Skip to main content
Log in

A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper proposes and analyzes a stabilized multi-level finite volume method (FVM) for solving the stationary 3D Navier–Stokes equations by using the lowest equal-order finite element pair without relying on any solution uniqueness condition. This multi-level stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performing one Newton correction step on each subsequent mesh, thus only solving a large linear system. An optimal convergence rate for the finite volume approximations of nonsingular solutions is first obtained with the same order as that for the usual finite element solution by using a relationship between the stabilized FVM and a stabilized finite element method. Then the multi-level finite volume approximate solution is shown to have a convergence rate of the same order as that of the stabilized finite volume solution of the stationary Navier–Stokes equations on a fine mesh with an appropriate choice of the mesh size: \({ h_{j} ~ h_{j-1}^{2}, j = 1,\ldots, J}\) . Finally, numerical results presented validate our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochev P., Dohrmann C.R., Gunzburger M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44, 82–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi F., Douglas J.: Stabilized mixed methods for the Stokes problem. Numer. Math. 53, 225–235 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite element approximation of nonlinear problems. Part I: branch of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    Google Scholar 

  6. Cai Z.: On the finite volume method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carstensen C., Lazarov R., Tomov S.: Explcit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Z.: Finite Element Methods and Their Applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Chen Z., Li R., Zhou A.: A note on the optimal L 2-estimate of finite volume element method. Adv. Comput. Math. 16, 291–303 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou S.H.: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comput. 66, 85–104 (1997)

    Article  MATH  Google Scholar 

  11. Chou S.H., Li Q.: Error estimates in L 2, H 1 and L i in co-volume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69, 103–120 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Chatzipantelidis P.: A finite volume method based on the Crouzeix–Raviart element for elliptic PDEs in two dimensions. Numer. Math. 82, 409–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chatzipantelidis P., Lazarov R.D., Thomée V.: Error estimates for a finite volume method for parabolic equations in convex polygonal domains. Numer. Methods PDEs 20, 650–674 (2004)

    Article  MATH  Google Scholar 

  14. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  15. Ewing R.E., Lazarov R.D., Lin Y.: Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16, 285–311 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ewing R.E., Lin T., Lin Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Girault V., Raviart P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  18. He Y.N., Li J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equation. Appl. Numer. Math. 58, 1503–1514 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. He Y.N.: Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. He Y.N., Liu K., Sun W.: Multi-level spectral galerkin method for the Navier–Stokes problem I: spatial discretization. Numer. Math. 111, 501–522 (2005)

    Article  MathSciNet  Google Scholar 

  21. Heywood J.G., Rannacher R.: Finite-element approximations of the nonstationary Navier–Stokes problem. Part I: Regularity of solutions and second-order spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Layton W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 26, 33–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Layton W., Lenferink W.: A multilevel mesh independence principle for the Navier–Stokes equations. SIAM J. Numer. Anal. 33, 17–30 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Layton W., Lee H.K., Peterson J.: Numerical solution of the stationary Navier–Stokes equations using a multilevel finite element method. SIAM J. Sci. Comput. 20, 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  25. Li J., Chen Z.: A New Stabilized Finite Volume Method for the Stationary Stokes Equations. Adv. Comput. Math. 30, 141–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J., Chen, Z.: Stability and convergence of a stabilized finite volume method for the transient Navier–Stokes equations. Adv. Comp. Math. (2012, in press)

  27. Li, J., Chen, Z.: Optimal and maximum-norm analysis of a finite volume method for the stationary Navier–Stokes equations with large data (2012, in press)

  28. Li J., He Y.N.: A stabilized finite element method based on two local Gauss integrations for the stokes equations. J. Comput. Appl. Math. 214, 58–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24, 77–88 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li R., Chen Z., Wu W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)

    MATH  Google Scholar 

  31. Li J., He Y.N., Xu H.: A multi-level stabilized finite element method for the stationary Navier–Stoke equations. Comput. Methods Appl. Mech. Eng. 196, 2852–2862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li J., Shen L., Chen Z.: Convergence and stability of a stabilized finite volume method for the stationary Navier–Stokes equations. BIT Numer. Math. 50, 823–842 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li R., Zhu P.: Generalized difference methods for second order elliptic partial differential equations (I)-triangle grids. Numer. Math. J. Chin. Univ. 2, 140–152 (1982)

    Google Scholar 

  34. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1984)

  35. Wang J., Wang Y., Ye X.: A new finite volume method for the stokes problems. Int. J. Numer. Anal. Model. 7, 281–302 (2009)

    MathSciNet  Google Scholar 

  36. Xu J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1778 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu J., Zou Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, J., Zhu, Y., Zou, Q.: New adaptive finite volume methods and convergence analysis (2012, in press)

  40. Ye X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Mathods Partial Differ. Equ. 5, 440–453 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Supported in part by NCET-11-1041, the NSF of China (No. 11071193) and (No. 10971166), Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (No. 2011kjxx12), Research Program of Education Department of Shaanxi Province (No. 11JK0490), the project-sponsored by SRF for ROCS, SEM, the National Basic Research Program (No. 2005CB321703), and NSERC/AERI/Foundation CMG Chair and iCORE Chair Funds in Reservoir Simulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chen, Z. & He, Y. A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations. Numer. Math. 122, 279–304 (2012). https://doi.org/10.1007/s00211-012-0462-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0462-z

Mathematics Subject Classification

Navigation