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CONVERGENCE AND OPTIMALITY OF THE ADAPTIVE

MORLEY ELEMENT METHOD

JUN HU, ZHONGCI SHI, AND JINCHAO XU

Abstract. This paper is devoted to the convergence and optimality analysis of

the adaptive Morley element method for the fourth order elliptic problem. A new

technique is developed to establish a quasi-orthogonality which is crucial for the

convergence analysis of the adaptive nonconforming method. By introducing a new

parameter-dependent error estimator and further establishing a discrete reliability

property, sharp convergence and optimality estimates are then fully proved for the

fourth order elliptic problem.

1. Introduction

This paper is devoted to the study of adaptive nonconforming finite element meth-

ods for high order elliptic boundary value problems. The adaptive conforming finite

element method for the second order elliptic problems has been a subject of exten-

sive studies for many years since the pioneering work of Babuska and Rheinboldt

[2], and its theory has become rather mature [32, 20, 27, 28, 6, 31, 30, 14]. For

the nonconforming method, the a posteriori error theory of the second order elliptic

problems has been studied only very recently [18, 19, 10, 9, 12, 11]; for the fourth

order elliptic problem, only the a posteriori error estimate of the Morley element

method can be found in the literature [22, 3, 33] and there have been no works

on either convergence or optimality for any finite element methods for fourth order

problems.

The main difficulty for the analysis of nonconforming finite element methods

arises from the nonconformity of the discrete space and consequently the lack of the

Galerkin-orthogonality which is a key ingredient for the convergence analysis of the

adaptive conforming method of the second order elliptic problem [20, 27, 28, 30, 14].

For the nonconforming linear element of the Poisson equation, a quasi-orthogonality

is established instead in [13] by using some special equivalency between the noncon-

forming linear element and the lowest order Raviart-Thomas element [25]. For the

Morley element of the fourth order elliptic problem, however, it is unclear whether
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such type of equivalency still holds. We also note that the convergence (not to men-

tion optimality) analysis of the adaptive conforming method is still missing for the

fourth order elliptic problem in the literature.

This paper is devoted to the convergence and optimality analysis of the adaptive

version of the Morley element [26, 29, 34]. Our analysis is based on an observation

that a quasi-orthogonality can be obtained from a crucial local conservative property

(that plays a critical role in a general study in [34]), of the Morley element method.

Another ingredient is a new parameter dependent estimator which is introduced to

analyze optimality of the adaptive nonconforming method. With the help of the

discrete reliability which is established by introducing two interpolation operators

between two nonconforming spaces, we show convergence and optimality of the

adaptive algorithm.

The rest of the paper is organized as follows. In Section 2, we present the Kirch-

hoff plate problem and the Morley finite element method, and recall a posteriori

error analysis due to [22]. In Section 3, we prove the quasi-orthogonality and then

show reduction of some total error in Section 4 by introducing a new parameter-

dependent estimator. To obtain optimality of the adaptive algorithm, we establish

the discrete reliability in Section 5. Consequently, we show optimality of the adap-

tive Morley element method in Section 6. We give a brief comment on the extension

of the theory to the Morley element method in three dimensions in Section 7. Also,

we discuss the generalization to the nonconforming linear elements in both two and

three dimensions therein. This extension gives an alternative analysis of the conver-

gence result from [13]. The paper ends with Section 8 where we give the conclusion

and some comments.

2. The Morley element for the Kirchhoff plate problem and an a

posteriori error estimate

Let Ω ⊂ R2 be a bounded domain, E the Young modulus, and ν the Poisson ratio.

For all 2× 2 symmetric matrices, the linear operator C is defined by

Cτ :=
E

12(1− ν2)

(

(1− ν)τ + ν tr(τ)I
)

.

The bilinear form a(u, v) is defined by

(2.1) a(u, v) = (C∇2u,∇2v)L2(Ω), for any u , v ∈ W := H2
0 (Ω) ,

where ∇2u is the Hessian matrix of u. The corresponding energy norm is given by

(2.2) ‖u‖2C := a(u, u) for any u ∈ W ,

which is equivalent to the usual norm | · |H2(Ω) for any u ∈ W .

We consider the Kirchhoff plate bending problem as follows: Given f ∈ L2(Ω),

find u ∈ W such that

(2.3) a(u, v) = (f, v)L2(Ω) for all v ∈ W .
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We now present the Morley element. Suppose that Ω is covered exactly by a

shape-regular triangulation Th consisting of triangles in 2D, see [16]. Eh is the set of

all edges in Th, Eh(Ω) is the set of interior edges, and E(K) is the set of edges of any

given element K in Th; hK = |K|1/2, the size of the element K ∈ Th. ωK is the union

of elements K ′ ∈ Th that share an edge with K, and ωe is the union of elements that

share a common edge e. Given any edge e ∈ Eh(Ω) with the length he we assign

one fixed unit normal νe := (ν1, ν2) and tangential vector τe := (−ν2, ν1). For e on

the boundary we choose νe = ν the unit outward normal to Ω. Once νe and τe have

been fixed on e, in relation to νe one defines the elements K− ∈ Th and K+ ∈ Th,

with e = K+ ∩K−. Given e ∈ Eh(Ω) and some Rd-valued function v defined in Ω,

with d = 1, 2, we denote by [v] := (v|K+
)|e − (v|K−

)|e the jump of v across e.

The discrete space of the Morley finite element method is defined as follows [26,

29, 34]

Wh :={v ∈ M2,h,

∫

e

[∇hv · νe]ds = 0 on e ∈ Eh(Ω),

and

∫

e

∇v · νeds = 0 on e ∈ Eh ∩ ∂Ω},
(2.4)

where M2,h is the space of piecewise polynomials of degree ≤ 2 over Th which are

continuous at all the internal nodes and vanish at all the nodes on the boundary

∂Ω, and ∇h the discrete gradient operator which is defined elementwise. We define

ah(uh, vh) : = (C∇2
huh,∇2

hvh)L2(Ω) for any uh , vh ∈ W +Wh ,

‖uh‖2Ch : = ah(uh, uh) for any uh ∈ W +Wh ,
(2.5)

where the discrete Hessian operator ∇2
h is defined elementwise with respect to the

triangulation Th.

We now consider the finite element discretization of (2.3) as follows: Find uh ∈ Wh

such that

(2.6) ah(uh, vh) = (f, vh)L2(Ω) for all vh ∈ Wh .

To recall the a posteriori error estimate for the Morley element, we first define an

estimator on each element K ∈ Th as

(2.7) ηK = h2
K‖f‖L2(K) +

(

∑

e⊂∂K

hK‖[∇2
huhτe]‖2L2(e)

)1/2

.

For any Sh ⊂ Th, we define the estimator over Sh by

(2.8) η2(uh, Sh) :=
∑

K∈Sh

η2K .

In particular, for Sh = Th, we have

(2.9) η2(uh, Th) :=
∑

K∈Th

η2K .
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We further define the oscillation osc(f, Th) by

(2.10) osc2(f, Th) :=
∑

K∈Th

h4
K‖f − fK‖2L2(K) ,

where fK is the constant projection of f over K. For the estimator (2.9), we have

the following reliability and efficiency whose proof can be found in [22].

Lemma 2.1. Let u be the solution of Problem (2.3), and uh be the solution of

Problem (2.6). Then,

‖u− uh‖Ch . η(uh, Th) . ‖u− uh‖Ch + osc(f, Th) .(2.11)

Here and throughout the paper, we shall follow [35] to use the notation . and ≅.

When we write

A1 . B1, and A2 ≅ B2,

then there exist possible constants C1, c2 and C2 such that

A1 ≤ C1B1, and c2B2 ≤ A2 ≤ C2B2.

Given v ∈ H2(Th) := {v ∈ L2(Ω), v|K ∈ H2(K), for any K ∈ Th}, we define the

following residual

(2.12) ResH(v) = (f, v)L2(Ω) − ah(uH , v), for any v ∈ H2(Th) ,

with uH being the solution of the discrete problem (2.6) on TH , which is a nested

and coarser mesh to Th; namely, Th is some refinement of TH . It follows from the

discrete problem (2.6) that

(2.13) ResH(v) = ResH(v − vH), for any vH ∈ WH .

Lemma 2.2. For any v ∈ W , it holds that

(2.14) |ResH(v)| .
(

∑

K∈TH

h4
K‖f‖2L2(K)

)1/2‖v‖C for any v ∈ W.

The proof of the above lemma can be found in [33, 3, 22]. �

3. Quasi-orthogonality

In this section, we address one difficulty, namely the quasi-orthogonality, in the

convergence analysis of the adaptive Morley element method. Our analysis is based

on two interpolation operators: the canonical interpolation operator Πh of the non-

conforming space Wh, and the restriction operator IH from the discrete space Wh

on the mesh Th to the discrete space WH on the nested and coarser mesh TH of Th.

Here and in what follows, Nh denotes the set of nodes of the partition Th. We

first define the canonical interpolation operator Πh : W → Wh by,

(Πhv)(P ) = v(P ),

∫

e

∇h(Πhv − v) · νe ds = 0 for any v ∈ W,P ∈ Nh, e ∈ Eh .(3.1)
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Lemma 3.1. Let the interpolation operator Πh be defined as in (3.1). Then,

(3.2)

∫

e

∇h(v −Πhv) ds = 0 for any e ∈ Eh and v ∈ W ,

(3.3) ah(v − Πhv, vh) = 0 for any v ∈ W, vh piecewise quadratic ,

(3.4) ‖v − Πhv‖L2(K) . h2
K |v|H2(K) for any K ∈ Th and v ∈ W .

The above properties are immediate from the definition of Πh. Now we define the

restriction interpolation operator IH : Wh → WH by, for any vh ∈ Wh,

(3.5)














(IHvh)(P ) = vh(P ), P ∈ NH ,

∫

e

∂(IHvh)

∂νe
ds =

ℓ
∑

l=1

∫

el

∂vh
∂νe

ds , e ∈ EH with e = e1 ∪ e2 · · · ∪ eℓ and ei ∈ Eh .

Before analyzing the properties of this interpolation, we state the following simple

result.

Lemma 3.2. Let K1, K2 ∈ Th be two elements sharing a common edge e. If vh ∈
Wh(K1 ∪K2) and ∇2

hvh = 0, then vh ∈ P1(K1 ∪K2). Namely vh is a polynomial of

degree ≤ 1 over K1 ∪K2.

Proof. By the definition of Wh, vh is continuous on K1 ∪ K2. Further ∂vh
∂νe

|K1
and

∂vh
∂νe

|K2
are two constant functions that must be equal since by the definition of Wh

∫

e
[∂vh
∂νe

]ds = 0. Thus v must belong to P1(K1 ∪K2). �

The properties of the interpolation operator IH are summarized in the following

lemma.

Lemma 3.3. Let the interpolation operator IH be defined as in (3.5). Then,

(3.6)

∫

e

∇h(vh − IHvh) ds = 0 for any e ∈ EH and vh ∈ Wh ,

(3.7) ah(vH , vh − IHvh) = 0 for any vH ∈ WH , vh ∈ Wh ,

(3.8) IHvh|K = vh|K for any K ∈ Th ∩ TH and vh ∈ Wh ,

(3.9) ‖IHvh − vh‖L2(K) . h2
K‖∇2

hvh‖L2(K) for any K ∈ TH\Th and vh ∈ Wh .

Proof. The properties of (3.6), and (3.8) directly follow from the definition of the

interpolation. We only need to prove (3.7) and the estimate (3.9).

We first define σH = C∇2
HvH to assert that

(3.10)

∫

e

∇h(I − IH)vh · σHνe ds = 0 for any e ∈ EH .
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In fact, for e ∈ EH\Eh, this assertion follows from the fact that σH is a piecewise

constant matrix with respect to TH and the definition of IH in (3.5). For e ∈ Eh∩EH ,
the assertion follows from (I − IH)vh|e = 0.

For the edge e ∈ Eh which lies in the interior of some K ∈ TH , we can use the

continuity of
∫

e
∇hvh ds over e and the fact σH is constant over K to show that

(3.11)

∫

e

[∇h(I − IH)vh] · σHνe ds = 0 .

Whence, we integrate by parts and use (3.10) and (3.11) to conclude (3.7).

Now we turn to (3.9). In fact, both sides of (3.9) are semi-norms of the restriction

Wh(K) of Wh on K. If the right hand side vanishes for some vh ∈ Wh(K), then

vh is a piecewise polynomial of degree≤ 1 on K with respect to Th. It follows from

Lemma 3.2 that vh is a polynomial of degree≤ 1 on K. Therefore the left hand

side also vanishes for the same vh. The desired result then follows from a scaling

argument. �

Lemma 3.4. (Quasi-orthogonality) Let Th be a refinement of TH , and uh and uH

be the solutions of (2.6) on Th and TH , respectively. Then,

|ah(uh − uH , u− uh)| .
∑

K∈TH\Th

h2
K‖f‖L2(K)‖∇2

h(u− uh)‖L2(K) .(3.12)

Proof. Let the interpolation operator Πh be defined as in (3.1). Since Πh is well-

defined for any vh ∈ Wh( in fact, Πhvh = vh) and ah(uh − uH, (I −Πh)(u− uh)) = 0

(by (3.3)), we have

(3.13) ah(uh − uH , u− uh) = ah(uh − uH,Πh(u− uh)).

Let vh = Πh(u− uh) and the interpolation IHvh be defined as in (3.5). The combi-

nation of (2.6) and (2.12) leads to

ah(uh − uH , vh) = (f, vh)L2(Ω) − ah(uH , vh)

= (f, (I − IH)vh)L2(Ω) − ah(uH, (I − IH)vh) .
(3.14)

By (3.8) and (3.9), we have

(3.15) |(f, (I − IH)vh)L2(Ω)| .
∑

K∈TH\Th

h2
K‖f‖L2(K)‖∇2

hvh‖L2(K) .

From (3.7) we have ah(uH , (I − IH)vh) = 0. Then, the desired result then follows

from the triangle inequality and the approximation property of Πh. �

Remark 3.5. For the nonconforming P1 element of the Poisson equation, the quasi-

orthogonality was established in [13]. The analysis therein is based on some special

equivalency between the nonconforming P1 and Raviart-Thomas elements. For the

Stokes-like problem, the quasi-orthogonality of the nonconforming P1 element has

been first proved in [24] based on some special relation of the nonconforming P1 and

Raviart-Thomas elements. For the Morley element, it is unclear whether there exists

similar equivalency or relation so far.



CONVERGENCE AND OPTIMALITY OF ADAPTIVE NONCONFORMING METHODS 7

Remark 3.6. This paper is a refined version of a technical report in 2009 [23],

where it was the first time in the literature to make use of the conservative property

of the nonconforming finite element space to analyze the quasi-orthogonality.

4. Reduction of a properly defined total error

In the rest of the paper, we shall establish convergence and optimality of our

Adaptive Nonconforming Finite Element Method(ANFEM). Our analysis is based

on two main ingredients: the strict reduction of some total error between two levels

and the discrete reliability of the estimator. To this end, we shall first introduce a

modified estimator η̃ with a undetermined positive constant; we shall then borrow

the concept of the total error of [14, 13] which contains the energy norm of the error

and the scaled estimator η̃; we shall finally show reduction of this total error. We

shall establish the discrete reliability of the estimator in the next section.

Let us first define our adaptive algorithm. Given an initial shape regular triangu-

lation T0, a right-hand side function f ∈ L2(Ω), a tolerance ε > 0, and a parameter

θ ∈ (0, 1). Hereafter, we shall replace the subscript h by an iteration counter called

k.

Algorithm 4.1. [TN , uN ]=ANFEM(T0, f, ε, θ)

η = ε , k = 0

WHILE η ≥ ε, DO

(1) Solve (2.6) on Tk, to get the solution uk.

(2) Compute the error estimator η = η(uk, Tk).

(3) Mark the minimal element set Mk such that

(4.1) η2(uk,Mk) ≥ θ η2(uk, Tk).

(4) Refine each triangle K ∈ Mk by the newest vertex bisection and possible

further refining to conformity to get Tk+1.

k = k + 1.

END WHILE

TN = Tk.

END ANFEM

In order to prove a strict reduction of some total error, we define the following

modified estimator

(4.2) η̃2(uH , TH) :=
∑

K∈TH

(

β1h
4
K‖f‖2L2(K) + η2K

)

with ηK defined in (2.7)

for some positive constant β1 to be determined later.

Remark 4.1. Note that, as we can see below, the modified error estimator η̃(uH , TH)

is only for the analysis, the final results concerning both convergence and optimality

will be proved for Algorithm 4.1.
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Lemma 4.2. Let Th be some refinement of TH with the bulk criterion (4.1), then

there exist ρ > 0 and a positive constant β ∈ (1− ρθ, 1) such that

(4.3) η2(uH , Th) ≤ βη2(uH , TH) + (1− ρθ − β)η2(uH , TH) .

Proof. The result can be proved by following the idea in [14]. We give the details

only for the readers’ convenience. In fact, we have

(4.4) η2(uH, Th) = η2(uH , TH ∩ Th) + η2(uH , TH\Th).

For any K ∈ TH\Th, we only need to consider the case where K is subdivided into

K1 , K2 ∈ Th with |K1| = |K2| = 1
2
|K|. By the definitions of hK and ηK(uH), we

have

2
∑

i=1

η2Ki
(uH) :=

2
∑

i=1

(

h2
Ki
‖f‖L2(Ki) +

(

∑

Eh∋e⊂∂Ki

hKi
‖[∇2

HuHτe]‖2L2(e)

)1/2)2

≤ 1

21/2
η2K(uH) :=

1

21/2

(

h2
K‖f‖L2(K) +

(

∑

EH∋e⊂∂K

hK‖[∇2
HuHτe]‖2L2(e)

)1/2)2

,

(4.5)

since [∇2
HuHτe] = 0 over e = K1 ∩K2 ∈ Eh. Consequently

∑

K∈TH\Th

2
∑

i=1

η2Ki
(uH) ≤

1

21/2
η2(uH, TH\Th) ,(4.6)

and

η2(uH , Th) ≤ η2(uH , TH)− ρη2(uH , TH\Th) ,(4.7)

with ρ = 1− 1
21/2

. Taking the positive parameter β with 1− ρθ < β < 1, the desired

result follows by combining the above inequality and the bulk criterion (4.1). �

Lemma 4.3. Let Th be some refinement of TH , then there exists ρ > 0 such that

(4.8)
∑

K∈Th

h4
K‖f‖2L2(K) ≤

∑

K∈TH

h4
K‖f‖2L2(K) − ρ

∑

K∈TH\Th

h4
K‖f‖2L2(K) .

Proof. The proof immediately follows from the definition of the meshsize hK . �

Lemma 4.4. (Continuity of the estimator) Let uh and uH be the solutions to the

discrete problem (2.6) on the meshes Th and TH , respectively. Given any positive

constant ǫ, there exists a positive constant β2(ǫ) dependent on ǫ such that

(4.9) η2(uh, Th) ≤ (1 + ǫ)η2(uH , Th) +
1

β2(ǫ)
‖uh − uH‖2Ch .
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Proof. Given any K ∈ Th, it follows from the definitions of ηK(uh) and ηK(uH) in

(4.5) that

∣

∣ηK(uh)− ηK(uH)
∣

∣ =

∣

∣

∣

∣

(

∑

Eh∋e⊂∂K

hK‖[∇2
huhτe]‖2L2(e)

)1/2

−
(

∑

Eh∋e⊂∂K

hK‖[∇2
HuHτe]‖2L2(e)

)1/2∣
∣

∣

∣

≤
(

∑

Eh∋e⊂∂K

hK‖[∇2
h(uh − uH)τe]‖2L2(e)

)1/2

.

(4.10)

With e = K1 ∩K2 ∈ Eh, we use the trace theorem and the fact that ∇2
h(uh − uH) is

a piecewise constant matrix to get

‖[∇2
h(uh − uH)τe]‖L2(e) ≤ ‖∇2

h(uh − uH)τe|K1
‖L2(e) + ‖∇2

h(uh − uH)τe|K2
‖L2(e)

. h
−1/2
K ‖∇2

h(uh − uH)‖L2(ωe) ,

(4.11)

which gives

(4.12)
∣

∣ηK(uh)− ηK(uH)
∣

∣ . ‖∇2
h(uh − uH)‖L2(ωK).

Applying the Young inequality with any positive constant ǫ and summarizing over

all elements in Th completes the proof of the lemma. �

Theorem 4.5. Let u be the solution to the problem (2.3), and uH and uh be the

solutions to the discrete problem (2.6) on the meshes TH and Th, respectively. Then,

there exists positive constants γ1, β1, and 0 < α < 1 with

(4.13) ‖u− uh‖2Ch + γ1η̃
2(uh, Th) ≤ α(‖u− uH‖2CH + γ1η̃

2(uH, TH)) .

Proof. Let δ, γ1, and γ2, be three positive constants to be chosen later. Applying the

Young inequality to Lemma 3.4 and adding the resulting estimate to the inequality

(4.9) leads to

(1− δ)‖u− uh‖2Ch + γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K‖f‖2L2(K)

≤ ‖u− uH‖2CH + γ1(1 + ǫ)η2(uH, Th) + (
γ1

β2(ǫ)
− 1)‖uh − uH‖2Ch

+ γ2
∑

K∈TH

h4
K‖f‖2L2(K) + (C1(δ)− ργ2)

∑

K∈TH\Th

h4
K‖f‖2L2(K) ,

(4.14)
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with the positive constant ρ from (4.8). We note that the bound for η2(uH , Th) is

given in Lemma 4.2. Hence

(1− δ)‖u− uh‖2Ch + γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K‖f‖2L2(K)

≤ ‖u− uH‖2CH + γ1((1− ρθ − β)(1 + ǫ) + ǫβ)η2(uH , TH) + γ1βη
2(uH , TH)

+ (
γ1

β2(ǫ)
− 1)‖uh − uH‖2Ch + (C1(δ)− ργ2)

∑

K∈TH\Th

h4
K‖f‖2L2(K)

+ γ2
∑

K∈TH

h4
K‖f‖2L2(K) ,

(4.15)

with ρ and β from Lemma 4.2. In what follows we shall choose the parameters α,

β, γ1, γ2, and δ to achieve the reduction of the total error. We first set

(4.16) γ2 =
C1(δ)

ρ
, γ1 = β2(ǫ), and β = (1− ρθ)(1 + ǫ)

which leads to

(1− δ)‖u− uh‖2Ch + γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K‖f‖2L2(K)

≤ ‖u− uH‖2CH + γ1βη
2(uH , TH) + γ2

∑

K∈TH

h4
K‖f‖2L2(K) .

(4.17)

We choose ǫ to be small enough such that 0 < β < 1. Let the positive constant α

with β < α < 1 be determined later, this gives

(1− δ)‖u− uh‖2Ch + γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K‖f‖2L2(K)

≤ α
(

(1− δ)‖u− uH‖2CH + γ1η
2(uH, TH) + γ2

∑

K∈TH

h4
K‖f‖2L2(K)

)

+ (1− α(1− δ))‖u− uH‖2CH + γ1(β − α)η2(uH, TH)

+ γ2(1− α)
∑

K∈TH

h4
K‖f‖2L2(K) .

(4.18)

Recalling the reliability of η(uH, TH) with the reliability coefficient CRel in Lemma

2.1

(4.19) ‖u− uH‖2CH ≤ CRelη
2(uH , TH) ,

and the fact that

(4.20)
∑

K∈TH

h4
K‖f‖2L2(K) ≤ η2(uH, TH).
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Whence we derive as

(1− α(1− δ))‖u− uH‖2CH + γ1(β − α)η2(uH, TH) + γ2(1− α)
∑

K∈TH

h4
K‖f‖2L2(K)

≤
(

(1− α(1− δ))CRel + γ1(β − α) + γ2(1− α)
)

η2(uH , TH) ,

(4.21)

provided that 0 < δ < 1. Then, the choice of α = γ1β+γ2+CRel

γ1+γ2+CRel(1−δ)
> β gives

(1− δ)‖u− uh‖2Ch + γ1η
2(uh, Th) + γ2

∑

K∈Th

h4
K‖f‖2L2(K)

≤ α
(

(1− δ)‖u− uH‖2CH + γ1η
2(uH, TH) + γ2

∑

K∈TH

h4
K‖f‖2L2(K)

)

.
(4.22)

We choose such that 0 < δ < min(γ1(1−β)
CRel

, 1) to assure that α < 1. Finally, we take

β1 = γ2/γ1 and redefine γ1 = γ1/(1− δ) to end the proof. �

5. Discrete reliability

This section is devoted to the discrete reliability of the estimator η(uH , TH). The

analysis needs the prolongation operator I ′h : WH → Wh defined as follows. Given

P ∈ Nh and e ∈ Eh, the nodal patch ωP,H of P and the edge patch ωe,H of e with

respect to the mesh TH are defined by, respectively,

ωP,H := {K ∈ TH , P ∈ ∂K or P is in the interior of K},
ωe,H := {K ∈ TH , e ⊂ ∂K or e is in the interior of K}.(5.1)

Define ξP = card(ωP,H) and ξe = card(ωe,H). We define the prolongation interpola-

tion I ′hvH ∈ Wh by, for any vH ∈ WH ,

(5.2)























(I ′hvH)(P ) =
1

ξP

∑

K∈ωP,H

vH |K(P ) for any P ∈ Nh ,

∫

e

∂(I ′hvH)

∂νe
ds =

1

ξe

∑

K∈ωe,H

∫

e

∂(vH |K)
∂νe

ds for any e ∈ Eh .

Lemma 5.1. Let K1, K2 ∈ TH be two elements sharing a common edge e with two

endpoints P1 and P2. Suppose that vH ∈ WH and ∇HvH is continuous over e. Then,

vH is continuous over e.

Proof. We can assume that the common edge e shared by K1 and K2 lies along the

x-axis. Then, v can be expressed as

vH |K1
= a0+a1x+a2y+a3xy+a4x

2+a5y
2, and vH |K2

= b0+b1x+b2y+b3xy+b4x
2+b5y

2.

Since ∂vH
∂x

is continuous over e, we have a1 = b1 and a4 = b4. The continuity of ∂vH
∂y

over e gives a2 = b2 and a3 = b3. Finally, vH |K1
(Pℓ) = vH |K2

(Pℓ), ℓ = 1 , 2, concludes

a0 = b0. Therefore, vH is continuous over e. �
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Lemma 5.2. Let the interpolation operator I ′h be defined as in (5.2). Then,

(5.3) ‖∇2
h(I

′
hvH − vH)‖2L2(Ω) .

∑

K∈TH\Th

∑

e⊂∂K

hK‖[∇2
HvHτe]‖2L2(e) for any vH ∈ WH .

Proof. It follows from the definition of I ′h (5.2) that I ′hvH |K = vH |K for any K ∈
TH ∩Th. Therefore, we only need to estimate ‖∇2

h(I
′
hvH −vH)‖L2(K) for K ∈ TH\Th.

To prove the desired result, it is sufficient to show that

(5.4)

‖∇2
h(I

′
hvH−vH)‖L2(K) .

∑

e⊂∂K

hK‖[∇2
HvHτe]‖2L2(e) for any vH ∈ WH and K ∈ TH\Th.

For any e ∈ EH , ‖[∇2
HvHτe]‖L2(e) = 0 indicates that there are no jumps over e for

all tangential components of ∇2
HvH , which in turn implies that ∇HvH is continuous

over e since ∇HvH is average continuous over e. Since vH is continuous at all the

internal nodes, Lemma 5.1 proves that vH is continuous over e. Whence, I ′hvH |K =

vH |K provided that ‖[∇2
HvHτe]‖L2(e) = 0 for any e ∈ ∂K ⊂ EH. Finally, the local

quasi-uniformity of the mesh together with a scaling argument leads to the estimate

(5.4). �

Remark 5.3. An easy observation finds that the positive constant in (5.4) depends

on the following ratio

(5.5) µ = max
K∈TH\Th

max
Th∋T⊂K

hK

hT

.

In the analysis of optimality of the adaptive finite element method, this dependence

is not allowed since we only know that Th is some refinement of TH by the newest

vertex bisection and the boundness of µ is not guaranteed.

To overcome the above difficulty, we introduce a modified prolongation operator

Jh which preserves the local projection property. We need the prolongation operator

Π : WH → WC
H , where WC

H ⊂ W is some conforming finite element space over the

mesh TH . Here we take WC
H as the Hsieh-Clough-Tocher finite element space over

the mesh TH [16, 7].

Let F be any (global) degree of freedom of WC
H , i.e., F is either the evaluation

of a shape function or its first order derivatives at an interior node of TH , or the

evaluation of the normal derivative of a shape function at a node on an interior edge.

For vH ∈ WH , we define [8]

(5.6) F(ΠvH) =
1

|ωF |
∑

K∈ωF

F(vH |K)

where ωF is the set of triangles in TH that share the degree of freedom F , and |ωF |
is the number of elements of ωF . Then a similar argument of [8] proves

(5.7) ‖∇2
H(vH −ΠvH)‖2L2(Ω) .

∑

e∈EH

he‖[∇2
HvHτe]‖2L2(e).
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Define

ΩR := interior(
⋃

{K : K ∈ TH\Th, }),
and

ΩC := interior(
⋃

{K : K ∈ TH ∩ Th, ∂K ∩ ∂ΩR = ∅}).
The main idea herein is to take the mixture of the prolongation operators I ′h and Π.

More precisely, we use Π in the region ΩR where the elements of TH are refined and

take I ′h on ΩC , and we define some mixture in the layer between them. This leads

to the prolongation operator Jh : WH → Wh by

JhvH =







ΠhΠvH on ΩR,

I ′hvH on ΩC,

vh,tr on Ω\(ΩR ∪ ΩC),

where vh,tr is defined by

vh,tr(P ) =

{

(ΠvH)(P ) if P ∈ ∂ΩR,

(I ′hvH)(P ) otherwise ,
for P ∈ Nh,

∫

e

∇hvh,tr · νeds =
{ ∫

e
∇hΠvH · νeds if e ⊂ ∂ΩR

∫

e
∇hI

′
hvH · νeds otherwise

for e ∈ Eh.
(5.8)

Define

MH,h := {K ∈ TH , ∂K ∩ ∪(TH\Th) 6= ∅}.

Remark 5.4. It follows immediately from regularity of the mesh TH that

#MH,h ≤ κ#TH\Th

for a positive constant κ ≥ 1 which is only dependent on the initial mesh T0.

Lemma 5.5. It holds true that

(5.9) ‖∇2
h(JhvH − vH)‖2L2(Ω) .

∑

K∈MH,h

∑

e⊂∂K

hK‖[∇2
HvHτe]‖2L2(e) for any vH ∈ WH .

Proof. We only need to use the scaling argument like that in Lemma 5.2 in the

layer Ω\(ΩR ∪ΩC). The desired result follows from the estimate (5.7) and the local

projection property JhvH |K = vH |K for K ∈ ΩC. �

Lemma 5.6. (Discrete reliability) It holds that

(5.10) ‖uh − uH‖2Ch . η2(uH ,MH,h) .

Proof. For any vh ∈ Wh, we deduce from the discrete problem (2.6) that

‖uh − uH‖2Ch = ah(uh − uH , uh − vh) + ah(uh − uH , vh − uH) = J1 + J2,(5.11)

where

J1 = ResH(uh − vh), and J2 = ah(uh − uH , vh − uH) .
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Thanks to (2.13), (3.8) and (3.9), the residual J1 can be bounded by a similar

argument for the term on the right hand-side of (3.14), which implies

|J1| = |ResH(uh − vh)| = |ResH((I − IH)(uh − vh))|

.
∑

K∈MH,h

h2
K‖f‖L2(K)‖∇2

h(uh − vh)‖L2(K) .
(5.12)

Since vh ∈ Wh is arbitrary, we apply the Young and Cauchy-Schwarz inequalities in

(5.11) to obtain that

‖uh − uH‖2Ch .
∑

K∈MH,h

h4
K‖f‖2L2(K) + inf

vh∈Wh

‖vh − uH‖2Ch .(5.13)

Taking vh = JhuH and applying (5.9) complete the proof of the Lemma. �

We end this section by applying the previous discrete reliability to show a result

indicating that the bulk criterion is in some sense a necessary condition for reduction

of the energy norm between two levels.

Lemma 5.7. If Th is a refinement of TH such that the following reduction holds

‖u− uh‖2Ch + osc2(f, Th) ≤ α′(‖u− uH‖2CH + osc2(f, TH)) ,(5.14)

for some 0 < α′ < 1, then there exists 0 < θ∗ < 1 such that

(5.15) θ∗η
2(uH, TH) ≤ η2(uH,MH,h) .

Proof. We start with the following decomposition

(1− α′)(‖u− uH‖2CH + osc2(f, TH))

≤ ‖u− uH‖2CH + osc2(f, TH)− ‖u− uh‖2Ch − osc2(f, Th)

= ‖uH − uh‖2Ch + 2ah(u− uh, uh − uH) + osc2(f, TH)− osc2(f, Th) .

(5.16)

By the discrete reliability of Lemma 5.6 with the coefficient CDrel, we have

(5.17) ‖uh − uH‖2Ch ≤ CDrelη
2(uH ,MH,h) .

The quasi-orthogonality in Lemma 3.4 with the coefficient CQO yields

|2ah(u− uh, uh − uH)| ≤ 2CQO‖u− uh‖Ch
(

∑

K∈MH,h

h4
K‖f‖2L2(K)

)1/2
.(5.18)

It follows from (5.14) that

(5.19) ‖u− uh‖Ch ≤
√
α′
(

‖u− uH‖2CH + osc2(f, TH)
)1/2

.

Therefore, we apply the Cauchy-Schwarz inequality to obtain

|2ah(u− uh, uh − uH)| ≤
1

2
(1− α′)

(

‖u− uH‖2CH + osc2(f, TH)
)

+ 2(CQO)
2 α′

1− α′

∑

K∈MH,h

h4
K‖f‖2L2(K) .

(5.20)
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Since it is obvious that

(5.21) | osc2(f, TH)− osc2(f, Th)| ≤ η2(uH,MH,h) ,

we combine (5.16)- (5.21) to prove the desired result by the parameter

θ∗ =
(1− α′)2CEff

2(2α′(CQO)2 + (1− α′)(CDrel + 1))

with the efficiency constant CEff of the estimator η(uH, TH) from Lemma 2.1. �

6. Optimality

To analyze the optimality, we follow an idea commonly used in the adaptive finite

element literature to introduce a nonlinear approximation class. First, we have the

following quasi-optimality.

(6.1) ‖u− uH‖2CH ≅ inf
vH∈WH

‖u− vH‖2CH + κ2(u, TH) ,

where the consistency error term is given by

(6.2) κ(u, TH) = sup
vH∈WH

(f, vH)L2(Ω) − aH(u, vH)

‖vH‖CH
.

It follows from [21, Section 4.1] that

κ(u, TH) . inf
vH∈WH

‖u− vH‖CH + osc(f, TH).

Therefore, we define

(6.3) E(N ; u, f) := inf
T ∈TN

inf
v∈WT

(

‖u− v‖2CT + osc2(f, T )
)

.

Finally, we choose the nonlinear approximation class as follows:

(6.4) As :=
{

(u, f), |u, f |s := sup
N>N0

N s
E(N ; u, f) < +∞

}

.

Compared to the adaptive conforming method for the second order elliptic problem

[14, 30], we have not the following monotone convergence:

(6.5) inf
vh∈Wh

‖u− vh‖2Ch + κ2(u, Th)
2 ≤ inf

vH∈WH

‖u− vH‖2CH + κ2(u, TH) ,

where Th is some refinement of TH . However, it follows from the quasi-orthogonality

in Lemma 3.4, the efficiency of the estimator in Lemma 2.1, and the Young inequality

that

(6.6) ‖u− uh‖2Ch + osc2(f, Th) ≤ C2(‖u− uH‖2CH + osc2(f, TH)).

Theorem 6.1. Let Mk be a set of marked elements with minimal cardinality from

Algorithm 4.1, u the solution of Problem (2.3), and (Tk,Wk, uk) the sequence of

meshes, finite element spaces, and discrete solutions produced by the adaptive finite-

element methods with 0 < θ <
CEff

2(2(CQO)2+CDrel+1)
. Then, the following estimate holds:

(6.7) #Mk . (α′)−
1

s |u, f |
1

s
s (C2)

1

s

(

‖u− uk‖2Ck + osc2(f, Tk)
)− 1

s for any (u, f) ∈ As,
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where the parameter 0 < α′ < 1 is from Lemma 5.7.

Proof. We set ǫ = α′(C2)
−1
(

‖u − uk‖2Ck + osc2(f, Tk)
)

with 0 < α′ < 1. Since

(u, f) ∈ As, there exists a Tǫ of the refinement of T0 and uǫ ∈ WTǫ with

#Tǫ −#T0 ≤ |u, f |1/ss ǫ−1/s and ‖u− uǫ‖2CTǫ + osc2(f, Tǫ) ≤ ǫ.(6.8)

The overlay T∗ of Tǫ and Tk is the smallest refinement of both Tǫ and Tk. Let u∗ be

the finite element solution of (2.6) on the mesh T∗. Since T∗ is a refinement of Tǫ,

we use, (6.8), and (6.6) to obtain that

‖u− u∗‖2CT∗ + osc2(f, T∗) ≤ C2(‖u− uǫ‖2CTǫ + osc2(f, Tǫ))

≤ C2ǫ = α′(‖u− uk‖2Ck + osc2(f, Tk)) .
(6.9)

We deduce from Lemma 5.7 that

(6.10) θ∗η
2(uk, Tk) ≤ η2(uk,Mk,∗), for some θ∗ ∈ (0, 1).

We note that the step (3) in Algorithm 4.1 with θ ≤ θ∗ chooses a subset of Mk ⊂ Tk

with minimal cardinality with the same property. Therefore

(6.11) #Mk . #T∗ −#Tk ≤ #Tǫ −#T0.

This together with the definition of ǫ leads to

#Mk . (α′)−
1

s |u, f |
1

s
s (C2)

1

s (‖u− uk‖2Ck + osc2(f, Tk))
− 1

s ,(6.12)

which completes the proof. �

Theorem 6.2. Let the marking step in Algorithm 4.1 select a set Mk of marked

elements with minimal cardinality, u the solution to Problem (2.6), and (Tk,Wk, uk)

the sequence of meshes, finite element spaces, and discrete solutions produced by the

adaptive finite-element methods with 0 < θ <
CEff

2(2(CQO)2+CDrel+1)
. Then, it holds that

(6.13) ‖u− uN‖2CN + osc2(f, TN) . |u, f |s(#TN −#T0)
−s, for (u, f) ∈ As.

Proof. Let µ = (α′)−
1

s |u, f |
1

s
s (C2)

1

s . We use the result that #Tk − #T0 .
k−1
∑

j=0

Mj

from [31, 30] to obtain that

#TN −#T0 .

N−1
∑

j=0

Mj . µ
N−1
∑

j=0

(‖u− uj‖2Cj + osc2(f, Tj))
− 1

s .(6.14)

It follows from the efficiency of the estimator that

(6.15) ‖u− uj‖2Cj + osc2(f, Tj) ≅ η̃2(uj, Tj),

which gives

‖u− uj‖2Cj + γ1η̃
2(uj, Tj) . ‖u− uj‖2Cj + osc2(f, Tj).(6.16)
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For any 0 ≤ j ≤ N − 1, we use the convergence result from Theorem 4.5 to derive

that

(6.17) ‖u− uN‖2CN + γ1η̃
2(uN , TN) ≤ α(N−j)(‖u− uj‖2Cj + γ1η̃

2(uj, Tj)).

A combination of (6.14)-(6.17) yields

(6.18) #TN −#T0 . µ(‖u− uN‖2CN + osc2(f, TN ))
−1/s

N
∑

j=1

αj/s.

Setting Cθ = α1/s(1− α1/s)−1, it is easy to prove that

(6.19)

N
∑

j=1

αj/s ≤ Cθ.

Inserting this bound into (6.18) leads to

(6.20) ‖u− uN‖2CN + osc2(f, TN ) . |u, f |s(#TN −#T0)
−s,

which completes the proof. �

7. The extensions of the theory

This section extends the theory to the Morley element in three dimensions and

the nonconforming linear elements in both two and three dimensions.

7.1. The Morley element in three dimensions. Let Th be a decomposition of

the domain Ω ⊂ R
3 into simplicies. Given any face F , we let νF denote its unit

normal vector. The Morley element in three dimensions is defined and analyzed in

[34], where the space reads

Wh := {v ∈ L2(Ω), v|K ∈ P2(K), K ∈ Th,

∫

e

[v] ds = 0 for any internal edge e,

∫

e

v ds = 0 for any boundary edge e,

∫

F

[∇v · νF ]dF = 0 for any

internal face F , and

∫

F

∇v · νFdF = 0 for any boundary face F} .

(7.1)

Define the estimator on each element K ∈ Th as

(7.2) ηK = h2
K‖f‖L2(K) +

(

∑

F⊂∂K

hF‖[∇2
huh × νF ]‖2L2(F )

)1/2

,

where × denotes the usual tensor product. The estimator is defined by

(7.3) η2(uh, Th) :=
∑

K∈Th

η2K .

The following reliability and efficiency of the estimator were proved in [22].
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Lemma 7.1. Let u be the solution to the fourth order elliptic problem with u|∂Ω =
∂u
∂ν
|∂Ω = 0 in three dimensions, uh be the finite element solution corresponding to the

discrete space Wh defined in (7.1). Then,

(7.4) ‖u− uh‖Ch ≅ ηh

up to the oscillation osc(f, Th), where ‖ ·‖Ch and osc(f, Th) are the three dimensional

counterparts of the discrete energy norm in (2.5) and the oscillation in (2.10), re-

spectively.

Lemma 7.2. Let K1, K2 ∈ Th be two elements sharing a common face F with three

edges eℓ and midpoints mℓ, ℓ = 1 , 2 , 3 , and v be a piecewise polynomial of degree

≤ 1 over K1 ∪K2 such that

(7.5) v|K1
(mℓ) = v|K2

(mℓ), ℓ = 1 , 2, 3, and

∫

F

[
∂v

∂νF
]dF = 0 .

Then, v is a polynomial of degree ≤ 1 over K1 ∪K2.

With these preparations, one can generalize the theories of the quasi-orthogonality

of Lemma 3.4, error reduction of Theorem 4.5, the discrete reliability of Lemma

5.6, and the optimality of Theorem 6.2 to the Morley element method in three

dimensions.

7.2. The nonconforming linear elements for second order elliptic prob-

lems. In this subsection, we let Th be a decomposition of the domain Ω ⊂ R
2 or

Ω ⊂ R3 into simplicies in both two and three dimensions. The nonconforming linear

element spaces in both two and three dimensions is defined by, respectively,

Wh := {v ∈ L2(Ω), v|K ∈ P1(K), K ∈ Th,

∫

e

[v] ds = 0 for any internal edge e,

∫

e

v ds = 0 for any boundary edge e} ,

(7.6)

Wh := {v ∈ L2(Ω), v|K ∈ P1(K), K ∈ Th,

∫

F

[v] dF = 0 for any internal face F ,

∫

F

v dF = 0 for any boundary face F} .

(7.7)

The continuous problems read: Given f ∈ L2(Ω), find u ∈ H1
0 (Ω) such that

(7.8) (∇u,∇v)L2(Ω) = (f, v)L2(Ω) for any v ∈ H1
0 (Ω).

The discrete problems read: Given f ∈ L2(Ω), find uh ∈ Wh such that

(7.9) (∇huh,∇hvh)L2(Ω) = (f, vh)L2(Ω) for any vh ∈ Wh .
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The convergence of the adaptive nonconforming linear element methods was first

analyzed in [13]. The theory in Sections 3-7 can be extended to this case. This

extension gives another analysis of the convergence result from [13].

8. Conclusion and comments

In this paper, we carry out the convergence and optimality analysis of the Morley

element for the fourth order elliptic equation. Moreover, we generalize the theory

to the nonconforming linear elements. However, the analysis herein heavily depends

on the conservative properties of these two classes of nonconforming elements and

the fact that the discrete stress is a piecewise constant tensor. At the present time,

it is unclear how to generalize these techniques to other nonconforming schemes of

the fourth order elliptic problems.
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