12ν

([[ν∂nuh]]F , [[ν∂nvh]]F )F = (f ,vh)Ω +
∑
K∈Th

h2
K

8ν
(f , ν∆vh +∇qh)K ,

(2.9)

for all (vh, qh) ∈ Vh×Qh. Such formulation depends on the assumption that f is piecewise constant on each
element K ∈ Th. Nevertheless, as done in [2], error estimates with the same optimal order of convergence
can be derived for the more general case in which f ∈ H1(Ω). Notice that in the case in which the jump
terms are neglected, the method (2.9) reduces to a Douglas-Wang stabilization method (see e.g. [27]).

The following section contains well known results that will play a key role in the construction of the error
estimates.

2.3. Some Technical Lemmas. We will make use of two well established trace inequalities (cf. [1, Th.
3.10])

‖v‖2L2(F ) ≤ C
(
h−1
K ‖v‖

2
L2(K) + hK |v|2H1(K)

)
∀v ∈H1(K), (2.10)

‖∂nv‖2L2(F ) ≤ C
(
h−1
K |v|

2
H1(K) + hK |v|2H2(K)

)
∀v ∈H2(K), (2.11)

for F ∈ ∂K, where C depends also on the minimum angle of K ∈ Th.

Let Ih : H1
0(Ω) ∩ C0(Ω)2 → Vh be the usual Lagrange interpolation operator, Πh : L2(Ω) → Qh the

L2−projection operator, and Jh : H1(Ω)→ Vh the Clément interpolation operator (see e.g. [9, 13]). These
operators satisfy some well known approximation properties which we collect in the following lemma.

Lemma 2.1 (Interpolation operators). For all v ∈ H2(Ω), q ∈ H1(Ω) ∩ L2
0(Ω), K ∈ Th, F ∈ E int

h , there
holds

|v − Ihv|Hm(K) ≤ Ch2−m
K |v|H2(K) m = 0, 1, 2 (2.12)

‖Ihv‖H1(Ω) ≤ C ‖v‖H1(Ω) , (2.13)

|v − Ihv|Hm(F ) ≤ Ch
2−m−1/2
F |v|H2(K̃) m = 0, 1, (2.14)

|v − Jhv|Hm(K) ≤ Ch1−m
K |v|H1(K̃) m = 0, 1, (2.15)

‖q −Πhq‖L2(Ω) ≤ Ch|q|H1(Ω), (2.16)

‖Πhq‖L2(Ω) ≤ C ‖q‖L2(Ω) , (2.17)

where K̃ is the union of all elements L such that K̄ ∩ L̄ 6= ∅.

Proof. For (2.12),(2.13), and (2.15)-(2.17) see e.g. [13, 26]. Relation (2.14) follows from (2.12), the local mesh
regularity condition (that is, for F ∈ ∂K, there exists C > 0 such that hF ≤ hK ≤ ChF ), and (2.10). �

Owing to the continuous inf-sup condition satisfied by (2.4), it is known (cf. [18]) that the following result
holds.

Lemma 2.2. For each rh ∈ Qh ⊂ L2
0(Ω), there exists w ∈H1

0(Ω) such that

∇·w = rh a.e. in Ω, and |w|H1(Ω) ≤ C ‖rh‖L2(Ω) .

Finally, we recall the following regularity result for the dual problem (see [18]).
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K
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Figure 2. Schematic representation of elements in the primal mesh Th and interior node-
centered control volumes of the dual mesh T ?h (in dashed lines).

Lemma 2.3. For any given ϕ ∈ L2(Ω), consider the following dual problem: Find (z, s) ∈ [H2(Ω) ∩
H1

0(Ω)]× [H1(Ω) ∩ L2
0(Ω)] such that

−ν∆z −∇s = ϕ in Ω,
∇· z = 0 in Ω,
z = 0 on ∂Ω,

and its weak form

ν(∇z,∇v)Ω + (s,∇·v)Ω − (q,∇· z)Ω = (v,ϕ)Ω ∀(v, q) ∈H1
0(Ω)× L2

0(Ω). (2.18)

If Ω is convex with Lipschitz-continuous boundary, then for the solution pair (z, s) the following well known
estimate holds

‖z‖H2(Ω) + ‖s‖H1(Ω) ≤ C ‖ϕ‖L2(Ω) . (2.19)

3. Finite Volume Approximation

In this section, starting from the FE method (2.9), and a standard finite volume mesh, we provide the
main tools that stand behind our FVE formulation.

3.1. The finite volume mesh. Let S = {sj , j = 1, . . . , Nh} be the set of nodes of Th. Before defining
our FVE method, let us introduce a dual mesh T ?h in Ω, whose elements K?

j are called control volumes. For
constructing T ?h , a general scheme for a generic triangle will be presented, however an analogous construction
can be carried out if Th is made of tetrahedra. If we fix an interior point bK in every K ∈ Th (we will choose
bK to be the barycenter of K ∈ Th), we can construct T ?h by associating to each node sj ∈ S, a control
volume K?

j , whose edges are obtained by connecting bK with the midpoints of each edge of K, forming a
so-called Donald diagram (see e.g. [26]), as shown in Figure 2. If Th is locally regular then so is T ?h (i.e., there
exists C > 0 such that C−1h2 ≤ |K?

j | ≤ Ch2, for all K?
j ∈ T ?h ). In our FVE scheme, the trial function space

for the velocity field associated with Th is Vh, and the test function space associated with T ?h corresponds
to the set of all piecewise constants. Specifically,

V?
h :=

{
v ∈ L2(Ω) : v|K?

j
∈ P0(K?

j )2 for allK?
j ∈ T ?h , v|K?

j
= 0 if K?

j is a boundary volume
}
.

It holds that dim(Vh) = dim(V?
h) = Nh. Analogously, by Q0

h we denote the space of piecewise constant
functions on every control volume K?

j , which is the test space for the pressure field associated with T ?h .
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The relation between the trial and test spaces is made precise by the map Ph : Vh → V?
h (cf. [3]) which

is defined as follows: For all vh ∈ Vh,

vh(x) =
Nh∑
j=1

vh(sj)φj(x) 7→ Phvh(x) =
Nh∑
j=1

vh(sj)χj(x) x ∈ Ω,

where χj is the characteristic function of the control volume K?
j , that is,

χj(x) =

{
1 x ∈ K?

j ,

0 otherwise.

Note that {χj}j provides a basis of the finite volume space V?
h. Note also that the map Ph is invertible.

The operator Ph allows us to recast the Petrov-Galerkin formulation as a standard Galerkin method. The
following lemma (cf. [10, 28]) establishes a technical result involving the previously defined transfer operator.

Lemma 3.1. Let K ∈ Th, F ⊂ ∂K. Then there holds∫
K

(vh − Phvh) = 0, (3.1)

‖vh − Phvh‖L2(K) ≤ ChK |vh|H1(K), (3.2)

‖[[∂nPhvh]]F ‖L2(F ) ≤ ‖[[∂nvh]]F ‖L2(F ) , (3.3)

for all vh ∈ Vh ∩H1(Ω).

Moreover, if [[∂nvh]]F = 0 then [[∂nPhvh]]F = 0 (see [10]). Now, let w ∈ Vh∩H2(Ω) and F ∈ E int
h . Using

(3.3), the jump definition (2.8), the regularity of the mesh, and the trace inequality (2.11), we can deduce
that ∑

F∈Eint
h

hF ‖[[∂nPhw]]F ‖2L2(F ) ≤ C
∑

F∈Eint
h

hF ‖[[∂nw]]F ‖2L2(F )

≤ C
∑

F∈Eint
h

hF

∫
F

(
∂nw|F

)2
≤ C

∑
K∈Th

(
|w|2H1(K) + h2

K |w|
2
H2(K)

)
. (3.4)

In the forthcoming analysis the following mesh-dependent norms will be used:

|||v|||h :=
(
ν|v|2H1(Ω) +

∑
F∈Eint

h

hF
12ν
‖[[ν∂nPhv]]F ‖2L2(F )

)1/2

, ‖q‖h :=
( ∑
K∈Th

h2
k

8ν
|q|2H1(K)

)1/2

.

3.2. Construction of the Stabilized FVE Method. Let (vh, qh) ∈ Vh × Qh. In order to construct
the underlying FVE method, we consider the discrete problem associated to the variational formulation
obtained by multiplying (2.1) by Phvh and integrating by parts over each control volume K?

j ∈ T ?h , then by
multiplying (2.2) by qh and integrating by parts over each element K ∈ Th. We end up with the following
finite volume element method: Find (wh, rh) ∈ Vh ×Qh such that

ã(wh,Phvh) + b̃(rh,Phvh) + (qh,∇·wh)Ω = (f ,Phvh)Ω ∀(vh, qh) ∈ Vh ×Qh, (3.5)

where the bilinear forms ã(·, ·), b̃(·, ·) are defined as follows:

ã(wh,Phvh) = −
Nh∑
j=1

vh(sj)
∫
∂K?

j

ν∂nwh, b̃(rh,Phvh) =
Nh∑
j=1

vh(sj)
∫
∂K?

j

rhn,

for wh,vh ∈ Vh, qh, rh ∈ Qh. A stabilized version of (3.5) will be introduced later. Notice that since the test
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m1

Q1

K

Q2

Q3

bK

m3

m2

s1

s3

s2

Figure 3. A given element K of the primal mesh Th. The mi’s are the midpoints of the
edges, bK is the barycenter of K and the Qi’s are the quadrilaterals formed by the paths
bKmisi+1mi+1bK .

functions are piecewise constant, the bilinear forms do not involve area integral terms as usually happens in
FE formulations of Stokes problems.

Concerning these bilinear forms, the following result will be useful to carry out the error analysis in a
finite-element-fashion (see e.g. [30]).

Lemma 3.2. For the bilinear forms ã(·, ·), b̃(·, ·) there holds:

ã(wh,Phvh) = ν(∇wh,∇vh)Ω ∀wh,vh ∈ Vh, (3.6)

b̃(qh,Phvh) = −(qh,∇·vh)Ω ∀(vh, qh) ∈ Vh ×Qh. (3.7)

Proof. First, let g be a continuous function in the interior of a quadrilateral Qj (as shown in Figure 3) such
that

∫
F
g = 0 for every edge F of Qj . With the help of Figure 3 it is not hard to see that the following

relation holds
Nh∑
j=1

∫
∂K?

j

g =
∑
K∈Th

3∑
i=1

∫
mi+1bKmi

g, (3.8)

where mi+1bKmi stands for the union of the segments mi+1bK and bKmi. In the case that the index is out
of bound, we take mi+1 = mi.

Next, any vh ∈ Vh is linear on each ab ⊂ F ∈ E int
h . Then, in particular

∫
ab
vh = 1/2(a−b)(vh(a)+vh(b))

which implies that ∫
sjsj+1

vh =
∫
sjmj

vh(sj) +
∫
mjsj+1

vh(sj+1), (3.9)

where sj is a node of Th and mj is the midpoint on the edge joining sj and sj+1 (if j = 3, then we take
sj+1 = s1).

Now, for obtaining (3.6) we use the definition of ã(·, ·), (3.8), the fact that vh(si) is constant in Qi, and
integration by parts twice to get

ã(wh,Phvh) = −ν
∑
K∈Th

3∑
i=1

vh(si)
∫
mi+1bKmi

∂nwh

= ν
∑
K∈Th

3∑
i=1

vh(si)
∫
misi+1mi+1

∂nwh − ν
∑
K∈Th

∑
Qi

(∆wh,vh(si))Qi
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= ν
∑
K∈Th

3∑
i=1

vh(si)
∫
misi+1mi+1

(vh(si)− vh) · ∂nwh + ν(∇wh,∇vh)Ω

= ν
∑
K∈Th

3∑
i=1

vh(si)

[∫
simi

vh(si) +
∫
simi+1

vh(si+1)−
∫
sisi+1

vh

]
+ ν(∇wh,∇vh)Ω.

Noticing that ∂nvh is constant on the edges of K, and after applying (3.9), we get (3.6). For proving (3.7),
we use the definition of Ph, integration by parts and (3.1) to obtain

b̃(qh,Phvh) =
Nh∑
j=1

vh(sj)
∫
∂K?

j

qhn

=
Nh∑
j=1

∫
K?

j

Phvh∇qh =
∑
K∈Th

3∑
i=1

∫
Qi

Phvh∇qh

=
∑
K∈Th

∫
K

(Phvh − vh)∇qh +
∑
K∈Th

∫
K

vh∇qh =
∑
K∈Th

∫
K

vh∇qh

= −(qh,∇·vh)Ω.

�

Corollary 3.1. The bilinear form ã(·, ·) is symmetric, continuous and coercive in Vh.

We point out that a similar analysis can be carried out if instead of considering dual meshes of Donald-
type, we use the so-called Voronoi-type (see e.g. [26]) dual meshes.

With our choice for the spaces Vh × Qh (i.e., a P1 − P1 pair) the finite volume scheme (3.5) does not
satisfy the discrete inf-sup condition. Therefore we incorporate the same stabilization terms showing up in
the finite element formulation (2.9). This implies that the proposed stabilized FVE method reads: Find
(ũh, p̃h) ∈ Vh ×Qh such that

ã(ũh,Phvh) + b̃(p̃h,Phvh) + (qh,∇· ũh)Ω +
∑
K∈Th

h2
K

8ν
(−ν∆ũh +∇p̃h, ν∆vh +∇qh)K

+
∑

F∈Eint
h

hF
12ν

(
[[ν∂nPhũh]]F , [[ν∂nPhvh]]F

)
F

= (f ,Phvh)Ω +
∑
K∈Th

h2
K

8ν
(f , ν∆vh +∇qh)K ,

for all (vh, qh) ∈ Vh × Qh. In the light of Lemma 3.2, it can be recast as: Find (ũh, p̃h) ∈ Vh × Qh such
that

Ch ((ũh, p̃h), (vh, qh)) = Fh(vh, qh) ∀(vh, qh) ∈ Vh ×Qh, (3.10)
where for all (wh, ph), (vh, qh) ∈ Vh ×Qh, the forms Ch and Fh are defined as follows

Ch ((wh, ph), (vh, qh)) := ν(∇wh,∇vh)Ω − (ph,∇·vh)Ω + (qh,∇·wh)Ω

+
∑
K∈Th

h2
K

8ν
(−ν∆wh +∇ph, ν∆vh +∇qh)K +

∑
F∈Eint

h

hF
12ν

(
[[ν∂nPhwh]]F , [[ν∂nPhvh]]F

)
F
,

Fh(vh, qh) := (f ,Phvh)Ω +
∑
K∈Th

h2
K

8ν
(f , ν∆vh +∇qh)K .

(3.11)

4. Convergence Analysis

The goal of this section is to derive the error analysis for (3.10). We will proceed by obtaining optimal
error estimates in the h−norms, and in the L2−norm.
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Remark 4.1. In the whole section, we will consider that the solution (u, p) of (2.4) belongs to [H2(Ω) ∩
H1

0(Ω)]× [H1(Ω)∩L2
0(Ω)]. Such regularity holds either if Ω is convex, ∂Ω is Lipschitz-continuous, and if f

fulfils certain orthogonality relations given e.g. in [4, Th. II.1].

Lemma 4.1 (Consistency). Let the pair (u, p) be the solution of (2.4) and let (ũh, p̃h) ∈ Vh × Qh be its
approximation defined by the FVE method (3.10). Then, if f is piecewise constant with respect to the primal
triangulation Th, there holds that

Ch ((u− ũh, p− p̃h), (vh, qh)) = 0 ∀(vh, qh) ∈ Vh ×Qh,

that is, the FVE method (3.10) is fully consistent.

Proof. Remark 4.1 implies that [[ν∂nu]]F vanishes on every internal edge F of the primal mesh. Then, using
(3.11), (3.1) and (3.2), the result follows. �

If f is not piecewise constant, then we only obtain asymptotic consistency (see e.g. [13]). Moreover,
the loss of consistency induced by considering f being piecewise constant is smaller than the order of the
method. In fact,

Ch ((u− ũh, p− p̃h), (vh, qh)) = Ch ((u, p), (vh, qh))−Fh(vh, qh)

= (f ,vh)Ω − (f ,Phvh)Ω +
∑

F∈Eint
h

hF
12ν

(
[[ν∂nPhu]]F , [[ν∂nPhvh]]F

)
F

=
∑
K∈Th

(
f ,vh − Phvh

)
K

=
∑
K∈Th

(
f −

∫
K

f ,vh − Phvh
)
K

≤ Ch2 ‖f‖L2(Ω) |vh|H1(Ω) ,

for all vh ∈ Vh ∩H2(Ω), by virtue of Cauchy-Schwarz inequality and Lemma 3.1.

Note that from the definition of Ch, Vh and that of the h−norms, the following result holds, which implies
the well-posedness of (3.10).

Lemma 4.2 (Continuity and coercivity in the h−norms). Let (wh, rh) ∈ Vh ×Qh. Then

Ch ((wh, rh), (vh, qh)) ≤ (|||wh|||h + ‖rh‖h)(|||vh|||h + ‖qh‖h),

Ch ((vh, qh), (vh, qh)) = |||vh|||2h + ‖qh‖2h , (4.1)

for all (vh, qh) ∈ Vh ×Qh.

Since the Clément interpolate Jhq of q ∈ H1(Ω) ∩ L2
0(Ω), does not necessarily belong to L2

0(Ω), we
will introduce the operator Lh defined by Lhq := Jhq − |Ω|−1

∫
Ω
Jhq. This operator possesses the same

interpolation properties (e.g. (2.15)) as Jh.

Theorem 4.1 (An optimal-order error estimate in the h−norms). Let (ũh, p̃h) ∈ Vh × Qh be the unique
solution of (3.10) and (u, p) the unique solution of (2.4). Then, under the assumption of f being piecewise
constant, there exists C > 0 such that

|||u− ũh|||h + ‖p− p̃h‖h ≤ Ch
(
|u|H2(Ω) + |p|H1(Ω)

)
.

Proof. Let ε = Ihu− u, η = Lhp− p be the individual errors between the exact solution and the projected
solution, and let εh = Ihu − ũh, ηh = Lhp − p̃h denote the error between the FVE approximation and the
projection of the exact solution.
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First, using (3.4) and (2.12) we have∑
F∈Eint

h

hF
12ν
‖[[ν∂nPh(v − Ihv)]]F ‖2L2(F ) ≤ C

∑
K∈Th

(
|v − Ihv|2H1(K) + h2

K |v − Ihv|
2
H2(K)

)
≤ Ch2 |v|2H2(Ω) , (4.2)

and using the definition of the h−norm and Lemma 2.1, gives

|||v − Ihv|||2h ≤Ch
2 |v|2H2(Ω) . (4.3)

Furthermore, (2.15) and the definition of the h−norm also implies that

ν−1 ‖q − Lhq‖2L2(Ω) + ‖q − Lhq‖2h ≤ Cν
−1h2 |q|2H1(Ω) . (4.4)

Next, applying (4.1), Lemma 4.1 and integration by parts we get

|||εh|||2h + ‖ηh‖2h = Ch ((εh, ηh), (εh, ηh))

= Ch ((u− ũh, p− p̃h), (vh, qh)) + Ch ((ε, η), (εh, ηh))

= ν(∇ε,∇εh)Ω − (η,∇· εh)Ω − (ε,∇ηh)Ω

+
∑
K∈Th

h2
K

8ν
(−ν∆ε+∇η,∇ηh)K +

∑
F∈Eint

h

hF
12ν

([[ν∂nPhε]]F , [[ν∂nPhεh]]F )F .

(4.5)

Now, (4.5), Cauchy-Schwarz inequality, the definition of h−norms, a repeated application of (4.3), and
(2.12), (2.14), (2.15), enable us to write

|||εh|||2h + ‖ηh‖2h ≤ C

|ε|2H1(Ω) + ‖ε‖2L2(Ω) + ‖η‖2L2(Ω) +
∑

F∈Eint
h

hF
12ν
‖[[ν∂nPhε]]F ‖2L2(F )

+
∑
K∈Th

[
8ν
h2
K

‖ε‖2L2(K) +
h2
K

8ν
(‖η‖2L2(K) + ‖∆ε‖2L2(K))

])1/2

×

|εh|2H1(Ω) +
∑
K∈Th

h2
K

8ν
‖ηh‖2H1(K) +

∑
F∈Eint

h

hF
12ν
‖[[ν∂nPhεh]]F ‖2L2(F )

1/2

≤ C

(
|||ε|||2h + ‖ε‖2L2(Ω) +

∑
K∈Th

[
8ν
h2
K

‖ε‖2L2(K) +
h2
K

8ν
‖∆ε‖2L2(K)

]
+ ‖η‖2h + ‖η‖2L2(Ω)

)1/2

×

(
|||εh|||2h + ‖ηh‖2h

)1/2

≤ C

(
h2 |u|2H2(Ω) + h2 |p|2H1(Ω) +

∑
K∈Th

8ν(1 + ν2)h2
K |u|

2
H1(K)

)1/2(
|||εh|||2h + ‖ηh‖2h

)1/2

,

which implies the following:

|||εh|||h + ‖ηh‖h ≤ Ch
(
|u|2H2(Ω) + |p|2H1(Ω)

)1/2

.

Finally, in order to get the desired result, it is sufficient to apply triangular inequality and (4.3),(4.4). �

Theorem 4.2 (An optimal-order L2-error estimate for the pressure field). Assume that (ũh, p̃h) ∈ Vh×Qh
and (u, p) are the unique solutions of (3.10) and (2.4), respectively. Then, there exists a positive constant
C > 0 such that

‖p− p̃h‖L2(Ω) ≤ Ch
(
|u|H2(Ω) + |p|H1(Ω)

)
.
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Proof. Let be w ∈ H1
0(Ω) such that ∇·w = p − p̃h, as stated in Lemma 2.2. Further, selecting (vh, qh) =

(Jhw, 0) ∈ Vh ×Qh in Lemma 4.1 we have

0 = ν(∇(u− ũh),∇Jhw)Ω − (p− p̃h,∇· Jhw)Ω +
∑

F∈Eint
h

hF
12ν

([[ν∂nPh(u− ũh)]]F , [[ν∂nPhJhw]]F )F .

Using this relation and integration by parts we obtain

‖p− p̃h‖2L2(Ω) = (p− p̃h,∇·w)Ω

= (p− p̃h,∇· (w − Jhw))Ω + (p− p̃h,∇· Jhw)Ω

= −
∑
K∈Th

(w − Jhw,∇((p− p̃h))K + ν(∇(u− ũh),∇Jhw)Ω

+
∑

F∈Eint
h

hF
12ν

([[ν∂nPh(u− ũh)]]F , [[ν∂nPhJhw]]F )F .

Then, by Cauchy-Schwarz inequality, (2.15), Lemma 2.2, (2.10), definition of h−norms, and Theorem 4.1 we
can infer that

‖p− p̃h‖2L2(Ω) ≤
∑
K∈Th

‖w − Jhw‖L2(K) |p− p̃h|H1(K) + ν |u− ũh|H1(Ω) |Jhw|H1(Ω)

+
∑

F∈Eint
h

hF
12ν

([[ν∂nPh(u− ũh)]]F , [[ν∂nPhJhw]]F )F

≤

( ∑
K∈Th

8ν
h2
K

‖w − Jhw‖2L2(K) + ν |Jhw|H1(Ω) +
∑

F∈Eint
h

hF
12ν
‖[[ν∂nPhJhw]]F ‖2L2(F )

)1/2

×

( ∑
K∈Th

h2
K

8ν
|p− p̃h|2H1(K) + |u− ũh|2H1(Ω) +

∑
F∈Eint

h

hF
12ν
‖[[ν∂nPh(u− ũh)]]F ‖2L2(F )

)1/2

≤ C
(
|w|2H1(Ω) + ν |Jhw|2H1(Ω)

)1/2(
|||u− ũh|||2h + ‖p− p̃h‖2h

)1/2

≤ Ch ‖p− p̃h‖L2(Ω)

(
|u|H2(Ω) + |p|H1(Ω)

)
,

and dividing by ‖p− p̃h‖L2(Ω), the result follows. �

Theorem 4.3 (L2-error estimate for the velocity field). Suppose that (u, p) is the solution of (2.4), and
(ũh, p̃h) ∈ Vh × Qh is the approximation defined by the FVE method (3.10). Then the following a priori
error estimate holds

‖u− ũh‖L2(Ω) ≤ Ch
2
(
|u|H2(Ω) + |p|H1(Ω)

)
.

Proof. First consider the dual problem (2.18) with ϕ = u− ũh. Moreover, let us choose in (2.4) and (3.10),
(vh, qh) = (Ihz,Πhs) ∈ Vh ×Qh, and subtract the resulting expressions. We then subtract again the result
to (2.18) with the particular choice (v, q) = (u − ũh, p − p̃h), (and again ϕ = u − ũh). Next we apply
Lemma 4.1 to obtain

‖u− ũh‖2L2(Ω) =
∑

F∈Eint
h

hF
12ν

([[ν∂nPh(u− ũh)]]F , [[ν∂nPh(z − Ihz)]]F − [[ν∂nPhz]]F )F

+ ν(∇(u− ũh),∇(z − Ihz))Ω + (s−Πhs,∇· (u− ũh))Ω − (p− p̃h,∇· (z − Ihz))Ω

+
∑
K∈Th

h2
K

8ν
(−ν∆u+∇(p− p̃h),−∇Πhs)K .
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We now proceed to combine Cauchy-Schwarz inequality, the definition of h−norms, (3.2), Theorems 4.1
and 4.2, (4.2), (4.3), (2.12), (2.16), (2.17), and (2.19) to deduce that

‖u− ũh‖2L2(Ω) ≤ C

(
ν |u− ũh|2H1(Ω) + ‖∇· (u− ũh)‖2L2(Ω) + ‖p− p̃h‖2L2(Ω)

+
∑
K∈Th

h2
K

8ν
‖−ν∆u+∇(p− p̃h)‖2L2(K) +

∑
F∈Eint

h

hF
12ν
‖[[ν∂nPh(u− ũh)]]F ‖2L2(F )

)1/2

×

(
ν |z − Ihz|2H1(Ω) + ‖s−Πhs‖2L2(Ω) +

∑
K∈Th

h2
K

8ν
‖∇Πhs‖2L2(K) + ‖∇· (z − Ihz)‖2L2(Ω)

+
∑

F∈Eint
h

hF
12ν

[
‖[[ν∂nPh(z − Ihz)]]F ‖2L2(F ) + ‖[[ν∂nPhz]]F ‖2L2(F )

])1/2

≤ C

(
|||u− ũh|||2h + ‖p− p̃h‖2h + νh2 |u|2H2(Ω) + ‖p− p̃h‖2L2(Ω)

)1/2(
|||z − Ihz|||2h

+ ‖s−Πhs‖2L2(Ω) + h2 |z|2H2(Ω) + h2 |Ihz|2H2(Ω) +
∑
K∈Th

h2
K

8ν
|Πhs|2H1(K)

)1/2

≤ Ch2

(
|u|H2(Ω) + |p|H1(Ω)

)(
h2
[
|z|2H2(Ω) + |s|2H1(Ω) + ‖s‖2h

])1/2

≤ Ch2

(
|u|H2(Ω) + |p|H1(Ω)

)
‖u− ũh‖L2(Ω) ,

and the proof is complete after dividing by the last term in the RHS. �

It is easily seen that using the local trace inequality (2.10) and Céa’s lemma, it is possible to modify
the regularity hypothesis of Theorems 4.2 and 4.3, setting (u, p) ∈ [H1+δ(Ω) ∩H1

0(Ω)] × [Hδ(Ω) ∩ L2
0(Ω)],

1/2 < δ ≤ 1, to obtain the estimate

‖u− ũh‖L2(Ω) + hδ ‖p− p̃h‖L2(Ω) ≤ Ch
1+δ

(
|u|H2(Ω) + |p|H1(Ω)

)
.

5. Superconvergence Analysis

As briefly mentioned in Section 1, the present approach for establishing superconvergence estimates
basically consists in projecting the FVE approximation (ũh, p̃h) ∈ (Vh×Qh) into a different finite dimensional
space (Vr

ρ × Qtρ), r, t ≥ 0, which corresponds to the (possibly of higher order) counterpart of (Vh × Qh)
associated to a coarser mesh Tρ of size ρ = hα, with α ∈ (0, 1).

We start by defining the operators ΠVρ ,Π
Q
ρ as the L2−projections onto Vr

ρ and Qtρ respectively. Therefore,
in particular it holds that

‖v −ΠVρ v‖L2(Ω) ≤ Cρs|v|Hs(Ω) 0 ≤ s ≤ r + 1, (5.1)∥∥ΠVρ v
∥∥

L2(Ω)
≤ C ‖v‖L2(Ω) , (5.2)∥∥q −ΠQ

ρ q
∥∥
L2(Ω)

≤ Cρs |q|Hs(Ω) 0 ≤ s ≤ t+ 1. (5.3)

Let us also denote by Iρ the Lagrange interpolator into V1
ρ, and note that by (2.12), (5.1) and the inverse

inequality (see e.g. [19])

‖vρ‖Hm(K) ≤ Cρ
−m ‖vρ‖L2(K) vρ ∈ Vr

ρ, K ∈ Tρ, (5.4)
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it follows that ∣∣v −ΠVρ v
∣∣
H1(Ω)

≤ |v − Iρv|H1(Ω) +
∣∣Iρv −ΠVρ v

∣∣
H1(Ω)

≤ C
(
ρs−1|v|Hs(Ω) + ρ−1

∥∥Iρv −ΠVρ v
∥∥

L2(Ω)

)
≤ Cρs−1|v|Hs(Ω) = Chα(s−1)|v|Hs(Ω) 0 ≤ s ≤ r + 1. (5.5)

When considering particularly simple domains, it is also possible to handle a different choice for (Vr
ρ×Qtρ),

such as B-splines or trigonometric functions as mentioned in [19]. In that case, (5.1)-(5.3) should be properly
rewritten.

Theorem 5.1 (Superconvergence for the velocity). Let (u, p) ∈ [H2(Ω) ∩H1
0(Ω)] × [H1(Ω) ∩ L2

0(Ω)] and
(ũh, p̃h) ∈ Vh ×Qh be the solutions of (2.4) and (3.10), respectively. Then there exists a positive constant
C such that ∥∥u−ΠVρ ũh

∥∥
L2(Ω)

≤ Chαs|u|Hs(Ω) + Ch2
(
|u|H2(Ω) + |p|H1(Ω)

)
,∣∣u−ΠVρ ũh

∣∣
H1(Ω)

≤ Chα(s−1)|u|Hs(Ω) + Ch2−α (|u|H2(Ω) + |p|H1(Ω)

)
,

for 0 ≤ s ≤ r + 1.

Proof. By triangular inequality, (5.1) and definition of ΠVρ and ρ, it follows that∥∥u−ΠVρ ũh
∥∥

L2(Ω)
≤

∥∥u−ΠVρu
∥∥

L2(Ω)
+
∥∥ΠVρ (u− ũh)

∥∥
L2(Ω)

≤ Chαs|u|Hs(Ω) +
∥∥ΠVρ (u− ũh)

∥∥
L2(Ω)

. (5.6)

The task now consists in estimating the second term in the RHS of (5.6). First, note that since ΠVρ is a L2−
projection, it satisfies (

ΠVρ (u− ũh),w
)

Ω
=
(
u− ũh,ΠVρw

)
Ω

∀w ∈ L2(Ω).

A combination of this relation with norm properties gives

∥∥ΠVρ (u− ũh)
∥∥

L2(Ω)
= sup

w∈L2(Ω)\{0}

∣∣∣(u− ũh,ΠVρw)Ω∣∣∣
‖w‖L2(Ω)

. (5.7)

We now proceed to use (2.18) with the particular choices ϕ = ΠVρw for some fixed w ∈ L2(Ω), and
(v, q) = (u− ũh, p− p̃h). Thus, estimates (2.19) and (5.2) imply that

|z|H2(Ω) + |s|H1(Ω) ≤ C ‖w‖L2(Ω) , (5.8)

where (z, s) is the solution of (2.18). Therefore, using Lemma 4.1 with the choice (vh, qh) = (Ihz,Πhs) ∈
Vh ×Qh, gives(
u− ũh,ΠVρw

)
Ω

= ν(∇(u− ũh),∇(z − Ihz))Ω + (s−Πhs,∇· (u− ũh))Ω − (p− p̃h,∇· (z − Ihz))Ω

−
∑
K∈Th

h2
K

8ν
(−ν∆u+∇(p− p̃h),∇Πhs)K −

∑
F∈Eint

h

hF
12ν

([[ν∂nPh(u− ũh)]]F , [[ν∂nPhz]]F )F .

Then, from Cauchy inequality, (2.12),(2.17),(2.10), Theorems 4.1, 4.2, and estimates (5.8),(5.2) we obtain(
u− ũh,ΠVρw

)
Ω
≤ ν |u− ũh|H1(Ω) |z − Ihz|H1(Ω) + ‖s−Πhs‖L2(Ω) |u− ũh|H1(Ω)

+ ‖p− p̃h‖L2(Ω) |z − Ihz|H1(Ω) +
∑
K∈Th

h2
K

8ν
‖−ν∆u+∇(p− p̃h)‖L2(K) ‖∇Πhs‖L2(K)

+
∑

F∈Eint
h

hF
12ν
‖[[ν∂nPh(u− ũh)]]F ‖L2(F ) ‖[[ν∂nPhz]]F ‖L2(F )
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Figure 4. Example of primal and dual meshes Th, T ?h on Ω = (0, 1)2 (17 interior nodes).

≤

(
2ν |u− ũh|2H1(Ω) +

1
ν
‖p− p̃h‖2L2(Ω) +

∑
K∈Th

h2
K

8
‖∆u‖2L2(K)

+
∑
K∈Th

h2
K

8ν
|p− p̃h|2H1(K) +

∑
F∈Eint

h

hF
12ν
‖[[ν∂nPh(u− ũh)]]F ‖2L2(F )

)1/2

×

(
2ν |z − Ihz|2H1(Ω) +

1
ν
‖s−Πhs‖2L2(Ω) +

∑
F∈Eint

h

hF
12ν
‖[[ν∂nPhIhz]]F ‖2L2(F )

+
∑
K∈Th

h2
K

8ν
‖∇Πhs‖2L2(K)

)1/2

≤ C

(
|||u− ũh|||2h + ‖p− p̃h‖2h +

1
ν
‖p− p̃h‖2L2(Ω) + νh2 |u|2H2(Ω)

)1/2

×

(
(ν + 1)h2 |z|2H2(Ω) + h2 (ν + 1)

ν
|s|2H1(Ω)

)1/2

≤ Ch2
(
|u|H2(Ω) + |p|H1(Ω)

)
‖w‖L2(Ω) .

Finally, by applying (5.6) and (5.7) the proof of the L2−estimate is completed. For the second estimate, it
suffices to use a similar argument combined with (5.5). �

Combining (2.10), (5.4), (5.5) and the definition of the h−norm, we can also conclude that the next result
holds.

Corollary 5.1. Under the hypotheses of Theorem 5.1, we have the following estimate∣∣∣∣∣∣u−ΠVρ ũh
∣∣∣∣∣∣2
h
≤ Chα(s−1)(h+ hα + 1)|u|Hs(Ω) + Ch2(h1−α + h−α + 1)

(
|u|H2(Ω) + |p|H1(Ω)

)
,

for 0 ≤ s ≤ r + 1.

Remark 5.1. We stress that Theorem 5.1 does not provide an improvement of the convergence rate for the
velocity field in the L2−norm in the studied case of P1 elements. This holds even if in the postprocessing
stage we use a different space for the velocity such as Pr, r ≥ 2. However the superconvergence is achieved
in the H1−seminorm for Pr, r ≥ 2 and for α > 1/2. The following result (which may be proved in much
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Nh e(u) r(u) e(p) r(p) E(u, p) R(u, p)

121 1.9446× 10−3 − 5.7385× 10−3 − 7.0973× 10−2 −
449 4.8838× 10−4 1.9920 2.6121× 10−3 1.1051 3.5083× 10−3 1.0208
1729 1.2265× 10−4 1.9981 1.3041× 10−3 1.0740 1.6941× 10−3 1.0457
6785 3.0518× 10−5 2.0015 6.1270× 10−4 1.0409 8.4207× 10−4 1.0114
26881 7.5632× 10−6 2.0109 2.9861× 10−4 1.0372 4.1615× 10−4 1.0221
107009 1.8847× 10−6 2.0117 1.4684× 10−4 1.0212 2.1062× 10−4 1.0093

Table 1. Degrees of freedom Nh, computed errors and observed convergence rates.

the same way as Theorem 5.1, by using a duality argument) yields superconvergence for the pressure field as
well, even in the case t = 1.

Theorem 5.2 (Superconvergence for the pressure). Assume that (u, p) ∈ [H2(Ω)∩H1
0(Ω)]×[H1(Ω)∩L2

0(Ω)]
and (ũh, p̃h) ∈ Vh×Qh are the solutions of (2.4) and (3.10) respectively. Then there exists a positive constant
C such that∥∥p−ΠQ

ρ p̃h
∥∥

L2(Ω)
≤ Chαs|p|Hs(Ω) + Ch2−α (|u|H2(Ω) + |p|H1(Ω)

)
, α > 1/2, 0 ≤ s ≤ t+ 1.

Remark 5.2. As briefly mentioned at the end of Section 2.2, the derivation of (2.9) requires f to be
piecewise constant. Notice however, that if f ∈ H1(Ω), the relevant term appearing in the deduction of
the error analysis for (3.10) (take for instance the proof of Theorem 4.3, and recall that we have taken
ϕ = u− ũh) is readily estimated as

(f , Ihz − PhIhz)Ω = (f −Πhf , Ihz − PhIhz)Ω

≤ ‖f −Πhf‖L2(Ω) ‖Ihz − PhIhz‖L2(Ω)

≤ Ch2 ‖f‖H1(Ω) |Ihz|H1(Ω)

≤ Ch2 ‖f‖H1(Ω) ‖ϕ‖L2(Ω)

= Ch2 ‖f‖H1(Ω) ‖u− ũh‖L2(Ω) ,

where we have applied Lemma 3.1, properties of Ih, Πh, and (2.19). Then, performing an analogous analysis
to that presented in [2, Appendix B], it is possible to recast the estimate of Theorem 4.3 as

‖u− ũh‖L2(Ω) ≤ Ch
2
(
|u|H2(Ω) + |p|H1(Ω) + ‖f‖H1(Ω)

)
.

Analogously, it is not difficult to extend all our convergence and superconvergence results to cover the general
case f ∈ L2(Ω). In such case, the estimates are of the same order than those presented in the paper.

6. A Numerical Test

We present an example illustrating the performance of the proposed FVE scheme on a set of triangulations
of the domain Ω = (0, 1)2 (see Figure 4). In the following, by e(u) := ‖u− ũh‖L2(Ω), e(p) := ‖p− p̃h‖L2(Ω)

and E(u, p) := |||u− ũh|||h + ‖p− p̃h‖h we will denote errors, and r(u), r(p) and R(u, p) will denote the
experimental rates of convergence given by

r(u) =
log(e(u)/ê(u))

log(h/ĥ)
, r(p) =

log(e(p)/ê(p))

log(h/ĥ)
, R(u, p) =

log(E(u, p)/Ê(u, p))

log(h/ĥ)
,

where e and ê (E and Ê respectively) stand for the corresponding errors computed for two consecutive
meshes of sizes h and ĥ. In the implementation we have used a standard Uzawa algorithm (see e.g. [15])
with a stopping criterion of

∥∥p̃rh − p̃r+1
h

∥∥
L2(Ω)

≤ 10−6.



BUBBLE-LIKE STABILIZED FINITE VOLUME ELEMENT METHOD 17

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N

E
rr

or
s

 

 

Ch2

e(u)

h

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

N

E
rr

or
s

 

 

h

e(p)

E(u, p)

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

N

E
r
r
o
r
s

 

 

Ch4/3

Ch3/2

|u − Π
V
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Figure 5. Left and middle plots: convergence history for the FVE method. Right plot:
superconvergence rates obtained by a higher order postprocessing procedure.

We set ν = 1 and the forcing term f chosen in such a way that the exact solution of (2.1)-(2.3) is
u = ((x4

1 − 2x3
1 + x2

1)(4x3
2 − 6x2

2 + 2x2),−(4x3
1 − 6x2

1 + 2x1)(x4
2 − 2x3

2 + x2
2))T , p(x) = x5

1 + x5
2. Notice that

p satisfies
∫

Ω
p = 0 and (u, p) has a regular behaviour in the whole domain Ω (and then the regularity

assumptions of Section 4 are satisfied). In Table 1 and Figure 5(a,b) we depict the convergence history of
this example. The dominant error is E(u, p). More precisely, in E(u, p) the term ‖p− p̃h‖h is dominating,
followed by |u− ũh|H1(Ω). It is clearly seen that the rates of convergence O(h) and O(h2) anticipated by
Theorem 4.1, Theorem 4.2 and Theorem 4.3 are confirmed by the numerical results.

Now we apply a postprocessing technique by considering a coarser mesh of size ρ = h2/3. Table 2 and
Figure 5(c) show the superconvergence behavior of the approximate solution when a postprocessing algorithm
with Taylor-Hood (P2 − P1) elements is applied. It is observed that as h decreases, the convergence rate
for the velocity approaches asymptotically h3/2 and that of the pressure approaches h4/3. This behavior is
predicted by Theorems 5.1 and 5.2 with the setting r = 2, t = 1 and α = 2/3.

7. Conclusion

In this paper we have developed a FVE method for the Stokes problem. The discretization scheme is
associated to a FE method in which a multiscale enhancement of the approximation space for the velocity
field is performed. We have exploited some of the potential advantages of FVE discretizations with respect
to classical finite volume methods, such as the flexibility in handling unstructured triangulations of complex
geometries and that the discretization is constructed on the basis of the variational background of FE
methods, therefore being more suitable to perform L2−error analysis. This error analysis was performed
for the case of piecewise linear continuous interpolation spaces only, nevertheless the same idea could be
extended to a more general framework. A superconvergence analysis based on L2−projections was also
proposed, and the numerical experiments provided in this paper confirmed our theoretical findings. Finally
we mention that extensions of this approach to other relevant problems, such as the generalized and transient
Stokes problems, high-order approximation methods, and a posteriori error analysis are part of current and
future work.
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Nh
∣∣u−ΠVρ ũh

∣∣
H1(Ω)

rate
∥∥p−ΠQ

ρ p̃h
∥∥
L2(Ω)

rate
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Table 2. Degrees of freedom Nh, meshsizes h, computed errors and observed superconver-
gence rates. Postprocessing with Taylor-Hood elements and with the choice ρ = h2/3.
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