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Abstract

In this paper we study lattice rules which are cubature formulae to approximate
integrands over the unit cube [0, 1]s from a weighted reproducing kernel Hilbert
space. We assume that the weights are independent random variables with a given
mean and variance for two reasons stemming from practical applications: (i) It is
usually not known in practice how to choose the weights. Thus by assuming that
the weights are random variables, we obtain robust constructions (with respect to
the weights) of lattice rules. This, to some extend, removes the necessity to carefully
choose the weights. (ii) In practice it is convenient to use the same lattice rule for
many different integrands. The best choice of weights for each integrand may vary
to some degree, hence considering the weights random variables does justice to how
lattice rules are used in applications.

In this paper the worst-case error is therefore a random variable depending on
random weights. We show how one can construct lattice rules which perform well for
weights taken from a set with large measure. Such lattice rules are therefore robust
with respect to certain changes in the weights. The construction algorithm uses the
component-by-component (cbc) idea based on two criteria, one using the mean of
the worst case error and the second criterion using a bound on the variance of the
worst-case error. We call the new algorithm the cbc2c (component-by-component
with 2 constraints) algorithm.

We also study a generalized version which uses r constraints which we call the
cbcrc (component-by-component with r constraints) algorithm. We show that lat-
tice rules generated by the cbcrc algorithm simultaneously work well for all weights
in a subspace spanned by the chosen weights γ(1), . . . ,γ(r). Thus, in applications,
instead of finding one set of weights, it is enough to find an r dimensional convex
polytope in which the optimal weights lie. The price for this method is a factor r in
the upper bound on the error and in the construction cost of the lattice rule. Thus
the burden of determining one set of weights very precisely can be shifted to the
construction of good lattice rules.

Numerical results indicate the benefit of using the cbc2c algorithm for certain
choices of weights.
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1 Introduction

In this paper we study the integration error using a lattice rule. A lattice rules is a
quadrature rule of the form

QN(f) =
1

N

N−1∑
n=0

f
({ng

N

})
,

where N > 1 and s are natural numbers, g ∈ {1, . . . , N − 1}s, and where {x} =
({x1}, . . . , {xs}) for x = (x1, . . . , xs) and {x} = x− bxc stands for the fractional part of
a nonnegative real number x. Lattice rules are quasi-Monte Carlo algorithms which are
useful to approximate integrals

∫
[0,1]s

f(x) dx. In the following we present a survey of the

literature and some background on lattice rules.

1.1 Literature survey and background on lattice rules

It has been shown that lattice rules are efficient for approximating integrals of periodic
functions (see [6, 10, 13, 21]). The construction of lattice rules has seen many advances in
recent years. An important framework in which to study lattice rules (and other quadra-
ture rules) are reproducing kernel Hilbert spaces, which have first been considered in
[7] and are now a standard tool in quasi-Monte Carlo integration. The component-by-
component (cbc) construction (where the generating vector g is constructed one compo-
nent at a time) was first discovered by Korobov [10] and [9, Theorem 18, p. 120] and
independently rediscovered by Sloan and Reztsov [24]. In [22, 23] this idea has been fur-
ther developed to allow one to use lattice rules also for nonperiodic integrands. Optimal
convergence rates for lattice rules constructed this way have been shown in [9, 10] and
independently in [11] for a prime number of points N and in [3] for a nonprime number of
points. A breakthrough in reducing the construction cost of the cbc construction has been
achieved by Nuyens and Cools in [16, 17], who showed how the fast Fourier transform
can be used to reduce the construction cost of the search algorithm. A further very im-
portant development has been the introduction of weighted function spaces by Sloan and
Woźniakowski [25]. Therein, the authors make the important observation that integrands
may have different dependence on different projections. To take this fact into account, the
authors introduced so-called weighted function spaces which yields a weighted worst-case
error criterion. A comprehensive introduction to weighted function spaces and tractability
questions as well as further background can be found in the comprehensive monographs
[14, 15].

1.2 Worst-case error

In the following we introduce a specific reproducing kernel which will be sufficient to
illustrate our algorithm. In order to keep the notation as simple as possible, we do not
consider the most general case possible.

Consider the reproducing kernel (see [1]) K : [0, 1]2 → C defined by

Kγ(x, y) = γB2({x− y}),
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where γ ≥ 0 is a nonnegative real number, the ’weight’, and B2(z) = z2 − z + 1/6 is the
Bernoulli polynomial of degree two (cf. [7]). The Bernoulli polynomial B2 has the Fourier
series

B2(w) =
1

2π2

∑
k∈Z\{0}

k−2e2πikw.

The reproducing kernel Kγ defines a reproducing kernel Hilbert space Hγ of absolutely
continuous, periodic functions on [0, 1] which integrate to 0, with inner product

〈f, g〉 =
2π2

γ

∑
k∈Z\{0}

k2 f̂(k)ĝ(k).

For dimensions s > 1 we consider the reproducing kernel

Kγ(x,y) = 1 +
∑
∅6=u⊆S

γu
∏
i∈u

B2({xi − yi}),

where S = {1, . . . , s}, γ = (γu)∅6=u⊆S is a set of nonnegative real numbers γu associated
with the projection onto the coordinates in u (we refer to these numbers as the ’weights’
[25]), x = (x1, . . . , xs) and y = (y1, . . . , ys). The associated reproducing kernel Hilbert
space is denoted by Hγ which is a sum of tensor products of the reproducing kernel
Hilbert space with kernel Kγ and the space of constant functions, see [6, 7, 25] for more
information. The kernel Kγ can also be interpreted as the shift-invariant kernel of a
reproducing kernel Hilbert space of non-periodic functions [8]. Thus the results here
can also be interpreted for randomly shifted lattice rules in the associated non-periodic
reproducing kernel Hilbert space (as for instance in[11, 16, 17] and many other papers).

The integration error using a lattice rule with generating vector g ∈ {1, . . . , N − 1}s
is defined as

e(Hγ , PN(g)) = sup
f∈Hγ ,PN (g)
‖f‖Hγ≤1

∣∣∣∣∣
∫
[0,1]s

f(x) dx− 1

N

N−1∑
n=0

f
({ng

N

})∣∣∣∣∣ .
It was shown in [6, 7] that

e2(Hγ , PN(g)) =

∫
[0,1]s

∫
[0,1]s

Kγ(x,y) dx dy

− 2

N

N−1∑
n=0

∫
[0,1]s

Kγ(x, {nx/N}) dx+
1

N2

N−1∑
n,n′=0

Kγ({ng/N}, {n′g/N})

=
∑
∅6=u⊆S

γu
1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N}),

where the last inequality follows from
∫ 1

0
Kγ(x, y) dx = 1 and the fact that (see [6, 7])

1

N2

N−1∑
n,n′=0

Kγ({ng/N}, {n′g/N}) =
1

N

N−1∑
n=0

Kγ({ng/N},0).
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We use the last expression as error criterion in this paper, i.e.

e2(Hγ , PN(g)) =
∑
∅6=u⊆S

(
γu

1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N})

)
. (1)

As indicated above, (1) can be interpreted as the square worst-case error in a Korobov
space or the mean square worst-case error of a randomly shifted lattice rules in a Sobolev
space. The square worst-case error e2(H, PN(g)) is commonly used as error-criterion in a
cbc construction [3, 11, 16, 17, 22, 23].

The cbc algorithm is a greedy search algorithm to find a good generating vector
g∗ = (g∗1, . . . , g

∗
s) ∈ {1, . . . , N − 1}. This algorithm works the following way. First one

chooses a number of points N , the dimension s and some weights γ. The component-by-
component construction then finds a generating vector g∗ = (g∗1, . . . , g

∗
s) in the following

way:

• Set g∗1 = 1.

• For j = 1, . . . , s set

g∗j = argmin1≤z≤N−1e
2(Hγ , PN((g∗1, . . . , g

∗
j−1, z))).

1.3 The aim of the paper

In practice, it is usually not known how to choose the weights γu, ∅ 6= u ⊆ S in the
worst-case error criterion. Some suggestions on how to choose the weights in financial
applications have been put forward for instance in [26, 27]. Another method of choosing
the weights is by choosing them such that the error bound is minimized [12]. However,
choosing good weights remains a particular challenge for the application of lattice rules.

In this paper we assume that the weights are independent random variables with a
given mean and variance for two reasons stemming from practical applications:

• It is usually not known in practice how to choose the weights precisely. By assuming
randomness in the weights permits a ’measurement error’ or noise in choosing the
weights.

• It is convenient to use the same lattice rule for many different integrands. The best
choice of weights for each integrand may vary to some degree, hence considering the
weights random variables seems to be the right model in this case.

Indeed, it is desirable to have quadrature rules (lattice rules) which are robust with
respect to the weights (γu), that is, for which one obtains a good convergence behavior,
not only for one given choice of weights, but for a whole range of weights. In order
to construct lattice rules which have this property, we assume that the weights are not
given (or fixed), but rather, we assume they are chosen randomly with a given mean and
variance. In this way, the square worst-case error e2(Hγ , PN(g)) is a random variable
(with respect to the weights γ). In the following we propose an algorithm to construct
lattice rules which have a small expectation value and, at the same time, a small variance
of e2(Hγ , PN(g)) with respect to the random choices γ. In a nutshell, the existence
of such a lattice rule is guaranteed by the fact that more than half of the generating
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vectors have small expectation value of the worst-case error and more than half of the
generating vectors have small variance of the worst-case error. Thus there exists at least
one vector for which both, the expectation value and the variance, are small. This yields a
component-by-component algorithm with 2 constrains, which we call the cbc2c algorithm.

We also study a general version which uses r constraints which we call the cbcrc
(component-by-component (with) r constraints) algorithm. We show that lattice rules
generated by the cbcrc algorithm simultaneously work well for all weights in a subspace
spanned by the chosen weights γ(1), . . . ,γ(r). Thus, in applications, instead of finding one
set of weights, it is enough to find an r dimensional convex polytope in which the optimal
weights lie. The price for this method is a factor r in the upper bound on the error and
the construction cost of the lattice rule. Thus the burden of finding one set of weights
can be shifted to the construction of good lattice rules.

Theoretically one could make an exhaustive search to obtain a lattice rule which
simultaneously works well for all choices of weights. This may eventually shift the question
of how to choose the weights for a particular problem to the problem of finding a universal
lattice rule which simultaneously works well for all choices of weights, thereby removing
the need to choose weights in the first place. The computational challenge though is, that
for higher dimensions finding such a lattice rule is currently intractable (since the cost
depends exponentially on the dimension). Further, also the upper bound from this paper
depends exponentially on the dimension when r = 2s − 1. This method may be useful
though for integrands with low truncation dimension d by choosing r = 2d − 1 in this
case.

We note that a similar theory can be applied to polynomial lattice rules and related
point sets [5, 13].

In the next section we study the implications of the assumption that the weights are
random on the square worst-case error. In Section 3 we first repeat some important
insights from [16, 17]. We introduce the cbc2 algorithm and show that the constructed
lattice rules work well for weights taken from a set of large measure. We then consider
the cbcr algorithm and consider the geometrical interpretation of the algorithm. It is
shown that the square worst case error satisfies a certain bound for all weights in an r-
dimensional convex polytope which is defined by the weights used in the cbcrc algorithm.
In particular we explain how the weights in the cbcrc algorithm determine the shape
of the search space of the generating vectors. In Section 4 we provide some numerical
examples to illustrate that in certain instances the cbc2c algorithm is beneficial.

2 The expectation value and standard deviation of

the square worst-case error with random weights

We assume that the weights γu, ∅ 6= u ⊆ S, are nonnegative, independent random
variables with a given mean and variance. Let E denote the expectation value and Var the
variance. For any ∅ 6= u ⊆ S there are numbers γu, σu ≥ 0 such that for all ∅ 6= u, u′ ⊆ S
the following properties hold:

• γu ≥ 0,

• E(γu) = γu,
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• E(γuγu′) = E(γu)E(γu′) for u 6= u′,

• Var(γu) = σ2
u;

Note that we have E(γ2u) = γ2u + σ2
u. Let γ = (γu)∅6=u⊆S and σ = (σu)∅6=u⊆S .

We point out that the conditions for product weights need to be dealt with carefully.
Assume that γu =

∏
i∈u zi for some nonnegative real numbers zi. Further assume that

E(zi) = zi. Then E(γu) =
∏

i∈u zi and hence γu =
∏

i∈u zi. Assume that Var(zi) = y2i .
Then for ∅ 6= u, u′ ⊆ S with v = u ∩ u′ we have

E(γuγu′) = E(
∏
i∈u

zi
∏
i′∈u′

zi) =
∏
i∈u\v

zi
∏

i′∈u′\v

zi′
∏
i′′∈v

yi.

Thus, using these assumption, we do not have E(γuγu′) = E(γu)E(γu′) in general, i.e., the
weights are not independent (as is obvious from the definition γu =

∏
i∈u zi). The analysis

for such weights is slightly different and is not considered here. Instead, if the weights are
of product form γu =

∏
i∈u zi, we assume that γu =

∏
i∈u zi and that σu =

∏
i∈u yi for all

∅ 6= u ⊆ S for some numbers yi, zi ≥ 0.
If the weights γu are uniformly distributed in the interval [γu + δu, γu− δu], where 0 ≤

δu ≤ γu, then the expectation value is γu ≥ 0 and E(γ2u) = 1
2δu

∫ γu+δu
γu−δu

γ2u dγu = γ2u + δ2u/3,

thus the variance is γ2u = δ2u/3. Note that γu− δu ≥ 0, which ensures that the weights are
always non-negative. In the following we do not assume that the weights are uniformly
distributed, in fact, it is more interesting to assume a different distribution which also
allows weights much larger than γu + δu.

In the following the expectation E, the variance Var and the standard deviation Std
are always taken with respect to the random variables γu. The expectation value is now

E(e2(Hγ , PN(g))) =
∑
∅6=u⊆S

γu
1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N}) = e2(Hγ , PN(g)). (2)

Thus, current construction algorithms [16, 17, 22, 23] can be viewed as finding quadrature
rules for which the expected value is small. Here we aim at finding quadrature rules for
which, additionally, the variance is small.

We point out that there is a difference between γu ’very small’ and γu = 0. The
restriction γu ≥ 0 implies that if γu = 0 then σu = 0. Thus if one constructs a lattice rule
with error criterion e2(Hγ , PN(g)) where γu = 0 for some ∅ 6= u ⊆ S, then this means
that the random variable γu = 0 with probability 1. Thus setting γu = 0 means that one
knows that γu = 0 and the associated ANOVA term fu = 0. Lattice rules constructed
using such weights do not have any guarantee that positive weights γu > 0 will yield a
good result. To illustrate, consider the two-dimensional example where γ1 = 1, γ2 = 1
and γ1,2 = 0 and the lattice rule has generating vector g = (1, 1). This lattice rule works
well in this case but not if the weight γ1,2 changes to 1, say; see also [20].

Using some elementary properties of the variance we obtain

Var(e2(Hγ , PN(g))) =
∑
∅6=u⊆S

(
σu

1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N})

)2
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and the standard deviation is given by

Std(e2(Hγ , PN(g))) =
√

Var(e2(Hγ , PN(g))) =

√√√√√ ∑
∅6=u⊆S

(
σu

1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N})

)2

.

Lattice rules for which the variance Var(e2(Hγ , PN(g))) is small are less sensitive to
changes of the weights γu. Notice that the variance is difficult to compute in general
in high dimensions since it involves a sum over all subsets of {1, . . . , s} for which σu > 0
and which, in general, cannot easily be simplified to a formula which can be computed
quickly, even in the case where the weights are of product form.

Notice that (2) is the one-norm of the vector consisting of the error of the projections
weighted by the expectation values of the weights, whereas the standard deviation is the
two-norm of the vector consisting of the error of the projections weighted by the variance
of the weights.

Let µ be a probability measure on the weights (γu)∅6=u⊆S . We now use the one-sided
Chebyshev inequality which states that for a random variable X with probability measure
Pr, expectation E(X) and standard deviation Std(X), we have for any c > 0 that

Pr(X − E(X) ≥ c Std(X)) ≥ 1

1 + c2
.

Thus we obtain the following result.

Lemma 1. For any c > 0 we have

µ
(
γ : e2(Hγ , PN(g)) ≤ e2(Hγ , PN(g)) + c Std(e2(Hγ , PN(g)))

)
≥ c2

1 + c2
.

As noted above, the standard deviation is in general difficult to compute, however,
using Jensen’s inequality we have

Std(e2(Hσ, PN(g))) =

√√√√√ ∑
∅6=u⊆S

(
σu

1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N})

)2

≤
∑
∅6=u⊆S

σu
1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N}) = e2(Hσ, PN(g)).

Thus the square worst-case error with the variances as weights is an upper bound on the
standard deviation. This upper bound can easily be computed (for instance for variances
of product form).

Assume now that if for some ∅ 6= u ⊆ S we have σu = 0, then also γu = 0 and therefore
γu = 0. Using Hölder’s inequality we have

e2(Hγ , PN(g)) =
∑
∅6=u⊆S
σu>0

γu
σu

(
σu

1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N})

)

7



≤ Std(e2(Hσ, PN(g)))

√√√√√ ∑
∅6=u⊆S
σu>0

γ2u
σ2
u

.

Thus a small standard deviation implies a small expected error. Combining the last two
inequalities we obtain the following result.

Lemma 2. Assume that if for some ∅ 6= u ⊆ S we have σu = 0, then also γu = 0 and
therefore γu = 0. Then we have

e2(Hγ , PN(g)) ≤ Std(e2(Hσ, PN(g)))

√√√√ ∑
∅6=u⊆S

γ2u
σ2
u

≤ e2(Hσ, PN(g))

√√√√ ∑
∅6=u⊆S

γ2u
σ2
u

.

If the weights σ are decaying such that the upper bound is independent of the di-
mension, i.e. strong tractability (see [14, 15, 25]) holds, then for any weights γ such

that the expression
∑

u⊂N,|u|<∞
γ2u
σ2
u
<∞ one also obtains a bound which is independent of

the dimension, i.e. one has strong tractability. Further, if e2(Hσ, PN(g)) satisfies strong
tractability, then also the standard deviation is bounded.

Combining the last two lemmas we obtain the following corollary.

Corollary 1. Assume that if for some ∅ 6= u ⊆ S we have σu = 0, then also γu = 0 and
therefore γu = 0. Then for any c > 0 we have

µ

γ : e2(Hγ , PN(g)) ≤ e2(Hσ, PN(g))

√√√√ ∑
∅6=u⊆S
σu>0

γ2u/σ
2
u + c


 ≥ c2

1 + c2
.

This result can be viewed as a robustness result with respect to weights. If one
constructs a lattice rule using σ = (σu) as weights, then for a set of weights taken from
a set with measure at least c2

1+c2
, the error is bounded by

e2(Hσ, PN(g))

√√√√ ∑
∅6=u⊆S
γu>0

γ2u/σ
2
u + c

 .

There is one notable exception, namely, if σu = 0 for some ∅ 6= u ⊆ S, then no
robustness with respect to the projection on u can be obtained (as was also illustrated
above).

In the following we show that one can do better by taking the robustness into account
in the construction of the lattice rule itself.

3 A construction of robust lattice rules

In this section we generalize the component-by-component algorithm from [9, 24]. We
repeat some facts from the fast cbc algorithm of Nuyens and Cools [16, 17].

8



3.1 The fast Fourier transform method

Nuyens and Cools [16, 17] have shown how to use the fast Fourier transform to reduce the
computation time of the component-by-component algorithm. Because of the importance
of these ideas we repeat them here (as is well understood, we see below that the algorithm
of Nuyens and Cools actually calculates slightly more, which is important for the cbcrc
algorithm below).

For simplicity of exposition we assume product weights γu =
∏

i∈u γ̂i and that N
is a prime number. For more general cases see [16, 17]. Assume that the coordinates
g∗1, . . . , g

∗
j−1 ∈ {1, . . . , N − 1} are already fixed. Then we write the error criterion for

j > 1 in the form

e2(Hγ , PN((g∗1, . . . , g
∗
j−1, z)))

= −1 +
1

N

N−1∑
n=0

j−1∏
i=1

(1 + γ̂iB2({ng∗i /N})) (1 + γ̂jB2({nz/N}))

= −1 +
1

N

N−1∑
n=0

j−1∏
i=1

(1 + γ̂iB2({ng∗i /N})) +
1

N

N−1∑
n=0

j−1∏
i=1

(1 + γ̂iB2({ng∗i /N}))B2({nz/N})

= e2(Hγ , PN((g∗1, . . . , g
∗
j−1))) +

1

N

j−1∏
i=1

(1 + γ̂i/6) /6

+
1

N

N−1∑
n=1

j−1∏
i=1

(1 + γ̂iB2({ng∗i /N}))B2({nz/N}).

Since the components g∗1, . . . , g
∗
j−1 are fixed, the value e2(Hγ , PN((g1, . . . , gj−1))) and

1
N

∏j−1
i=1 (1 + γ̂i/6) /6 does not depend on z and can therefore be ignored. Thus it suf-

fices to calculate

Ψ(z) =
N−1∑
n=1

j−1∏
i=1

(1 + γ̂iB2({ng∗i /N}))B2({nz/N}) for 1 ≤ z ≤ N − 1.

We define the matrix
Ω = (B2({nz/N}))1≤n,z≤N−1

and the vector

p =

(
j−1∏
i=1

(1 + γ̂iB2({0g∗i /N})), . . . ,
j−1∏
i=1

(1 + γ̂iB2({(N − 1)g∗i /N}))

)>
.

Then
(Ψ(1), . . . ,Ψ(N − 1))> = Ωp.

The matrix Ω has some structure which allows one to use the fast Fourier transform. Let
1 < v < N be a primitive element in the finite field ZN = {0, 1, . . . , N −1} of prime order
N . Note that the multiplicative inverse v−1 is then also a primitive element. We define
the permutation matrix Π(v) = (πk,l(v))1≤k,l≤N−1 by

πk,l(v) =

{
1 if k = vl (mod N),
0 otherwise.

9



Note that Π(v)Π(v)> = I, the identity matrix. Let C = (ck,l)1≤k,l≤N−1 be defined by

C = Π(v)>ΩΠ(v−1),

hence

ck,l =
N−1∑
u,w=1

πu,k(v)B2({uw/N})πw,l(v−1) = B2({vk−l/N}).

The matrix C is therefore circulant. Let FN−1 = (N −1)−1/2(fk,l)0≤k,l≤N−2 be the Fourier
matrix of order N − 1 where fk,l = e2πikl/N . Then D = FN−1CF

−1
N−1 is a diagonal matrix.

Thus we have
Ω = Π(v)CΠ(v−1)> = Π(v)F−1N−1DFN−1Π(v−1)>.

Consider now the matrix-vector multiplication Ωp. Multiplying a vector with the permu-
tation matrices Π(v),Π(v−1)> takes O(N) operations, the matrix vector-multiplication
with the matrices FN−1, F

−1
N−1 can be carried out in O(N logN) operations using the

fast Fourier transform. Multiplying the diagonal matrix D with a vector takes O(N)
operations. Thus the matrix-vector multiplication Ωp can be carried out in O(N logN)
operations. For more details see [18].

Notice that the fast matrix vector multiplication directly yields the whole vector
(Ψ(1), . . . ,Ψ(N − 1))>. This vector can be ordered (using a sorting algorithm) to ob-
tain Ψ(z1) ≤ Ψ(z2) ≤ · · · ≤ Ψ(zN−1). This can be done in O(N logN) operations. Thus,
by the above arguments, we can compute z1, . . . , zN−1 such that

e2(Hγ , PN((g∗1, . . . , g
∗
j−1, z1))) ≤ · · · ≤ e2(Hγ , PN((g∗1, . . . , g

∗
j−1, zN−1)))

in O(N logN) operations.

3.2 The fast cbc2c algorithm

In the previous section we have shown some robustness of lattice rules which are con-
structed for a given set of weights. In this section we modify the fast cbc algorithm [16, 17]
to construct lattice rules for which, simultaneously, E(e2(Hγ , PN(g))) = e2(Hγ , PN(g))
and Std(e2(Hγ , PN(g))) are small. Since the standard deviation Std(e2(Hγ , PN(g))) is
in general difficult to compute, we use e2(Hσ, PN(g)) as criterion instead. This has the
additional advantage that the roles of γ and σ are interchangeable.

Throughout the paper let κ denote the number of distinct prime factors of the integer
N ≥ 2. We use [4, Theorem 3], which states that for any c ≥ 1, the proportion of
generating vectors g ∈ {1, . . . , N − 1}s which satisfy

e2(Hγ , PN(g)) ≤

 c

N

∑
∅6=u⊆S

γ1/τu (2κπ−2ζ(2/τ))|u|

τ

for all 1 ≤ τ < 2, (3)

where ζ(r) =
∑∞

k=1 k
−r is the Riemann zeta function, is bigger than 1 − c−1, i.e. there

are more than (N − 1)s(1− c−1) generating vectors g ∈ {1, . . . , N − 1}s which satisfy the
above bound (see also [19] for other criteria and bounds when N is not prime). Further,
[4, Theorem 10] states that a generating vector g∗ = (g∗1, . . . , g

∗
s) ∈ {1, . . . , N − 1} which

satisfies (3) can be found component-by-component. Thus we obtain the following result
which follows from the fact that the intersection of two sets with measure bigger than
1− c−11 and 1− c−12 , where c1, c2 ≥ 1 are such that 1− c−11 + 1− c−12 ≥ 1, is non-empty.
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Algorithm 1 (The fast component-by-component two criteria (fast cbc2c algorithm).
Given: natural numbers N, s, nonnegative real numbers γu, σu for all ∅ 6= u ⊆ S; 1 ≤
c1 ≤ 2, 2 ≤ c2 ≤ ∞ such that c−11 + c−12 = 1.

• Set g∗1 = 1;

• For j = 2, . . . , s do the following:

– Hard constraint

Let K1 = min{b(N − 1)(1 − c−11 )c + 1, N − 1}. Find the set of integers A =
{z1, . . . , zK1} ⊆ {1, . . . , N − 1} which satisfies:

e2(Hγ , PN((g∗1, . . . , g
∗
j−1, zi))) ≤ e2(Hγ , PN((g∗1, . . . , g

∗
j−1, z)))

for all 1 ≤ i ≤ K1 and z ∈ {1, . . . , N−1}\A (using the fast Fourier transform).

– Soft constraint

Let K2 = min{b(N − 1)(1 − c−12 )c + 1, N − 1}. Find the set of integers B =
{y1, . . . , yK2} ⊆ {1, . . . , N − 1} which satisfies:

e2(Hσ, PN((g∗1, . . . , g
∗
j−1, yi))) ≤ e2(Hσ, PN((g∗1, . . . , g

∗
j−1, y)))

for all 1 ≤ i ≤ K2 and y ∈ {1, . . . , N−1}\B (using the fast Fourier transform).

– Choose g∗j ∈ A∩B which minimizes e2(Hγ , PN((g∗1, . . . , g
∗
j−1, w))) as a function

of w.

• Return g∗ = (g∗1, . . . , g
∗
s).

Some comments are in order:

(i) We have K1 +K2 > (N − 1)(1− c−11 + 1− c−12 ) = N − 1. Thus the set A∩B is not
empty. Further note that the vector g∗ found by Algorithm 1 satisfies the bounds
in Theorem 1 (see also [4, Theorem 10]).

(ii) The algorithm is basically symmetric in the constraints, but, by choosing 1 ≤ c1 ≤ 2,
the first constraint is at least as hard to satisfy as the second one, since the upper
bound is lower.

(iii) We have biased the algorithm towards the hard constraint. Instead of choosing the
value g∗d ∈ A ∩ B which minimizes e2(Hγ , PN((g∗1, . . . , g

∗
d−1, w))) actually any value

in the set A ∩B could be chosen. The results still apply in this case.

(iv) The classical cbc algorithm corresponds to the special case where c1 = 1 and c2 =∞.
Further, the classical cbc algorithm can also be obtained by choosing γ = σ (in
which case the choice of 1 ≤ c1, c2 ≤ ∞ is irrelevant).

(v) The fast cbc algorithm can be used to calculate the values e2(Hγ , PN((g∗1, . . . , g
∗
d−1, z)))

and e2(Hσ, PN((g∗1, . . . , g
∗
d−1, y))) for all y, z ∈ {1, . . . , N − 1} very efficiently. The

values need to be sorted and then one needs to choose a value in A ∩ B. The
main complexity is calculating the worst-case errors, hence the number of opera-
tions needed for the algorithm is the same as that for the fast cbc construction
[16, 17] (but with a larger constant since we have two worst-case errors). Thus one
has a fast cbc2c algorithm.

11



From [4, Theorem 10] we obtain the following result concerning the cbc2c algorithm.

Theorem 1. Let N be an integer and 1 ≤ c1, c2 ≤ ∞ such that c−11 + c−12 = 1. Then the
generating vector g∗ ∈ {1, . . . , N − 1}s constructed by the cbc2c algorithm satisfies

e2(Hγ , PN(g∗)) ≤

 c1
N

∑
∅6=u⊆S

γ1/τu (2κπ−2ζ(2/τ))|u|

τ

for all 1 ≤ τ < 2, and

e2(Hσ, PN(g∗))) ≤

 c2
N

∑
∅6=u⊆S

σ1/τ
u (2κπ−2ζ(2/τ))|u|

τ

for all 1 ≤ τ < 2.

For c > 0 and 1 ≤ τ, τ ′ < 2 let

Bγ,σ(c, τ, τ ′, N) =

 c1
N

∑
∅6=u⊆S

γ1/τu (2κπ−2ζ(2/τ))|u|

τ

+c

 c2
N

∑
∅6=u⊆S

σ1/τ ′

u (2κπ−2ζ(2/τ ′))|u|

τ ′

.

(4)
We obtain the following corollary from Lemma 1 and Theorem 1.

Corollary 2. The generating vector g∗ = (g∗1, . . . , g
∗
s) constructed by the cbc2c algorithm

satisfies

µ
(
γ : e2(Hγ , PN(g∗)) ≤ Bγ,σ(c, τ, τ ′, N) for all 1 ≤ τ, τ ′ < 2

)
≥ c2

1 + c2
for any c > 0.

By choosing γ = σ, Algorithm 1 can be simplified to the classical cbc algorithm. Thus
Corollary 2, with γ = σ, applies to the classical fast cbc algorithm. However, in this case,
if γu is small then also σu = γu is small and thus the lattice rule may be sensitive to
changes in the projection u. Unfortunately Corollary 2 does not give any information
about the set of the weights which satisfy the condition. We study this topic in the
following more general setting of the cbc algorithm with r constraints.

3.3 The fast cbcrc algorithm

In this subsection, instead of two constraints we study a cbc algorithm using 1 ≤ r ≤ 2s−1
constraints. In this case one needs r sets of weights γ(1), . . . ,γ(r) which are linearly in-
dependent in R2s−1 and 1 ≤ c1, . . . , cr ≤ ∞ such that c−11 + · · · + c−1r = 1. As we will
see below, adding a vector of weights γ ′ which is a linear combination of the weights
γ(1), . . . ,γ(r) does not add a new constraint, since any vector satisfying the first r con-
straints automatically satisfies the constraint using the weight γ ′.

Algorithm 2 (The fast component-by-component r criteria (fast cbcrc) algorithm).
Given: natural numbers N, s and 1 ≤ r ≤ 2s − 1, nonnegative real vectors γ(1) =
(γ

(1)
u )∅6=u⊆S , . . . ,γ

(r) = (γ
(r)
u )∅6=u⊆S which are linearly independent in R2s−1; positive num-

bers c1, . . . , cr ∈ R ∪ {∞} which satisfy cr ≥ · · · ≥ c1 ≥ 1 and c−11 + · · ·+ c−1r = 1.

• Set Kw = min{b(N − 1)(1− c−1w )c+ 1, N − 1} for 1 ≤ w ≤ r.

• Set g∗1 = 1;

12



• For j = 2, . . . , s do the following:

– For w = 1, . . . , r do the following:

Find the set of integers Aw = {z(w)1 , . . . , z
(w)
Kw
} ⊆ {1, . . . , N − 1} which satisfies:

e2(Hγ(w) , PN((g∗1, . . . , g
∗
j−1, z

(w)
i ))) ≤ e2(Hγ(w) , PN((g∗1, . . . , g

∗
j−1, z)))

for all 1 ≤ i ≤ Kw and z ∈ {1, . . . , N − 1} \ Aw using the fast algorithm
described above.

– Choose g∗d ∈
⋂

1≤w≤r Aw which minimizes e2(Hγ(1) , PN((g∗1, . . . , g
∗
d−1, z))) as a

function of z.

• Return g∗ = (g∗1, . . . , g
∗
s).

The considerations above imply therefore that the construction cost of the fast cbcrc
algorithm is O(rsN(logN)) operations using O(rN) storage (note that the intersection
step can be done by sorting the elements in A1, . . . , Ar first, which takes O(N logN)
operations).

From [4, Theorem 10] we also obtain a generalization of Theorem 1 which applies to
the cbcrc algorithm.

Theorem 2. Let N ≥ 2 and r ≥ 1 be integers and 1 ≤ c1, . . . , cr ≤ ∞ such that
c−11 + · · · + c−1r = 1. Then the generating vector g∗ ∈ {1, . . . , N − 1}s constructed by the
cbcrc algorithm using the weights γ(1), . . . ,γ(r) satisfies

e2(Hγ(w) , PN(g∗)) ≤

cw
N

∑
∅6=u⊆S

(γ(w)u )1/τ (2κπ−2ζ(2/τ))|u|

τ

for all 1 ≤ τ < 2

and all 1 ≤ w ≤ r.

3.4 The geometry of the cbcrc algorithm

For a x ∈ R2s−1 we write x ≤ y if xi ≤ yi for all 1 ≤ i < 2s, where x = (x1, . . . , x2s−1)
and y = (y1, . . . , y2s−1). Similarly we use the symbols <,>,≥.

For z = (z1, . . . , z2s−1) ∈ R2s−1 and ε > 0 we define the simplex

Γ(z, ε) = {y ∈ R2s−1 : y ≥ 0,y · z ≤ ε}.

This simplex has vertices 0 and (0, ε/zi), 1 ≤ i < 2s, which stands for the vector whose i′th
component is 0 for i 6= i′ and whose ith component is zi. If zi = 0 for some component
i, then the simplex is degenerate and we consider the projection of the set onto those
components which are nonzero (which is then a nondegenerate simplex).

Let g = (g1, . . . , gs), gu = (gi)i∈u and

eu = eu(gu) =
1

N

N−1∑
n=0

∏
i∈u

B2({ngi/N}) for ∅ 6= u ⊆ S,

e = e(g) = (eu)∅6=u⊆S ,
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Xγ,c = Xγ,c(N) = inf
1≤τ<2

 c

N

∑
∅6=u⊆S

(γu)
1/τ (2π−2ζ(2/τ))|u|

τ

.

Notice that since eu is the worst-case error of integration in a reproducing kernel Hilbert
space, we have eu ≥ 0 and therefore e ≥ 0.

Theorem 2 implies that the cbcrc algorithm now chooses the generating vector g ∈
{1, . . . , N − 1}s such that

γ(w) · e := (γ(w)u ) · (eu) :=
∑
∅6=u⊆S

γ(w)u eu ≤ Xγ(w),cw for 1 ≤ w ≤ r.

Thus e lies in the intersection of the simplices Γ(γ(w), Xγ(w),cw) for 1 ≤ w ≤ r:

e ∈
⋂

1≤w≤r

Γ(γ(w), Xγ(w),cw). (5)

Geometrically this means that e lies in a convex r-polytope given by the intersection of r
simplices. The weights γ(w) change the shape of the simplices, whereas the values Xγ(w),cw

change the size of the simplices.
Compared to the cbc algorithm, the component-by-component r criteria (cbcrc) algo-

rithm first increases the original simplex (by at most a factor of cr) and then intersect it
with other simplices, see Figure 1. This can be used to prevent e to be chosen too close
to a vertex of the original simplex (this prevents eu from becoming too large for some
∅ 6= u ⊆ S).

Figure 1: The figure shows the search domains. The classical cbc algorithm searches in a
simplex as indicated in the left picture. The cbc2c algorithm first increases the size of the
simplex (second picture) and then intersects it with another simplex (third picture) to
get the new search domain (fourth picture). This way extreme choices near the vertex of
the original simplex (which corresponds to a large value of eu for some u) can be avoided.

3.5 The geometry of the weights

We now study the geometry of the weights for which the corresponding square worst-case
error satisfies a certain bound. Since e is fixed once a generating vector g∗ is chosen, we
consider now the set of weights

Γ =
{

(γu)∅6=u⊆S : e2(Hγ , PN(g∗)) ≤ εe2(Hγ , P0)
}
,
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where ε > 0 is a real number, P0 = ∅ and

e2(Hγ , P0) = inf
f∈Hγ

‖f‖Hγ≤1

∣∣∣∣∫
[0,1]s

f(x) dx

∣∣∣∣
is the initial error [25]. For our space we have e2(Hγ , P0) = 1.

The square worst-case error e2(Hγ , PN(g∗)) = e · γ is a linear function of γu. Thus Γ
is a simplex in R2s−1 given by

Γ = Γ(e, ε),

which has vertices (0)∅6=u⊆S and(
0S\u, e

−1
u ε
)

for ∅ 6= u ⊆ S.

Figure 2: The set of weights Γ. In the first instance, one value of eu (corresponding to the
y-axis in the picture) is large, therefore the algorithm is sensitive to changes with respect
to the projection u (the corresponding weight γu has to be small). A small change in γu
could significantly increase the error. In the second case the algorithm is more robust
since bigger changes in the second coordinate are allowed.

We consider now the set of weights for which the cbcrc algorithm yields bounds. We
have the following result.

Theorem 3. Let g∗ be constructed by the cbcrc algorithm using the weights γ(1), . . . ,γ(r).
Let γ =

∑r
w=1 λwγ

(w) for some λ1, . . . , λr ≥ 0. Then it follows that

e2(Hγ , PN(g∗)) ≤
r∑

w=1

λwXγ(w),cw .

Proof. By the cbcrc algorithm we have e2(Hγ(w) , PN(g∗)) = e · γ(w) ≤ Xγ(w),cw for 1 ≤
w ≤ r. Thus we have

e2(Hγ , PN(g∗)) = e · γ =
r∑

w=1

λwe · γ(w) =
r∑

w=1

λwe
2(Hγ(w) , PN(g∗)) ≤

r∑
w=1

λwXγ(w),cw ,

which shows the result.

The above theorem shows that the cbcrc algorithm yields lattice rules which simulta-
neously satisfy bounds for weights γ ∈ R2s−1 taken from a subspace of R2s−1 spanned by
γ(1), . . . ,γ(r) ∈ R2s−1.

The theorem above can be understood geometrically in the following way. Note that
e ∈ Γ(γ(w), Xγ(w),cw) if and only if γ(w) ∈ Γ(e, Xγ(w),cw). We define the new weights
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γ̂(w) = εX−1
γ(w),cw

γ(w), 1 ≤ w ≤ r for some real number ε > 0. Then Xγ̂(w),cw
= ε

for all 1 ≤ w ≤ r. Note that criterion in the cbcrc algorithm does not change by this
normalization since the cbcrc algorithm yields exactly the same generating vector g∗ using
the weights γ(1), . . . ,γ(r) as it does for using the weights γ̂(1), . . . , γ̂(r). Thus

e ∈ Γ(γ(w), Xγ(w),cw)⇔ γ(w) ∈ Γ(e, Xγ(w),cw)⇔ γ̂(w) ∈ Γ(e, ε).

Now (5) is equivalent to

e ∈
⋂

1≤w≤r

Γ(γ(w), Xγ(w),cw)⇔ γ̂(w) ∈ Γ(e, ε) for all 1 ≤ w ≤ r.

Therefore, the cbcrc algorithm ensures that g∗ is chosen such that γ̂(1), . . . , γ̂(r) all lie in
the simplex Γ(e, ε), i.e.

γ̂(1), . . . , γ̂(r) ∈ Γ(e, ε).

In fact, the cbcrc algorithm finds, component-by-component, the smallest simplex Γ(e, ε)

which contains γ̂(1), . . . , γ̂(r).
If one chooses r = 2s − 1 in the cbcrc algorithm, then the weights γ̂(1), . . . , γ̂(2s−1) ∈

Γ(e, ε) themselves are the vertices of a 2s − 1-dimensional convex polytope which is con-
tained in the simplex Γ(e, ε) of the same dimension. However, if 1 ≤ r < 2s − 1, then

the convex polytope spanned by γ̂(1), . . . , γ̂(r) is degenerate since it lies in a r-dimensional
subspace. Thus using only r < 2s − 1 weights γ(1), . . . ,γ(r) does not fully control the
shape of the simplex Γ(e, ε). For the classical cbc algorithm only one vector of weights
γ is used. The cbc construction then only ensures that γ̂ ∈ Γ(e, ε). In the numerical
examples below we show that it is possible for the classical cbc construction to choose
generating vectors which are not suitable for many other choices of weights. By adding
additional constraints, the cbcrc algorithm can prevent such bad choices.

The bound in Theorem 3 applies for all weights which lie in the linear subspace of R2s−1

spanned by vectors γ(1), . . . ,γ(r). In particular, if one uses the cbc(2s − 1)c algorithm,
then one can obtain a bound for any choice of weights. However, in higher dimensions s
this is currently problematic for two reasons: the computational cost is exponential in the
dimension; the second problem is that one would have to choose c1, . . . , c2s−1 such that
c−11 + · · ·+ c−12s−1 = 1. For instance, the choice cj = 2s−1, 1 ≤ j ≤ s, yields a factor in the
upper bound which grows exponentially with the dimension. For lower dimensions this is
feasible though and hence can be useful in applications with low truncation dimension.

Consider now γ =
∑r

w=1 λwγ̂
(w), where λ1, . . . , λr ≥ 0 and λ1 + · · · + λr ≤ 1, i.e., γ

lies in the convex polytope with vertices 0, γ̂(1), . . . , γ̂(r).Then, by Theorem 3, we have

e2(Hγ , PN(g∗)) ≤ ε.

We summarize the results in the following corollary.

Corollary 3. Let 1 ≤ r ≤ 2s−1. Let c1, . . . , cr ≥ 1 be given such that c−11 + · · ·+c−1r = 1.

Let ε > 0 be a real number. Let γ̂(1), . . . , γ̂(r) be weights which are normalized such
that Xγ̂(w),cw

= ε for all 1 ≤ w ≤ r. Let γ =
∑r

w=1 λwγ̂
(w) where λ1, . . . , λr ≥ 0 and

λ1 + · · · + λr ≤ 1. Let g∗ be constructed by the cbcrc algorithm based on the weights
γ̂(1), . . . , γ̂(r). Then

γ̂(1), . . . , γ̂(r) ∈ Γ(e, ε)

and
e2(Hγ , PN(g∗)) ≤ ε.
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4 Numerical results

To illustrate the ideas in the paper we chose some instructive examples. We tested the
algorithm with r = 2. The computation time for the cbc2c algorithm is between 2 and
3 times the computation time of the cbc1c algorithm. This was observed for a variety of
choices for c1 and c2 and values n.

Further we tested the component-by-component algorithm with fast decaying weights.
We used s = 100, product weights γ

(w)
u =

∏
j∈u γ̂

(w)
j with γ̂

(1)
j = 1, γ̂

(2)
j = 10−j and

γ̂
(3)
j = j−1. Further we chose c1 = c2 = 2. The cbc1c algorithm using the weights γ(1)

returns the same components g∗j = g∗j′ for j, j′ ≥ 15. This choice of generating vector
would be bad for slow decaying weights. On the other hand, the cbc2c does not return
any repeated components, which is prevented by the second constraint. The results are
presented in Table 1. It shows that the cbc2c algorithm yields approximately the same
results as the cbc1c algorithm constructed for the right weight, but can do significantly
better if the lattice rule constructed by the cbc1c algorithm is used for different weights,
as can be seen in Table 1. The results in Table 2 are for a different choice of weights and
are similar.

The choice of weights γ̂
(1)
j and γ̂

(2)
j in Table 1 and Table 2 are quite different from

each other. Numerical tests for examples where the weights are more similar than in
the examples shown, for instance γ̂

(1)
j = j−1 and γ̂

(2)
j = j−4 (or even γ̂

(2)
j = 2−j), yield

numerical results which are quite similar, indicating that there are not many (bad) outliers.
Table 3 and 4 show numerical results with randomly chosen weights, again showing that
the lattice rules constructed by the cbc and cbc2c algorithms perform well except in the
case where the cbc construction is based on fast decaying weights.

References

[1] N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337–404,
1950.

[2] R. Cools, F. Y. Kuo and D. Nuyens, Constructing embedded lattice rules for multi-
variable integration. SIAM J. Sci. Comput., 28, 2162–2188, 2006.

[3] J. Dick, On the convergence rate of the component-by-component construction of
good lattice rules. J. Complexity, 20, 493–522, 2004.

[4] J. Dick, F. Pillichshammer and B. Waterhouse, The construction of good extensible
rank-1 lattices. Math. Comp., 77, 2345–2373, 2008.

[5] J. Dick and F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and
Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.

[6] F. J. Hickernell, Lattice rules: how well do they measure up? Random and quasi-
random point sets, 109–166, Lecture Notes in Statist., 138, Springer, New York,
1998.

[7] F. J. Hickernell, A generalized discrepancy and quadrature error bound. Math.
Comp., 67, 299–322, 1998.

17



N 251 509 1019 2039 4079

cbc2c: e(γ(1)) 1.4044e+02 9.8623e+01 6.9702e+01 4.9275e+01 3.4838e+01
cbc(γ(1)): e(γ(1)) 1.4044e+02 9.8623e+01 6.9702e+01 4.9274e+01 3.4838e+01
cbc(γ(2)): e(γ(1)) 2.4075e+02 2.1790e+02 1.9762e+02 1.9481e+02 1.8137e+02

cbc2c: e(γ(2)) 5.4897e-04 2.7128e-04 1.3568e-04 6.7927e-05 3.3965e-05
cbc(γ(1)): e(γ(2)) 5.4897e-04 2.7128e-04 1.3568e-04 6.7930e-05 3.3966e-05
cbc(γ(2)): e(γ(2)) 5.4882e-04 2.7113e-04 1.3558e-04 6.7892e-05 3.3954e-05

cbc2c: e(γ(3)) 3.1971e-02 1.9872e-02 1.2057e-02 7.7449e-03 4.9349e-03
cbc(γ(1)): e(γ(3)) 3.1653e-02 2.0250e-02 1.3100e-02 8.5062e-03 4.9972e-03
cbc(γ(2)): e(γ(3)) 1.5597e-01 1.4616e-01 1.3816e-01 1.3813e-01 1.3130e-01

N 8161 16319 32633 65267 130531

cbc2c: e(γ(1)) 2.4629e+01 1.7417e+01 1.2316e+01 8.7088e+00 6.1579e+00
cbc(γ(1)): e(γ(1)) 2.4629e+01 1.7417e+01 1.2316e+01 8.7087e+00 6.1579e+00
cbc(γ(2)): e(γ(1)) 1.6777e+02 1.6737e+02 1.5575e+02 1.5567e+02 1.5563e+02

cbc2c: e(γ(2)) 1.7023e-05 8.5236e-06 4.2695e-06 2.1370e-06 1.0753e-06
cbc(γ(1)): e(γ(2)) 1.7023e-05 8.5236e-06 4.2690e-06 2.1370e-06 1.0721e-06
cbc(γ(2)): e(γ(2)) 1.7006e-05 8.5111e-06 4.2631e-06 2.1351e-06 1.0683e-06

cbc2c: e(γ(3)) 3.0911e-03 2.0308e-03 1.2551e-03 7.9994e-04 5.2220e-04
cbc(γ(1)): e(γ(3)) 3.2965e-03 2.1254e-03 1.3246e-03 8.5575e-04 5.8758e-04
cbc(γ(2)): e(γ(3)) 1.2522e-01 1.2521e-01 1.1979e-01 1.1979e-01 1.1979e-01

N 261061 522127 1044257 2088511 4177051

cbc2c: e(γ(1)) 4.3542e+00 3.0787e+00 2.1769e+00 1.5392e+00 1.0883e+00
cbc(γ(1)): e(γ(1)) 4.3542e+00 3.0787e+00 2.1769e+00 1.5392e+00 1.0883e+00
cbc(γ(2)): e(γ(1)) 1.3495e+02 1.1735e+02 1.2566e+02 1.1702e+02 1.1701e+02

cbc2c: e(γ(2)) 5.3706e-07 2.7758e-07 1.3899e-07 6.3220e-08 0.0000e+00
cbc(γ(1)): e(γ(2)) 5.3686e-07 2.5938e-07 1.3899e-07 0.0000e+00 7.3000e-08
cbc(γ(2)): e(γ(2)) 5.3541e-07 2.5981e-07 1.3411e-07 1.1151e-07 1.6255e-07

cbc2c: e(γ(3)) 3.2756e-04 2.1752e-04 1.4107e-04 8.6973e-05 5.7966e-05
cbc(γ(1)): e(γ(3)) 4.2678e-04 2.1369e-04 1.3647e-04 9.4174e-05 5.7208e-05
cbc(γ(2)): e(γ(3)) 1.1070e-01 1.0250e-01 1.0620e-01 1.0234e-01 1.0234e-01

Table 1: This table shows the square worst-case errors using the cbc2c construction
based on the weights γ(1) and γ(2), the cbc construction based on the weights γ(1) and
the cbc construction based on the weights γ(2). Here, e(γ(w)) stands for the worst-case

error e(Hγ(w) , PN(g∗)). We choose s = 100, product weights with γ̂
(1)
j = 1, γ̂

(2)
j = 10−j,

γ̂
(3)
j = j−1, c1 = c2 = 2;
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cbc2c: e(γ(1)) 3.9170e-03 2.0603e-03 1.1145e-03 6.0564e-04 3.2079e-04
cbc(γ(1)): e(γ(1)) 3.9148e-03 2.0587e-03 1.1142e-03 6.0547e-04 3.2073e-04
cbc(γ(2)): e(γ(1)) 9.5094e-03 7.6012e-03 6.4146e-03 6.3616e-03 5.5514e-03

cbc2c: e(γ(2)) 5.4893e-04 2.7113e-04 1.3558e-04 6.7914e-05 3.3957e-05
cbc(γ(1)): e(γ(2)) 5.4893e-04 2.7113e-04 1.3558e-04 6.7914e-05 3.3957e-05
cbc(γ(2)): e(γ(2)) 5.4882e-04 2.7113e-04 1.3558e-04 6.7892e-05 3.3954e-05

cbc2c: e(γ(3)) 5.3522e-03 3.2454e-03 2.1131e-03 9.9811e-04 5.6878e-04
cbc(γ(1)): e(γ(3)) 5.9244e-03 2.9483e-03 1.9003e-03 1.0215e-03 5.9843e-04
cbc(γ(2)): e(γ(3)) 3.0073e-02 2.9957e-02 2.9922e-02 2.9914e-02 2.9906e-02

N 8161 16319 32633 65267 130531

cbc2c: e(γ(1)) 1.7664e-04 9.5576e-05 5.2562e-05 2.8616e-05 1.5674e-05
cbc(γ(1)): e(γ(1)) 1.7664e-04 9.5576e-05 5.2559e-05 2.8616e-05 1.5674e-05
cbc(γ(2)): e(γ(1)) 4.9127e-03 4.9093e-03 4.3999e-03 4.3994e-03 4.3993e-03

cbc2c: e(γ(2)) 1.7006e-05 8.5147e-06 4.2646e-06 2.1341e-06 1.0650e-06
cbc(γ(1)): e(γ(2)) 1.7006e-05 8.5147e-06 4.2646e-06 2.1341e-06 1.0650e-06
cbc(γ(2)): e(γ(2)) 1.7006e-05 8.5111e-06 4.2631e-06 2.1351e-06 1.0683e-06

cbc2c: e(γ(3)) 3.5384e-04 1.9131e-04 1.1179e-04 6.7310e-05 4.8831e-05
cbc(γ(1)): e(γ(3)) 3.5384e-04 1.9131e-04 1.0812e-04 6.7310e-05 4.2383e-05
cbc(γ(2)): e(γ(3)) 2.9898e-02 2.9898e-02 2.9891e-02 2.9891e-02 2.9891e-02

N 261061 522127 1044257 2088511 4177051

cbc2c: e(γ(1)) 8.6033e-06 4.7039e-06 2.6006e-06 1.4241e-06 8.0218e-07
cbc(γ(1)): e(γ(1)) 8.6019e-06 4.7038e-06 2.5996e-06 1.4242e-06 8.0024e-07
cbc(γ(2)): e(γ(1)) 3.6719e-03 3.0833e-03 3.3182e-03 3.0560e-03 3.0560e-03

cbc2c: e(γ(2)) 5.3458e-07 2.7028e-07 1.1921e-07 0.0000e+00 0.0000e+00
cbc(γ(1)): e(γ(2)) 5.3458e-07 2.7028e-07 1.1921e-07 0.0000e+00 0.0000e+00
cbc(γ(2)): e(γ(2)) 5.3541e-07 2.5981e-07 1.3411e-07 1.1151e-07 1.6255e-07

cbc2c: e(γ(3)) 2.0703e-05 1.2833e-05 7.2400e-06 5.4021e-06 2.7314e-06
cbc(γ(1)): e(γ(3)) 2.3378e-05 1.2218e-05 7.6749e-06 3.9504e-06 2.0520e-06
cbc(γ(2)): e(γ(3)) 2.9876e-02 2.9860e-02 2.9868e-02 2.9860e-02 2.9860e-02

Table 2: This table shows the square worst-case errors using the cbc2c construction
based on the weights γ(1) and γ(2), the cbc construction based on the weights γ(1) and
the cbc construction based on the weights γ(2). Here, e(γ(w)) stands for the worst-case

error e(Hγ(w) , PN(g∗)). We choose s = 100, product weights with γ̂
(1)
j = 1, γ̂

(2)
j = j−2,

γ̂
(3)
j = (s− j)−2, c1 = c2 = 2;
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cbc2c: e(γ(1)) 3.0814e-02 1.8765e-02 1.1539e-02 7.0582e-03 4.4014e-03
cbc(γ(1)): e(γ(1)) 2.9982e-02 1.8448e-02 1.1482e-02 7.0420e-03 4.3849e-03
cbc(γ(2)): e(γ(1)) 8.5356e-02 7.9743e-02 7.7126e-02 6.7998e-02 6.7529e-02

cbc2c: e(γ(2)) 2.4617e-03 1.2385e-03 6.6254e-04 3.5517e-04 1.8239e-04
cbc(γ(1)): e(γ(2)) 2.4617e-03 1.2385e-03 6.6254e-04 3.5517e-04 1.8239e-04
cbc(γ(2)): e(γ(2)) 2.4416e-03 1.2423e-03 6.5820e-04 3.4793e-04 1.7957e-04

cbc2c: e(γ(3)) 2.5477e+00 1.7828e+00 1.2581e+00 8.8750e-01 6.2621e-01
cbc(γ(1)): e(γ(3)) 2.5413e+00 1.7826e+00 1.2576e+00 8.8690e-01 6.2570e-01
cbc(γ(2)): e(γ(3)) 4.0922e+00 4.7043e+00 3.7287e+00 3.1589e+00 3.2877e+00

N 8161 16319 32633 65267 130531

cbc2c: e(γ(1)) 2.7229e-03 1.6958e-03 1.0601e-03 6.6402e-04 4.1363e-04
cbc(γ(1)): e(γ(1)) 2.7208e-03 1.6957e-03 1.0587e-03 6.6282e-04 4.1368e-04
cbc(γ(2)): e(γ(1)) 6.1343e-02 5.5530e-02 5.3283e-02 5.2673e-02 5.0934e-02

cbc2c: e(γ(2)) 9.5776e-05 4.9506e-05 2.6222e-05 1.3943e-05 7.3677e-06
cbc(γ(1)): e(γ(2)) 9.5776e-05 4.9506e-05 2.6222e-05 1.3943e-05 7.3677e-06
cbc(γ(2)): e(γ(2)) 9.4743e-05 4.9263e-05 2.5759e-05 1.3567e-05 7.2127e-06

cbc2c: e(γ(3)) 4.4091e-01 3.1093e-01 2.1929e-01 1.5442e-01 1.0883e-01
cbc(γ(1)): e(γ(3)) 4.4099e-01 3.1075e-01 2.1886e-01 1.5431e-01 1.0875e-01
cbc(γ(2)): e(γ(3)) 3.1957e+00 2.6282e+00 2.7940e+00 2.5026e+00 2.3333e+00

N 261061 522127 1044257 2088511 4177051

cbc2c: e(γ(1)) 2.5887e-04 1.6206e-04 1.0112e-04 6.3253e-05 3.9582e-05
cbc(γ(1)): e(γ(1)) 2.5874e-04 1.6160e-04 1.0101e-04 6.3241e-05 3.9495e-05
cbc(γ(2)): e(γ(1)) 4.6470e-02 4.7789e-02 4.6729e-02 4.1838e-02 4.5181e-02

cbc2c: e(γ(2)) 3.8690e-06 2.0481e-06 1.0884e-06 5.8400e-07 2.8115e-07
cbc(γ(1)): e(γ(2)) 3.8690e-06 2.0481e-06 1.0884e-06 5.8419e-07 2.6781e-07
cbc(γ(2)): e(γ(2)) 3.7567e-06 1.9802e-06 1.0503e-06 5.3995e-07 3.0465e-07

cbc2c: e(γ(3)) 7.6712e-02 5.3901e-02 3.7986e-02 2.6700e-02 1.8762e-02
cbc(γ(1)): e(γ(3)) 7.6574e-02 5.4043e-02 3.7979e-02 2.6664e-02 1.8764e-02
cbc(γ(2)): e(γ(3)) 2.2229e+00 2.1986e+00 2.3036e+00 2.0369e+00 2.1620e+00

Table 3: This table shows the square worst-case errors using the cbc2c construction based
on the weights γ(1) and γ(2), the cbc construction based on the weights γ(1) and the
cbc construction based on the weights γ(2). Here, e(γ(w)) stands for the worst-case error

e(Hγ(w) , PN(g∗)). We choose s = 100, product weights with γ̂
(1)
j = j−1, γ̂

(2)
j = 2−j, γ̂

(3)
j is

chosen randomly in [0, 1], c1 = c2 = 2;
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cbc2c: e(γ(1)) 2.4416e-03 1.2423e-03 6.5820e-04 3.4797e-04 1.7957e-04
cbc(γ(1)): e(γ(1)) 2.4416e-03 1.2423e-03 6.5820e-04 3.4793e-04 1.7957e-04
cbc(γ(2)): e(γ(1)) 2.4832e-03 1.2705e-03 6.6492e-04 3.6102e-04 1.8731e-04

cbc2c: e(γ(2)) 3.4093e+00 2.3917e+00 1.6885e+00 1.1923e+00 8.4217e-01
cbc(γ(1)): e(γ(2)) 5.3545e+00 6.1955e+00 4.8321e+00 3.9970e+00 4.2535e+00
cbc(γ(2)): e(γ(2)) 3.4052e+00 2.3878e+00 1.6849e+00 1.1889e+00 8.3874e-01

cbc2c: e(γ(3)) 1.4044e+02 9.8623e+01 6.9703e+01 4.9275e+01 3.4838e+01
cbc(γ(1)): e(γ(3)) 1.4761e+02 1.2953e+02 8.4534e+01 6.2916e+01 5.5008e+01
cbc(γ(2)): e(γ(3)) 1.4044e+02 9.8623e+01 6.9702e+01 4.9275e+01 3.4838e+01

N 8161 16319 32633 65267 130531

cbc2c: e(γ(1)) 9.4743e-05 4.9263e-05 2.5759e-05 1.3568e-05 7.2118e-06
cbc(γ(1)): e(γ(1)) 9.4743e-05 4.9263e-05 2.5759e-05 1.3567e-05 7.2127e-06
cbc(γ(2)): e(γ(1)) 9.6866e-05 5.1703e-05 2.6248e-05 1.4507e-05 7.7439e-06

cbc2c: e(γ(2)) 5.9466e-01 4.1992e-01 2.9647e-01 2.0921e-01 1.4753e-01
cbc(γ(1)): e(γ(2)) 3.6458e+00 3.2764e+00 3.1991e+00 3.2104e+00 3.3114e+00
cbc(γ(2)): e(γ(2)) 5.9162e-01 4.1731e-01 2.9421e-01 2.0732e-01 1.4605e-01

cbc2c: e(γ(3)) 2.4630e+01 1.7417e+01 1.2317e+01 8.7092e+00 6.1583e+00
cbc(γ(1)): e(γ(3)) 4.1063e+01 3.1297e+01 2.7350e+01 2.5229e+01 2.2864e+01
cbc(γ(2)): e(γ(3)) 2.4629e+01 1.7417e+01 1.2316e+01 8.7088e+00 6.1580e+00

N 261061 522127 1044257 2088511 4177051

cbc2c: e(γ(1)) 3.7566e-06 1.9798e-06 1.0551e-06 5.4057e-07 2.9352e-07
cbc(γ(1)): e(γ(1)) 3.7567e-06 1.9802e-06 1.0503e-06 5.3995e-07 3.0465e-07
cbc(γ(2)): e(γ(1)) 4.3237e-06 2.1728e-06 1.2567e-06 6.4075e-07 3.1434e-07

cbc2c: e(γ(2)) 1.0412e-01 7.3434e-02 5.1821e-02 3.6553e-02 2.5707e-02
cbc(γ(1)): e(γ(2)) 3.0074e+00 2.9431e+00 3.1018e+00 2.7223e+00 2.8919e+00
cbc(γ(2)): e(γ(2)) 1.0284e-01 7.2401e-02 5.0932e-02 3.5823e-02 2.5188e-02

cbc2c: e(γ(3)) 4.3546e+00 3.0791e+00 2.1772e+00 1.5395e+00 1.0886e+00
cbc(γ(1)): e(γ(3)) 1.8153e+01 1.9073e+01 1.8373e+01 1.4183e+01 1.6737e+01
cbc(γ(2)): e(γ(3)) 4.3543e+00 3.0788e+00 2.1770e+00 1.5393e+00 1.0884e+00

Table 4: This table shows the square worst-case errors using the cbc2c construction based
on the weights γ(1) and γ(2), the cbc construction based on the weights γ(1) and the
cbc construction based on the weights γ(2). Here, e(γ(w)) stands for the worst-case error

e(Hγ(w) , PN(g∗)). We choose s = 100, product weights with γ̂
(1)
j = 2−j, γ̂

(2)
j is chosen

randomly, γ̂
(3)
j = 1, c1 = c2 = 2;
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