Skip to main content
Log in

An interior point algorithm with inexact step computation in function space for state constrained optimal control

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider an interior point method in function space for PDE constrained optimal control problems with state constraints. Our emphasis is on the construction and analysis of an algorithm that integrates a Newton path-following method with adaptive grid refinement. This is done in the framework of inexact Newton methods in function space, where the discretization error of each Newton step is controlled by adaptive grid refinement in the innermost loop. This allows to perform most of the required Newton steps on coarse grids, such that the overall computational time is dominated by the last few steps. For this purpose we propose an a-posteriori error estimator for a problem suited norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M., Oden J.T.: A posteriori error estimation in finite element analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  2. Alibert J.-J., Raymond J.-P.: Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 3&4, 235–250 (1997)

    Article  MathSciNet  Google Scholar 

  3. Allgower E.L., Böhmer K., Potra F.A., Rheinboldt W.C.: A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23, 160–169 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, F., Bolte, J., Bonnans, J.F., Silva, F.: Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems. Technical Report RR 6863, INRIA (2009)

  5. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser H.J., Triebel H. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis, pp. 9–126. Teubner, Stuttgart, Leipzig (1993)

  6. Bank R.E., Weiser A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44(170), 283–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bastian, P., Blatt, M., Engwer, C., Dedner, A., Klöfkorn, R., Kuttanikkad, S., Ohlberger, M., Sander, O.: The Distributed and Unified Numerics Environment (DUNE). In: Proceedings of the 19th Symposium on Simulation Technique in Hannover, September 12–14 (2006)

  8. Becker R., Kapp H., Rannacher R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Becker R., Rannacher R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benedix O., Vexler B.: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonnans, J.F., Silva, F.: Asymptotic expansion for the solution of a penalized control constrained semilinear elliptic problem. Technical Report RR 7126, INRIA, 2009

  12. Casas E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24, 1309–1318 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casas E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Casas E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM, Control Optim. Calc. Var. 8, 345–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Casas E., Mateos M.: Uniform convergence of the FEM applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Deckelnick K., Hinze M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45(5), 1937–1953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deckelnick, K., Hinze, M.: A finite element approximation to elliptic control problems in the presence of control and state constraints. Technical Report Preprint HBAM2007-01, Hamburger Beiträge zur Angewandten Mathematik, Universität Hamburg (2007)

  18. Deckelnick, K., Hinze, M.: Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations. In: Steinbach, O., Kunisch K., Of, G. (ed.) Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, pp. 597–604, Springer, Graz, Austria, September 2007, 2008

  19. Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Computational Mathematics, vol. 35, 2nd edn. Springer, Berlin (2006)

  20. Deuflhard P., Weiser M.: Local inexact Newton multilevel FEM for nonlinear elliptic problems. In: Bristeau, M.-O., Etgen, G., Fitzgibbon, W., Lions, J.-L., Periaux, J., Wheeler, M. (eds) Computational science for the 21st century, pp. 129–138. Wiley, New York (1997)

    Google Scholar 

  21. Ekeland, I., Témam, R.: Convex analysis and variational problems. Classics in Applied Mathematics, vol. 28, SIAM, Philadelphia (1999)

  22. Goldberg S.: Unbounded Linear Operators. Dover Publications, Inc., New York (1966)

    MATH  Google Scholar 

  23. Grossmann, C., Kunz, H., Meischner, R.: Elliptic control by penalty techniques with control reduction. In: System Modeling and Optimization, IFIP Advances in Information and Communication Technology, pp. 251–267. Springer, Boston (2009)

  24. Günther A., Hinze M.: A posteriori error control of a state constrained elliptic control problem. J. Numer. Math. 16(4), 307–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented mesh adaptivity for mixed control-state constrained elliptic optimal control problems. In: Fitzgibbon, W. et al. (ed.) International Conference on Sci. Comput. in Simulation, Optimization and Control, Jyväskylä, Finland (2009)

  26. Hintermüller M., Ito K., Kunisch K.: The primal–dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  27. Hintermüller M., Kunisch K.: Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45(4), 1198–1221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hintermüller M., Ulbrich M.: A mesh-independence result for semismooth Newton methods. Math. Program. 101, 151–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hinze M., Schiela A.: Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment. Comput. Optim. Appl. 48(3), 581–600 (2010)

    Article  MathSciNet  Google Scholar 

  30. Hohmann, A.: Inexact Gauss Newton Methods for Parameter Dependent Nonlinear Problems. PhD thesis, Free University of Berlin, Department of Mathematics and Computer Science (1994)

  31. Hoppe, R.H.W., Kieweg, M.: A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems. Technical Report Nr. 16/2007, Institut für Mathematik, Universität Augsburg (2007)

  32. Kummer B.: Generalized Newton and NCP-methods: convergence, regularity and actions. Discussiones Mathematicae—Differential Inclusions 20(2), 209–244 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Meyer C.: Error estimates for the finite element approximation of an elliptic control problem with pointwise constraints on the state and the control. Control Cybern. 37, 51–85 (2008)

    MATH  Google Scholar 

  34. Meyer C., Tröltzsch F., Rösch A.: Optimal control problems of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33, 206–228 (2006)

    Article  Google Scholar 

  35. Prüfert U., Tröltzsch F., Weiser M.: The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl. 39(2), 183–218 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schechter E.: Handbook of Analysis and its Foundations. Academic Press, New York (1997)

    MATH  Google Scholar 

  37. Schenk O., Gärtner K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Futur. Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  38. Schiela, A.: The control reduced interior point method—a function space oriented algorithmic approach. PhD thesis, Free University of Berlin, Department of Mathematics and Computer Science (2006)

  39. Schiela, A.: Convergence of the control reduced interior point method for PDE constrained optimal control with state constraints. ZIB Report 06-16, Zuse Institute Berlin (2006)

  40. Schiela, A.: An interior point method in function space for the efficient solution of state constrained optimal control problems. ZIB Report 07-44, Zuse Institute Berlin (2008)

  41. Schiela A.: Barrier methods for optimal control problems with state constraints. SIAM J. Optim. 20(2), 1002–1031 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schiela, A.: An extended mathematical framework for barrier methods in function space. In: Domain Decomposition Methods in Science and Engineering XVIII. Lecture Notes in Computational Science and Engineering, vol. 70, pp. 201–208 (2009)

  43. Schiela A., Weiser M.: Superlinear convergence of the control reduced interior point method for PDE constrained optimization. Comput. Optim. Appl. 39(3), 369–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ulbrich M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805–842 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ulbrich M., Ulbrich S.: Primal–dual interior point methods for PDE-constrained optimization. Math. Program. 117, 435–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Volkwein S., Weiser M.: Affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods. SIAM J. Control Optim. 41(3), 875–899 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Weiser, M.: Function space complementarity methods for optimal control problems. PhD thesis, Free University of Berlin, Department of Mathematics and Computer Science (2001)

  48. Weiser M., Gänzler T., Schiela A.: A control reduced primal interior point method for PDE constrained optimization. Comput. Optim. Appl. 41(1), 127–145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Weiser M., Schiela A., Deuflhard P.: Asymptotic mesh independence of Newton’s method revisited. SIAM J. Numer. Anal. 42(5), 1830–1845 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Werner D.: Funktionalanalysis 3rd edition. Springer, Berlin (2000)

    Google Scholar 

  51. Wollner W.: A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints. Comput. Optim. Appl. 47(1), 133–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zeidler E.: Nonlinear Functional Analysis and its Applications, vol. II/A. Springer, New York (1990)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Schiela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiela, A., Günther, A. An interior point algorithm with inexact step computation in function space for state constrained optimal control. Numer. Math. 119, 373–407 (2011). https://doi.org/10.1007/s00211-011-0381-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0381-4

Mathematics Subject Classification (2000)

Navigation