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CONVERGENCE AND OPTIMALITY OF THE ADAPTIVE
MORLEY ELEMENT METHOD

JUN HU, ZHONGCI SHI, AND JINCHAO XU

ABSTRACT. This paper is devoted to the convergence and optimality analysis of
the adaptive Morley element method for the fourth order elliptic problem. A new
technique is developed to establish a quasi-orthogonality which is crucial for the
convergence analysis of the adaptive nonconforming method. By introducing a new
parameter-dependent error estimator and further establishing a discrete reliability
property, sharp convergence and optimality estimates are then fully proved for the
fourth order elliptic problem.

1. INTRODUCTION

This paper is devoted to the study of adaptive nonconforming finite element meth-
ods for high order elliptic boundary value problems. The adaptive conforming finite
element method for the second order elliptic problems has been a subject of exten-
sive studies for many years since the pioneering work of Babuska and Rheinboldt
[2], and its theory has become rather mature [32] 20, 27, 28] 6] 31, [30, 14]. For
the nonconforming method, the a posteriori error theory of the second order elliptic
problems has been studied only very recently [18, 19, 10} @, 12l 11]; for the fourth
order elliptic problem, only the a posteriori error estimate of the Morley element
method can be found in the literature [22] B, B3] and there have been no works
on either convergence or optimality for any finite element methods for fourth order
problems.

The main difficulty for the analysis of nonconforming finite element methods
arises from the nonconformity of the discrete space and consequently the lack of the
Galerkin-orthogonality which is a key ingredient for the convergence analysis of the
adaptive conforming method of the second order elliptic problem [20] 27, 28] (30} [14].
For the nonconforming linear element of the Poisson equation, a quasi-orthogonality
is established instead in [I3] by using some special equivalency between the noncon-
forming linear element and the lowest order Raviart-Thomas element [25]. For the
Morley element of the fourth order elliptic problem, however, it is unclear whether
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such type of equivalency still holds. We also note that the convergence (not to men-
tion optimality) analysis of the adaptive conforming method is still missing for the
fourth order elliptic problem in the literature.

This paper is devoted to the convergence and optimality analysis of the adaptive
version of the Morley element [26, 29] 34]. Our analysis is based on an observation
that a quasi-orthogonality can be obtained from a crucial local conservative property
(that plays a critical role in a general study in [34]), of the Morley element method.
Another ingredient is a new parameter dependent estimator which is introduced to
analyze optimality of the adaptive nonconforming method. With the help of the
discrete reliability which is established by introducing two interpolation operators
between two nonconforming spaces, we show convergence and optimality of the
adaptive algorithm.

The rest of the paper is organized as follows. In Section 2, we present the Kirch-
hoff plate problem and the Morley finite element method, and recall a posteriori
error analysis due to [22]. In Section 3, we prove the quasi-orthogonality and then
show reduction of some total error in Section 4 by introducing a new parameter-
dependent estimator. To obtain optimality of the adaptive algorithm, we establish
the discrete reliability in Section 5. Consequently, we show optimality of the adap-
tive Morley element method in Section 6. We give a brief comment on the extension
of the theory to the Morley element method in three dimensions in Section 7. Also,
we discuss the generalization to the nonconforming linear elements in both two and
three dimensions therein. This extension gives an alternative analysis of the conver-
gence result from [13]. The paper ends with Section 8 where we give the conclusion
and some comments.

2. THE MORLEY ELEMENT FOR THE KIRCHHOFF PLATE PROBLEM AND AN A
POSTERIORI ERROR ESTIMATE

Let Q C R? be a bounded domain, E the Young modulus, and v the Poisson ratio.
For all 2 x 2 symmetric matrices, the linear operator C is defined by

E
Ct:= m((l — V)T + VtI'(T)[) .
The bilinear form a(u,v) is defined by
(2.1) a(u,v) = (CV?u, V*0) 2y, for any u,v € W := HF(Q),

where V?u is the Hessian matrix of u. The corresponding energy norm is given by
(2.2) |ul|2 := a(u,u) for any u € W,

which is equivalent to the usual norm | - |g2(q) for any u € W.
We consider the Kirchhoff plate bending problem as follows: Given f € L*(),
find uw € W such that

(2.3) a(u,v) = (f,v)r2@q foraloveW.
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We now present the Morley element. Suppose that € is covered exactly by a
shape-regular triangulation 7, consisting of triangles in 2D, see [16]. &, is the set of
all edges in Ty, E,(Q2) is the set of interior edges, and £(K) is the set of edges of any
given element K in Ty; hx = |K|'/?, the size of the element K € Tj,. wk is the union
of elements K’ € T}, that share an edge with K, and w, is the union of elements that
share a common edge e. Given any edge e € &,(Q2) with the length h, we assign
one fixed unit normal v, := (14, 1») and tangential vector 7, := (—vs, 11). For e on
the boundary we choose v, = v the unit outward normal to 2. Once v, and 7. have
been fixed on e, in relation to v, one defines the elements K_ € T, and K, € Ty,
with e = K, N K_. Given e € &,() and some R%valued function v defined in €,
with d = 1,2, we denote by [v] := (v|g,)|e — (v|x_)|e the jump of v across e.

The discrete space of the Morley finite element method is defined as follows [26,
99, [34]

W, :={v € My, /[th Ve|lds =0 on e € E,(Q),
(2.4) €
and /Vv-yeds:OOIleeShﬂ@Q},

where My, is the space of piecewise polynomials of degree < 2 over 7, which are
continuous at all the internal nodes and vanish at all the nodes on the boundary
0f), and V}, the discrete gradient operator which is defined elementwise. We define

an(Un, vp) * = (Cv}%uh, Vivh)m(g) for any uy ,v, € W+ Wy,
lunllg, : = an(un, up) for any u, € W+ W,

where the discrete Hessian operator V3 is defined elementwise with respect to the
triangulation 7.

We now consider the finite element discretization of (Z3)) as follows: Find u;, € W),
such that

(2.6) ah(uh,vh) = (f, 'Uh)LZ(Q) for all v, € Wy, .

To recall the a posteriori error estimate for the Morley element, we first define an
estimator on each element K € 7}, as

1/2
2.7) mie = K20 Lo, + ( 3 hK||[viuhn]||i2(e>) .

eCOK
For any S;, C T, we define the estimator over S}, by
(2.8) 7 (un, S) = Y k-
KeSy
In particular, for Sj, = T, we have

(2.9) 7 (uny Th) == Y ik -

KeTy
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We further define the oscillation osc(f, 7y,) by
(2.10) os?(f,T) = Y hiclf = Frll iz
KeT,
where fx is the constant projection of f over K. For the estimator (29), we have

the following reliability and efficiency whose proof can be found in [22].

Lemma 2.1. Let u be the solution of Problem (2.3), and wuy, be the solution of
Problem (2.6]). Then,

(2.11) v —unlle, S n(un, Tn) S llu—unlle, +osc(f, Tr) -

Here and throughout the paper, we shall follow [35] to use the notation < and =.
When we write

A1 < By, and Ay = By,
then there exist possible constants C', co and Cs such that
Ay < C1Bq, and 3By < Ay < (C9Bs.
Given v € H*(Ty) := {v € L*(Q),v|x € H*(K), for any K € T}, we define the
following residual

(2.12) Resy(v) = (f,v)r2() — an(ug,v), for any v € H*(Ty),

with uy being the solution of the discrete problem (2.6) on Ty, which is a nested
and coarser mesh to 7j; namely, 7}, is some refinement of 7. It follows from the
discrete problem (2.6]) that

(2.13) Resy(v) = Resy (v —vy), for any vy € Wy.

Lemma 2.2. For any v € W, it holds that

(2.14) | Resy (v)] < ( Z h ||fHL2(K 1/2||UHC for any v e W.
KeTy

The proof of the above lemma can be found in [33] [3, 22]. O

3. QUASI-ORTHOGONALITY

In this section, we address one difficulty, namely the quasi-orthogonality, in the
convergence analysis of the adaptive Morley element method. Our analysis is based
on two interpolation operators: the canonical interpolation operator 11, of the non-
conforming space W}, and the restriction operator Iy from the discrete space W,
on the mesh 7, to the discrete space Wy on the nested and coarser mesh Ty of 7j,.

Here and in what follows, N}, denotes the set of nodes of the partition 7,. We
first define the canonical interpolation operator I, : W — W), by,

(3.1) (IIv)(P) =v(P), /Vh(Hhv — ) veds=0forany v e W, P € Ny,e €&,
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Lemma 3.1. Let the interpolation operator 11, be defined as in (3.1]). Then,

(3.2) /Vh(v —1Ipv)ds =0 for any e € &, and v e W,
(3.3) ap(v — v, v,) = 0 for any v € W, vy, piecewise quadratic |
(3.4) v = pv|| L2y S h%|v|Hz(K) for any K € T, andv € W .

The above properties are immediate from the definition of II,. Now we define the
restriction interpolation operator Iy : W), — Wy by, for any v, € W,
(3.5)
(Igvn)(P) = vu(P), P € Ny,

¢
/a([th)ds:Z/ gvhds,eGEH withe=e, Uey---Ueyand e; € &, .
€ Ve

Before analyzing the properties of this interpolation, we state the following simple
result.

Lemma 3.2. Let Ky, Ky € Ty be two elements sharing a common edge e. If v, €
Wi,(K; U Ky) and Viv, =0, then v, € Pi(K; U Ky). Namely vy, is a polynomial of
degree < 1 over K1 U K.

Proof. By the definition of W), v is continuous on K; U K,. Further g%’eﬂ K, and
g—lﬂ K, are two constant functions that must be equal since by the definition of W),
fe[gZ’;]ds = 0. Thus v must belong to P;(K; U K3). O

The properties of the interpolation operator Iy are summarized in the following
lemma.

Lemma 3.3. Let the interpolation operator Iy be defined as in ([B.0). Then,

(3.6) /Vh(vh — Igvy)ds =0 for any e € Eg and v, € W,

(3.7) ap(vy, v, — Igvp) =0 for any vy € Wy, v, € Wy,

(3.8) Iyop|k = |k for any K € T, N Ty and v, € W,

(3.9) [ rrvn — vnll 2y S Wi\ Vionll n2xy for any K € Ty\ Ty and vy, € Wy

Proof. The properties of ([B8.6), and (B.8) directly follow from the definition of the
interpolation. We only need to prove (3.7)) and the estimate (3.9]).
We first define o = CV%4vy to assert that

(310) /vh(]—[H)’Uh'O'HVedSIO for any e ey.

e
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In fact, for e € E4\&, this assertion follows from the fact that oy is a piecewise
constant matrix with respect to Ty and the definition of Iy in (3.0). For e € £,NEy,
the assertion follows from (I — Ig)v,|. = 0.

For the edge e € &, which lies in the interior of some K € Ty, we can use the
continuity of fe Vv ds over e and the fact oy is constant over K to show that

(311) /[Vh(l - [H)’Uh] c OV, ds=0.

e

Whence, we integrate by parts and use (3.10) and (311 to conclude (3.7).

Now we turn to (3.9)). In fact, both sides of (8.9]) are semi-norms of the restriction
Wi(K) of Wy, on K. If the right hand side vanishes for some v, € W},(K), then
v, is a piecewise polynomial of degree< 1 on K with respect to T,. It follows from
Lemma that vy is a polynomial of degree< 1 on K. Therefore the left hand
side also vanishes for the same v,. The desired result then follows from a scaling
argument. O

Lemma 3.4. (Quasi-orthogonality) Let T, be a refinement of Ty, and uy and uy
be the solutions of (28] on Ty, and Ty, respectively. Then,

(3.12) lan(un —wm,w—un)| S Bl FlraaolI Vi (= un) |l 22
KeTua\Th

Proof. Let the interpolation operator II;, be defined as in (B.I]). Since Il is well-
defined for any vy, € Wy, ( in fact, l,v, = vp,) and ap(up, — ug, (I — 1) (uw —up)) =0
(by 33)), we have
(3.13) ap(up — wg,u —up) = ap(up, — ug, Uy (u — up)).
Let vy, = 11, (u — uyp,) and the interpolation Iy, be defined as in (B.3). The combi-
nation of (2.6) and (2.12) leads to

ah(uh — um, Uh) = (f; Uh)L?(Q) - ah(uHavh)
= (f, (I = In)vn) 2 — an(um, (I — Iu)vn) .
By (B.8) and (3.9), we have

(3.14)

(3.15) T =T eol S il flleaol Vivwl e

KeTu\Th
From (3.7) we have ap(ug, (I — Ig)v,) = 0. Then, the desired result then follows
from the triangle inequality and the approximation property of I1,. U

Remark 3.5. For the nonconforming Py element of the Poisson equation, the quasi-
orthogonality was established in [13]. The analysis therein is based on some special
equivalency between the nonconforming Py and Raviart-Thomas elements. For the
Stokes-like problem, the quasi-orthogonality of the nonconforming P, element has
been first proved in [24] based on some special relation of the nonconforming P, and
Raviart-Thomas elements. For the Morley element, it is unclear whether there exists
similar equivalency or relation so far.
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Remark 3.6. This paper is a refined version of a technical report in 2009 [23],
where it was the first time in the literature to make use of the conservative property
of the nonconforming finite element space to analyze the quasi-orthogonality.

4. REDUCTION OF A PROPERLY DEFINED TOTAL ERROR

In the rest of the paper, we shall establish convergence and optimality of our
Adaptive Nonconforming Finite Element Method(ANFEM). Our analysis is based
on two main ingredients: the strict reduction of some total error between two levels
and the discrete reliability of the estimator. To this end, we shall first introduce a
modified estimator 7 with a undetermined positive constant; we shall then borrow
the concept of the total error of [14] [I3] which contains the energy norm of the error
and the scaled estimator 7; we shall finally show reduction of this total error. We
shall establish the discrete reliability of the estimator in the next section.

Let us first define our adaptive algorithm. Given an initial shape regular triangu-
lation 7p, a right-hand side function f € L?*(€), a tolerance ¢ > 0, and a parameter

0 € (0,1). Hereafter, we shall replace the subscript h by an iteration counter called
k.

Algorithm 4.1. [Ty, uy]=ANFEM(7Ty, f,¢,0)
n=c,k=0
WHILE 7, > ¢, DO
(1) Solve (2.6]) on Tg, to get the solution uy.
(2) Compute the error estimator n = n(ux, Tx)-
(3) Mark the minimal element set M, such that

(4.1) n* (u, My) = 00 (ug, Tr).

(4) Refine each triangle K € M by the newest vertex bisection and possible
further refining to conformity to get Try1.

k=Fk+1.
END WHILE
Tv =Tk

END ANFEM

In order to prove a strict reduction of some total error, we define the following
modified estimator

(4.2) i (ug, Ty) = Z (Blh}l(HfH%z(K) + 73 ) with nx defined in (2.7
KeTy

for some positive constant 3; to be determined later.

Remark 4.1. Note that, as we can see below, the modified error estimator f(ug, Ty)
is only for the analysis, the final results concerning both convergence and optimality

will be proved for Algorithm [{.1]
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Lemma 4.2. Let T, be some refinement of Ty with the bulk criterion (4.1]), then
there exist p > 0 and a positive constant 5 € (1 — pf,1) such that

(4.3) n*(up, Tn) < B0 (ur, Tu) + (1 = pf — B)n*(un, Th) -

Proof. The result can be proved by following the idea in [14]. We give the details
only for the readers’ convenience. In fact, we have

(4.4) 0 (up, Tn) = 0 (ug, Ta N Th) + 0*(um, Tu\Th).

For any K € Ty\Ty, we only need to consider the case where K is subdivided into
Ki,K, € T, with |K;| = |Ks| = 1|K|. By the definitions of hyx and ng(uy), we

have
1/2 2
[vifumemz(e)) )
1, 1

1/2\ 2
< WUK(UH) = W(h%{Hme(K) + ( Z hKH[V%{uHTe]H%?(e)) ) )

EgdeCoK

2 2
S o (up) = (hK
=1 =1

(4.5) '

fHL?(Ki)ﬂL( > b,

Ep2eCOK;

since [V4ugt.] = 0 over e = K; N Ky € &,. Consequently

2
1
(4.6) Do D (un) < gy, Tu\Ta)
KeTu\T, =1
and
(4.7) 772(UH> Tn) < 772(UH> Ta) — PUQ(UH, Te\Th) ,

with p=1— 21% Taking the positive parameter 5 with 1 — pf < 5 < 1, the desired
result follows by combining the above inequality and the bulk criterion (1). O

Lemma 4.3. Let T, be some refinement of Ty, then there exists p > 0 such that

(4.8) o bl < Y0 Bl ey =2 D hicl e -

KeTy KeTy KeTu\Th

Proof. The proof immediately follows from the definition of the meshsize hy. OJ

Lemma 4.4. (Continuity of the estimator) Let u, and upy be the solutions to the
discrete problem (2.6) on the meshes T, and Ty, respectively. Given any positive
constant €, there exists a positive constant Bs(€) dependent on € such that

(4.9) P Tr) < (14 P (s, To) + —— [Jun — ]2,
Ba(€)
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Proof. Given any K € T, it follows from the definitions of 7 (uy) and ng(ugy) in

(@5) that

acCun) = ()| = K 2 hKH[viuhTenﬁz(e))UQ

EpdeCOK
1/2
10 (S i)
EpdeCOK
1/2
<( X melivim - wnli,)
EpdeCOK

With e = K1 N K, € &, we use the trace theorem and the fact that V2 (uj, — ug) is
a piecewise constant matrix to get

(4.11)
11V (un = um) e 2oy < 1V (un — wr)7el w220 + Vi (un = wm) Tel |2 o)

S hl_{l/2||vi(uh - UH)HL?(we) )
which gives
(4.12) |nic(un) — i (urr) | S N1V (un — wir) || 22 ore)-

Applying the Young inequality with any positive constant € and summarizing over
all elements in 7;, completes the proof of the lemma. O

Theorem 4.5. Let u be the solution to the problem (2.3)), and uy and wuy, be the
solutions to the discrete problem (2Z.6]) on the meshes Ty and Ty, respectively. Then,
there exists positive constants vy, PB1, and 0 < a < 1 with

(4.13) lw = unlle, + 77 (un, Ta) < alllu = uglle, + 7" (ur, Ta)) -

Proof. Let §, v1, and 79, be three positive constants to be chosen later. Applying the
Young inequality to Lemma [3.4] and adding the resulting estimate to the inequality

(#9) leads to

(1= 8)l|u— wnllg, + 700 (un, Ta) +72 Y Pl FlIZ2 s
KeTy

(-
Ba(€)
+32 > Bl e + (CL0) — ) D Wil FllFeu)

KeTy KeTua\Th

(4.14) < llu—uglig, + 7@+ e)n*(um, Tn) + = Dljun — unllg,
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with the positive constant p from ([Z8). We note that the bound for n*(ug, Tp,) is
given in Lemma Hence

(L= 8)llw —unllz, + 710 (un, Ta) + 72 D hicll fllEaq
KeTy

<l —ugllz, + (1= p8 —B)A + €) + eB)n*(un, Ta) + 180 (un, Ta)

4.15
1D (G = Dl — s, + (€0 =) 3 Wil
2 KeTu\Th
+ 72 Z hi ||f||L2(K
KeTy

with p and S from Lemma In what follows we shall choose the parameters «,
B, 71, Y2, and ¢ to achieve the reduction of the total error. We first set

C1(9)

(4.16) Yo = ;71 = Pale), and B = (1 — pf)(1 +¢)

which leads to

(1= 8)llu = wnllg, + 70 (uns Ta) +72 Y Bl FlIZ 2
KeTy,

< ||u—uH||CH + 180 (ur, Ter) + e Z hi ||f||L2(K
KeTua

(4.17)

We choose € to be small enough such that 0 < § < 1. Let the positive constant «
with 8 < a < 1 be determined later, this gives

(1= 8)l|u—wnllg, + 0 (uny Ta) +72 Y Bicll FIIZ2c
KeTy

a((L=8)u—unld, + 1 wm, Ta) + 72 Y Wil fll2)
(418) KeTy

+ (1 —a( =)|u—unl, +7(8 = a)n*(um, Tu)
+7(1 — ) Z Wl FlI 2

KeTy

Recalling the reliability of n(uy, Ty) with the reliability coefficient Cge; in Lemma
2.1]

(419) ||u - uHH%H < CRel772(uH> TH) ’

and the fact that

(4.20) > Bl Iz < 0P (un, Tor).

KeTy
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Whence we derive as
(4.21)

(1 —a(l = 0)|Ju—uullg, + (8 = a)n*(wn, Tu) +72(1 = @) Y hicll fll720)
KeTua

< (1= a1 —=0)Cra + (8 —a) + 71 —a)n*(um, Ta),

: : _ _1B+9+Ce :
provided that 0 < § < 1. Then, the choice of o = %}MG_’& > [ gives

(L= 8)llw = unllz, + 710 (un, Ta) + 72 D hicll fllEeq
KeTy,

< a((1=0)lu—ugnl?, + 10 (um, Ta) +72 Y Wil fl3200)) -
KeTy

(4.22)

We choose such that 0 < § < min(%, 1) to assure that o < 1. Finally, we take

el

f1 = 2/ and redefine v; = v1/(1 — 0) to end the proof. O

5. DISCRETE RELIABILITY

This section is devoted to the discrete reliability of the estimator n(ug, Ty). The
analysis needs the prolongation operator I; : Wy — W), defined as follows. Given
P € N, and e € &, the nodal patch wpy of P and the edge patch w, g of e with

respect to the mesh 7Ty are defined by, respectively,

. wpy = {K € Ty, P € OK or P is in the interior of K},
5.
(5.1) Weg :={K € Ty,e C OK or e is in the interior of K}.

Define {p = card(wp ) and & = card(w, ). We define the prolongation interpola-
tion vy € W), by, for any vy € Wy,

, 1
(Ihwe)(P) = — Y oulk(P) for any P € N,
£P Kewp g
(5.2) ’
a(]}/l’UH) 1 /8(’UH|K)
/e a0 ds 3 K;}{ o ds for any e € &,

Lemma 5.1. Let Ky, Ky € Ty be two elements sharing a common edge e with two
endpoints Py and Py. Suppose that vy € Wy and V gvy is continuous over e. Then,
Vg 1S continuous over €.

Proof. We can assume that the common edge e shared by K; and Kj lies along the
zr-axis. Then, v can be expressed as

UH|K1 = a0+a1x+a2y+a3xy+a4at2+a5y2, and 'UH|K2 = bo+blx+bgy+b3xy+b4:):2+b5y2.

vy

Since S is continuous over e, we have a; = b; and a4 = by. The continuity of vy

9y
over e gives ay = by and az = bs. Finally, vy|x, (P) = vy|k,(Pr), ¢ = 1,2, concludes

ag = bg. Therefore, vy is continuous over e. ]
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Lemma 5.2. Let the interpolation operator I, be defined as in (5.2)). Then,
(6:3) 1V Uwn — o)y S Y 3 hl(Vivarellag for amy vy € Wi

KeTu\T, eCOK

Proof. 1t follows from the definition of I} (5.2)) that [;vy|x = vi|x for any K €
Tu NTy. Therefore, we only need to estimate ||V3(I,vg —vr)| r2(x) for K € T\ Th.
To prove the desired result, it is sufficient to show that

(5.4)

||Vi(I;LvH—vH)||L2(K) < Z hK||[V§{vHTe]||2LQ(e) for any vy € Wy and K € Ty \Th.

eCOK

For any e € &y, ||[VvnTe|lr2() = 0 indicates that there are no jumps over e for
all tangential components of Vv, which in turn implies that V vy is continuous
over e since Vyvg is average continuous over e. Since vy is continuous at all the
internal nodes, Lemma [5.1] proves that vy is continuous over e. Whence, [; vy|x =
v |k provided that ||[VHvuTe]||r2) = 0 for any e € 9K C Ey. Finally, the local
quasi-uniformity of the mesh together with a scaling argument leads to the estimate

©4). O

Remark 5.3. An easy observation finds that the positive constant in (5.4) depends
on the following ratio

hi
5.5 = max max —
( ) H KeTy\T, ThTCK hT

In the analysis of optimality of the adaptive finite element method, this dependence
is not allowed since we only know that Ty, is some refinement of Ty by the newest
vertex bisection and the boundness of u is not guaranteed.

To overcome the above difficulty, we introduce a modified prolongation operator
Jp, which preserves the local projection property. We need the prolongation operator
Il : Wy — W§, where W5 C W is some conforming finite element space over the
mesh Ty. Here we take W as the Hsieh-Clough-Tocher finite element space over
the mesh Ty [16), [7].

Let F be any (global) degree of freedom of W, i.e., F is either the evaluation
of a shape function or its first order derivatives at an interior node of 7Ty, or the
evaluation of the normal derivative of a shape function at a node on an interior edge.
For vy € Wy, we define [§]

where wx is the set of triangles in 7y that share the degree of freedom F, and |wx|
is the number of elements of wr. Then a similar argument of [8] proves

(5.7) V5 (n = o)z S D hellVivam [z

eefy
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Define
Qr = interior(U{K K € Tu\Th, }),
and

Qc = interior(| J{K : K € Ty N T5,,0K N 9Qr = 0}).

The main idea herein is to take the mixture of the prolongation operators I; and II.
More precisely, we use I in the region {1z where the elements of Ty are refined and
take I; on Q¢, and we define some mixture in the layer between them. This leads
to the prolongation operator Jj, : Wy — W), by

HhHUH on QR,
Jwr = vy on e,
Uh,tr on Q\(QR U Qc),

where vy, 4, is defined by

Un tr(P) = (I_I,UH>(P) it Pe QQ% for P € Nh,
(5.8) 7 (I}vy)(P) otherwise ,
| [ ViIlvg - veds  if e C Qg
i Vhptr - Veds = { f Vpllvg - vuds  otherwise for e € &,.
Define

My = {K € Ty, 0K NU(Tg\T5) # 0}.
Remark 5.4. It follows immediately from regularity of the mesh Ty that
#Muyn < 6#Tu\Th
for a positive constant k > 1 which is only dependent on the initial mesh Ty.
Lemma 5.5. It holds true that
(5.9) [IVi(wvr —vi)llioey S Y. Y. bllVivarlllie for any vy € Wy.

KEMH neCOK

Proof. We only need to use the scaling argument like that in Lemma in the
layer Q\(Q2z U Q). The desired result follows from the estimate (5.7)) and the local
projection property Jyvy|x = vy|k for K € Qc. OJ

Lemma 5.6. (Discrete reliability) It holds that

(5.10) lun — urllg, S n*(um, M) -

Proof. For any v, € W), we deduce from the discrete problem (2.6]) that

(5.11)  |lup — UHH%,L = ap(up — ug,up — vp) + ap(up —ug, vy —uy) = Jy + Ja,

where

J1 = Resy(up —vp), and Jy = ap(up — ug, vy — ug) .
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Thanks to (2I3), B8) and (3.9]), the residual J; can be bounded by a similar
argument for the term on the right hand-side of ([3.14)), which implies
/1] = | Resp (un — vn)| = | Res (I — Irr) (un — vp)))]
5.12
(5.12) S D Bkl o IV = o)l
KEMH,;L

Since vy, € W}, is arbitrary, we apply the Young and Cauchy-Schwarz inequalities in
(5100 to obtain that

13 lun—unld S S bkl + inf low - unll,
KEMH,h " h
Taking v, = Jyuy and applying (5.9) complete the proof of the Lemma. O]

We end this section by applying the previous discrete reliability to show a result
indicating that the bulk criterion is in some sense a necessary condition for reduction
of the energy norm between two levels.

Lemma 5.7. If Ty, is a refinement of Ty such that the following reduction holds
(5.14) lu = unllg, +osc*(f, Ta) < o (lu—unll, +ose®(f, Ta))
for some 0 < o < 1, then there exists 0 < 0, < 1 such that
(5.15) 0.0 (um, Ter) <07 (wr, M) -
Proof. We start with the following decomposition

(1= a)(lu = unlg, + osc*(f, Tr))
(5.16) < lu—unllg, +osc®(f, Ta) — llu = uplg, — osc®(f, Ta)

= ||uw — Uh||(2:h + 2ap(u — up, up — ug) + 08 (f, Tg) — 0s¢®(f, Tr) -
By the discrete reliability of Lemma [5.6] with the coefficient Cp,.;, we have
(5.17) |lun — UHth < Cpran*(um, Mpp) -
The quasi-orthogonality in Lemma [3.4] with the coefficient Co yields

1/2
(5.18) 12an(w = up, up — ug)| < 2Cq0lluw = unlle, (Y Ml flFz0) -
KEMHYh

It follows from (5.14]) that

(5.19) lu = uplle, < Va/(lu—unll?, +osc(f, Tu))
Therefore, we apply the Cauchy-Schwarz inequality to obtain

1/2

1
12an(u — up, up — up)| < 5(1 — o) (lu = unllg, + osc®(f, Tu))
(5.20)

O/
+2(CaoP T 37 Wl IRy

KEMHyh
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Since it is obvious that
(5.21) |osc?(f, Tu) — os¢®(f, Tw)| < 0*(umr, M p) ,
we combine (5.I6)- (5.21)) to prove the desired result by the parameter
0 — (1 —a)?*Cryy
T 2(20/(Coo)?+ (1 — o) (Cpra + 1))
with the efficiency constant Cgys of the estimator n(ug, Ty) from Lemma 21 O

6. OPTIMALITY

To analyze the optimality, we follow an idea commonly used in the adaptive finite
element literature to introduce a nonlinear approximation class. First, we have the
following quasi-optimality.

(6.1) lu—ugl, = inf |u—ovglg, +r*(u, Ty),
vgpEWH
where the consistency error term is given by

(f, UH)L2(Q) —ap(u,vy)

(6.2) k(u,Tg) = sup
vgEWq HUHHCH
It follows from [21| Section 4.1] that
k(u, Ty) S inf  ||lu—vglle, + osc(f, Tu).
vgEWr

Therefore, we define

(6.3) E(Nsu, f) == inf inf (Jlu—v|Z +os?(f,T)).

TeT N veWr

Finally, we choose the nonlinear approximation class as follows:
(64) As = {(uuf)7|u7f‘s ‘= Sup NSQ(N7u7f> <+OO}
N>Ng

Compared to the adaptive conforming method for the second order elliptic problem
[14], 130], we have not the following monotone convergence:

. 2 2 2 : 2 2
(65)  inf flu—uwillc, +#7(u,Tn)" < inf lu—valle, +5°(u, Tn),
where T}, is some refinement of Ty. However, it follows from the quasi-orthogonality
in Lemma[34], the efficiency of the estimator in Lemma[2.1] and the Young inequality
that

(6.6) lu = unlg, +osc*(f, Ta) < Callu — unlle, + osc*(f, Tn))-

Theorem 6.1. Let My, be a set of marked elements with minimal cardinality from
Algorithm [{.1, u the solution of Problem (2.3)), and (Tg, Wy, uy) the sequence of
meshes, finite element spaces, and discrete solutions produced by the adaptive finite-

. C . .
element methods with 0 < 6 < 2(2(%0)2‘%{6]3”1“). Then, the following estimate holds:

u, 13 (C)F (Jlu = wil|2, + 0s(£,TR)) ™ for any (u, f) € A,

(6.7) #M; S (/)7
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where the parameter 0 < o’ <1 is from Lemma[5.7

Proof. We set € = o/ (Co) ™ (|lu — ugl|3, + osc®(f,Tx)) with 0 < o/ < 1. Since
(u, f) € A, there exists a 7. of the refinement of 7y and u. € Wr. with

(68)  #T —#T < u fIV% " and Ju— w2, +o0s(f.T) < e.

The overlay T, of 7. and 7Ty, is the smallest refinement of both 7, and 7. Let u, be
the finite element solution of (2.6]) on the mesh 7.. Since 7, is a refinement of 7T,
we use, ([6.8), and (6.6) to obtain that

lu— e, + osc®(f, 7o) < Calllu — ucllg,, + osc*(£,70))
< Cye = o/(Ju — wellg, + osc*(f, Tx)) -
We deduce from Lemma [5.7 that
(6.10) 0.1% (ur, Tr) < n*(ug, My.), for some 6, € (0,1).

We note that the step (3) in Algorithm [ with 6 < 6, chooses a subset of M}, C Ty
with minimal cardinality with the same property. Therefore

(6.9)

(6.11) #My S #T — #Ti < #Tc — #To.
This together with the definition of € leads to
(6.12) #Mye < () Ju, S5 (Co)* (llu = walg, +ose*(f, Ta)) "5,

which completes the proof. O

Theorem 6.2. Let the marking step in Algorithm [{.1] select a set My, of marked
elements with minimal cardinality, u the solution to Problem (2.4), and (Ty, Wi, ux)
the sequence of meshes, finite element spaces, and discrete solutions produced by the

adaptive finite-element methods with 0 < 6 < 2(2(CQ0?5I6D y Then, it holds that

(6.13) lu—unlig, +ose®(f, Tw) S lu, fls(#Tw — #T0) =", for (u, f) € As.

k-1
Proof. Let p = (/)% u,f|§(C’2)%. We use the result that #7; — #To S > M,
7=0
from [31], 30] to obtain that
N-1 N-1
(6.14) HTn —#T0 S D> My Sy (lu—usllg, +os®(f, T5)) "=
=0 =0

It follows from the efficiency of the estimator that
(6.15) lu = wylle, + ose®(f, T5) = i (u;, ),
which gives

(6.16) [ — |3, + 7 (uy, T5) S llu—wlg, + osc®(f, T;)-
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For any 0 < j < N — 1, we use the convergence result from Theorem to derive
that

(6.17) lu = unll,, + i (un, Twe) < ™ (|lu = wlle, + 717 (uz, T))-

A combination of (6.14)-(G.I7) yields
(6.18) #Tn — #To S plllu — unlf3, + osc(f, Tw))~V* Zoﬂ/s
Setting Cy = o'/*(1 — o'/*)~!, it is easy to prove that
N
(6.19) D <0y

Inserting this bound into (6.I8) leads to

(6.20) lu —unllg, +osc®(f, Tw) S lu, fls(#Tn — #To) ™,
which completes the proof. O

7. THE EXTENSIONS OF THE THEORY

This section extends the theory to the Morley element in three dimensions and
the nonconforming linear elements in both two and three dimensions.

7.1. The Morley element in three dimensions. Let 7, be a decomposition of
the domain Q C R? into simplicies. Given any face I, we let vz denote its unit
normal vector. The Morley element in three dimensions is defined and analyzed in
[34], where the space reads

(7.1)
Wy = {v e L*(Q),v|x € P(K),K € Ty, /[v] ds = 0 for any internal edge e,

e

e

/v ds = 0 for any boundary edge e, / Vv - vp|dF = 0 for any
F

internal face F', and / Vv - vpdF = 0 for any boundary face F'} .
F

Define the estimator on each element K € 7, as

1/2
(7.2) nKZhillfllLZ(K)Jr( S e[V % uF]n%z(F)) ,

FCOK
where x denotes the usual tensor product. The estimator is defined by
(7.3) 2(un, To) = > g
KeTy,

The following reliability and efficiency of the estimator were proved in [22].
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Lemma 7.1. Let u be the solution to the fourth order elliptic problem with u|asq =

%bﬂ = 0 wn three dimensions, uy be the finite element solution corresponding to the
discrete space Wy, defined in ({1l). Then,

(7.4) v — unlle, = nn

up to the oscillation osc(f, Tn), where || -||c, and osc(f,Trn) are the three dimensional
counterparts of the discrete energy norm in (2.5) and the oscillation in (2.10), re-
spectively.

Lemma 7.2. Let Ky, Ky € T}, be two elements sharing a common face F with three
edges ey and midpoints my, £ = 1,2.,3, and v be a piecewise polynomial of degree
< 1 over K; U Ky such that

o

(7.5) V|, (mg) = v|g,(me), 0 =1,2,3, and /[ |JdF =0.
F

81/1:

Then, v is a polynomial of degree < 1 over K, U K.

With these preparations, one can generalize the theories of the quasi-orthogonality
of Lemma B4 error reduction of Theorem .5 the discrete reliability of Lemma
(.6, and the optimality of Theorem to the Morley element method in three
dimensions.

7.2. The nonconforming linear elements for second order elliptic prob-
lems. In this subsection, we let 75 be a decomposition of the domain Q C R? or
Q) C R3 into simplicies in both two and three dimensions. The nonconforming linear
element spaces in both two and three dimensions is defined by, respectively,

(7.6)
Wy, = {v e L*(Q),v|x € P(K),K € Ty, /[v] ds = 0 for any internal edge e,

e

/v ds = 0 for any boundary edge e} ,

(7.7)

Wy, = {ve L*(Q),v|x € PIK),K € Ty, / [v]dF = 0 for any internal face F,
F

/F vdF = 0 for any boundary face F'}.
The continuous problems read: Given f € L*(Q), find u € HJ () such that
(7.8) (Vu, Vv)r2i) = (f,v)12(0) for any v € Hj(Q).
The discrete problems read: Given f € L*(Q), find u; € W), such that

(7.9) (Viun, Vavn) 2 = (f, vn) 2o for any v, € W, .
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The convergence of the adaptive nonconforming linear element methods was first
analyzed in [13]. The theory in Sections 3-7 can be extended to this case. This
extension gives another analysis of the convergence result from [13].

8. CONCLUSION AND COMMENTS

In this paper, we carry out the convergence and optimality analysis of the Morley
element for the fourth order elliptic equation. Moreover, we generalize the theory
to the nonconforming linear elements. However, the analysis herein heavily depends
on the conservative properties of these two classes of nonconforming elements and
the fact that the discrete stress is a piecewise constant tensor. At the present time,
it is unclear how to generalize these techniques to other nonconforming schemes of
the fourth order elliptic problems.
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