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EXISTENCE AND STABILITY OF SOLITONS FOR
FULLY DISCRETE APPROXIMATIONS OF THE
NONLINEAR SCHRODINGER EQUATION.

by

Dario Bambusi, Erwan Faou & Benoit Grébert

Abstract. — In this paper we study the long time behavior of a discrete ap-
proximation in time and space of the cubic nonlinear Schrédinger equation on
the real line. More precisely, we consider a symplectic time splitting integrator
applied to a discrete nonlinear Schrédinger equation with additional Dirichlet
boundary conditions on a large interval. We give conditions ensuring the ex-
istence of a numerical soliton which is close in energy norm to the continuous
soliton. Such result is valid under a CFL condition of the form 7h™2 < C
where 7 and h denote the time and space step size respectively. Furthermore
we prove that if the initial datum is symmetric and close to the continuous
soliton 7 then the associated numerical solution remains close to the orbit of
n, I' = Ua{e“n}, for very long times.

1. Introduction

We study numerical approximations of solitons of the focusing nonlinear
Schrodinger equation (NLS) on the real line:

(11) Zwt = _wmm - ’¢’2w, T € R, teR.

This equation is a Hamiltonian partial differential equation (PDE) associated
with the Hamiltonian function

4
(1.2 1) = [ 10?5 g
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and preserving the L? norm

(1.3) N@w)= [ o da.

The goal of this paper is to understand the long time behavior of numeri-
cal integration algorithms for initial data close to the solitary wave solution
Y(t, ) = en(x) where

(1.4) n(z) = \}isech (g) ,

and A\ € R is the Lagrange multiplier associated with the minimization of H
under the constraint N = 1. It is well known, see for instance [20, 13, 14, 12]
that this solution is orbitaly stable in the sense that for a small pertuba-
tion of the initial data, the exact solution remains close to the orbit of 7 for
all times. Here we will only consider symmetric initial conditions satisfying
Y(x) = ¢¥(—=x), a property that is preserved by the flow of (1.1). In this set-
ting, the orbital stability of the continuous soliton can be described as follows:
Let

(1.5) r= J{eon(@)

acR
and assume that (0, ) is a symmetric function satisfying dist(¢(0,-),I") < ¢
for some ¢ sufficiently small, then for all times ¢ > 0, if 9(¢,-) denotes the
solution of (1.1), we have

(1.6) Vt>0, dist(e(t),T) < C6,

where C' is a constant independent of § and ¢, and where the distance is mea-
sure in H' norm. The present paper deals with the persistence of this result
by fully discrete numerical methods. It is an old problem that was pointed out
in several papers in the last 30 years, see for instance [7, 18, 8, 5], and the
numerical approximation of (1.4) over long times has now become a classical
benchmark to test the performance and stability of numerical schemes, see for
instance [1, 9, 4] and the references therein. However, as far as we know,
no result of the form (1.6) has been proven in the literature for fully discrete
approximations of (1.1) (see however [2, 5] for the space discretized case).

In particular, the effect of the time discretization yields many mathematical
difficulties. Durdn & Sanz-Serna gave in [8] some asymptotic expansion of
the numerical solution close to a soliton, but the lack of a modified energy
acting on H! and preserved over long time by the numerical scheme (the so
called backward error analysis) was an obstruction to define a possibly stable
numerical soliton. Here, we take advantage of a recent construction of such a
modified energy given by Faou & Grébert in [11] to show the existence and
stability of a modified soliton that is close to (1.4) in energy norm.
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In this paper, the discretization of (1.1) we consider are made of three levels
of approximations:

— A space discretization, where we use a grid with mesh size h > 0
made of an infinite collection of equidistant points of R. The equation
(1.1) is then approximated by the discrete nonlinear Schrédinger equation
(DNLS) where the Laplace operator is replaced by its finite difference
approximation over three points.

— A Dirichlet cut-off, where we replace the integrability condition at
infinity of the derivative of ¥ by a Dirichlet boundary condition at the
boundary of a large window of size 2Kh where K >> 1.

— A time discretization algorithm to integrate the DNLS equation
with Dirichlet boundary condition. This discretization introduces a last
parameter 7 which represents the time step. To do this we consider a
symplectic time splitting algorithm where the kinetic part and potential
part are solved alternatively as described for instance in [19].

Each of these three levels of discretization relies on discretization parameters.
In this paper, we prove orbital stability in the sense of (1.6) for the numerical
solution, where the distance to I' is estimated in terms of the three discretiza-
tion parameters h, K and 7.

We first present some numerical experiments showing that the solitary wave
rapidly disappears if either the algorithm of integration is not symplectic, or
if it is symplectic, but used with a too large CFL number 7h~2.

The proof is organized as follows: we first recall in Section 4 the main
arguments of the proof of the orbital stability result in the continuous case,
following in essence the presentation made in [12]. We then give in Section 5
an abstract result showing that if the energy space H' is well approximated
by the space discretization, and if the numerical scheme preserves - or almost
preserves - modified L? norm and energy functions that are close to the exact
ones, we can obtain orbital stability results with precise bounds depending on
the parameters. We then apply this formalism in Section 6 to our three levels
of discretization.

As the proof of orbital stability result is based on the variational charac-
terization of the solitary wave and thus heavily relies on the preservation of
the energy and L? norm, long time bounds can be straightforwardly obtained
for energy and L? norm preserving schemes such as the Dufour-Fortin-Payre
scheme, see [7]. This follows directly from the analysis of the space discretized
case (see also Remark 2.6).

The cornerstone of the analysis of splitting method is the construction of
the modified energy. Recall that in the finite dimensional case, the existence
of modified energy is guaranteed by Hamiltonian interpolation: see [3, 15, 16]
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but cannot be applied straightforwardly to Hamiltonian PDEs unless unrea-
sonable a priori assumptions are made on the regularity of the numerical so-
lution, which prevents a fair use of the bootstrap argument underlying the
orbital stability methodology. Here we take advantage of the recent backward
error analysis result of [11] to construct a modified energy acting on H! for
splitting methods applied to (1.1). Actually we give a simplified proof of a
simpler version of the result presented in [11] or [10], which has some interest
in itself.

Using this result, we then prove an orbital stability result for fully discrete
splitting method applied to (1.1) with a CFL restriction, and over very long
times of the form nt ~ 7=M_ where M > 0 is an integer number depending
on the CFL.

2. Three discretization levels and main results

We now describe more precisely the three levels of approximation of (1.1)
mentioned in the introduction. At each step, we state the orbital result that
we obtain.

2.1. Space discretization. — Having fixed a positive parameter h we
discretize space by substituting the sequence 1y ~ 1 (h¥), ¢ € Z for the function
¥ (x), and the second order operator of finite difference A} defined by

Vo1 + the—1 — 24
(2.1) (Anp)e = —H
for the Laplace operator —3d,,. The NLS is thus reduced to the discrete
nonlinear Schrodinger equation (DNLS):

(2.2) ihy = —%(WH +ho_1 — 20¢) — [l *e, LEZ.

where t +— (t) = (¢p(t))sez is an application from R to C%. With this
equation is associated a Hamiltonian function and a discrete L? norm given
by

(23) Hy)=hY U% i

JEZ.

2yl 2
-5 ] and  Nu(y) =hY_ |yl
JEZ
The discrete space of functions is
Vi = {4 € C gy = vy}
equipped with the discrete norm

_ [$1 — %[ 2
ol =2 3" 20l S

JEL jEL
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Following [2], we identify V}, with a finite element subspace of H!(R;C). More
precisely, defining the function s : R — R by

0 if x| > 1,
(2.4) s(x)=qz+1 if —1<z<0,

—rz+1 if 0<z<1,

the identification is done through the map iy, : Vj, — H'(R;C) defined by
. € .
(2.5) {U}jer = @)(@) =D (5 =) -
JEZ
Recall that I' is the curve of minima of the continuous Hamiltonian and is
given by (1.5). With these notations, we have the following result

Theorem 2.1. — There exist 0g and hg such that for all 6 < &g and h < hg,
if (W°)jez € Vi is such that
dist(i,°,T) < 0,
where the distance is measured in the continuous H'(R;C) norm, then the
solution (1(t))jez of (2.2) satisfies
Vit >0, dist(ipy(t),I) <C(6+h)

for some constant C independent of h and 9.

Notice that the DNLS flow is not defined globally everywhere, i.e. for all
initial data in V}, and all times t. However since a solution of DNLS issued from
an initial datum close to I' remains unconditionally close to I', such solution
is automatically global.

2.2. Dirichlet cut-off. — In order to come down to a finite dimensional
system we fix a large number K > 1, substitute the sequence — K, ..., K for
the set Z in (2.2), and add Dirichlet boundary conditions ¥_x_1 = g+1 = 0.
The equation we consider is thus the (large) ordinary differential system

. 1
(2.6) e = —z(Wea t e =200 ~ [y K <LK
Vi = 0O
Note that here, we use the convention that i, = 0 for all [¢{| > K + 1, so

that the previous system is indeed a closed set of differential equations. The
corresponding discrete function space is

(2.7) Vi = {(¥))jez € Va|1; =0 for [j| > K +1},

on which we can define the Hamiltonian function and discrete L? norm H, WK =
Hplv, ;o and Np ic == Nyly,  as restrictions of the functions (2.3) to Vi i C
Vi Similarly, we define i g = ih]Vh’ - In the following, we often use the
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notation (wj)jK: _k to denote an element of Vj, g with the implicit extension
by 0 for |j| > K + 1 to define an element of (2.7). With these notations, we
have the following result:

Theorem 2.2. — There exist constants C1, Csy, 0y and €y such that for all
0 < 09 and all h and K such that h + %e‘clKh < €, if (@b?)JK:_K € Vi is
such that

diSt(Z'hJ(l/JO,F) <4,
then the solution (wj(t))jl-(sz of (2.6) satisfies

1
V>0, dist(inxy(t),T) < Co (6 +h+ ﬁe—clKh)_

Remark 2.3. — The exponentially small term in the previous estimate rep-
resents the effect of the Dirichlet cut-off. As we will see below, it directly
comes from the fact that the function n is exponentially decreasing at infinity.

2.3. Time discretization. — In this work the time discretization of (1.1)
that we consider is a splitting scheme: we construct ™ the approximation of
the solution v (t) of (1.1) at time n7 iteratively by the formula

Y= 0 0 O (Y1),

where the flow ®% is by definition the exact solution of

i¢€:_|w€|2¢€a EZ—K,...,K7

in Vj, ¢ which is given explicitly by formula ®%(¢), = exp(iT|1¢|?)1e. The
flow @7, is by definition the solution of

(2.8) i = — g (e et~ 200), L= K, K,

with the convention ¢y, = 0 for [¢| > K + 1. The implementation of this
numerical scheme requires the computation of an exponential of a tridiagonal
matrix at each step. It could also be done in discrete Fourier space in which the
operator on right-hand side is diagonal. The main advantage of this splitting
method is that it is an explicit and symplectic scheme.

Our main result is the following

Theorem 2.4. — There exist constants C1, Ca, dg and €y such that for all
6 < 09 and all h, 7 and K such that h+ h—lge*CIKh < €y and the following CFL
condition is satisfied

T

(2.9) (2M +3) 5

< 2m
3 Y
then if W?)JK:_K € Vi i 1s such that

diSt(ihVKi/JO,F) <6,
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we have

1
(2.10) Vnr <7 M dist(ip g (®00%)"°, T) < Cy (5—|—h—|—%+ﬁ6_clKh).
Remark 2.5. — In the last estimate (2.10), the term 7/h represents the error
induced by the modified energy constructed with the method of [11] (see
Section 7 below). Note that under the condition (2.9), this term is actually of
order O(h).

Remark 2.6. — An alternative time approximation of (2.6) is the modified
Crank-Nicolson scheme given by Delfour-Fortin-Payre see [7, 17] defined as
the application 9™ — ¢™*! such that

Yptt =y + %(Ah(wl + ") + %T(\wz‘“!? + TP (W ),

for { = —K,...,K. It can be shown using a fixed point argument that for 7
sufficiently small, 9" *! is well defined, and that this scheme preserves exactly
the discrete L2 norm and discrete energy (2.3). Using this property, it can eas-
ily be shown that the conclusions of Theorem 2.2 extends straightforwardly to
this specific fully discrete case. Notice that this method has the disadvantage
to be strongly implicit.

3. Numerical experiments

In this section, we would like to illustrate the results given in Theorem 2.4,
and prove that if the CFL condition (2.9) is not satisfied, the stability estimate
(2.10) is no longer true. In contrast, we show that if the CFL number is small
enough, a numerical stability can be indeed observed. On the other hand, we
show that for non symplectic integrators, even used with a very small CFL
number, numerical instabilities appear.

In a first example, we take h = 0.1875, K = 80 (so that K'h = 15), 7 = 0.2
and the initial condition (1.4). The CFL number is equal to 5.7. We consider
the integrator ®7 o ®% defined above. As mentioned in the previous section,
the flow of ®p7 can be calculated explicitely, while the computation of ® 4 -
see (2.8) - is performed using the expm MATLAB procedure.

In Figure 1, we plot the absolute value of the fully discrete numerical solu-
tion ¢ = (@7 o ®%)"(¢)%). We can observe that the shape of the soliton is
destroyed between the times ¢ = 100 and 200.

In a second example, we take the same initial data and parameters K = 80
and h = 0.1875, except that we take a much smaller 7 = 0.001 making the
CFL number equal to 0.028. However, we break artificially the symplecticity
of the integrator by replacing the exact evaluation of the exponential in the
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0 A

CFL=57 t=70 CFL=5.7 t=1.3e+02

0.5

hyp(x)l and Re y(x)
¢ o
hp(x)l and Re y(x)
o

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
X

CFL=5.7 t=1.5e+02 CFL=57 t=2e+02

x

0.5

lp(x)l and Re y(x)
¢ o
lyp(x)l and Re y(x)
o

_ . . . 1 . . .
-15 -10 -5 10 15 -15 -10 -5 10 15

X Or
(&)
X Or
(&)

FIGURE 1. Instability for 7/h? = 5.7

flow ®7, by its Taylor approximation of order 2:

2
exp(TA) ~ I+ 1A+ %AQ.

As before, we observe in Figure 2 some instability phenomenon after some
time, despite the fact that the CFL number is very small. Such an instability
is due to the non symplectic nature of the integrator, which prevents the
existence of a modified energy preserved by the numerical scheme.

Finally, we consider the same initial condition and numbers K and h, but
we take 7 = 0.02 making the CFL number be equal to 0.57 and we compute
the exponential exactly making the scheme symplectic. In Figure (3) we can
observe that the soliton is preserved for a very long time, up to ¢ = 10 which
corresponds to 2.10% iterations. This result illustrates our Theorem 2.4.

4. The continuous case

Before giving the proofs of the Theorems presented above, we recall here
the main lines of the proof of the orbital stability result in the continuous and
symmetric case obtained first by [20] (see also [13, 14, 12]). The proofs of the
discrete results will be essentially variations on the same theme. The method
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0.5 0.5

hyp(x)l and Re y(x)
¢ o
hp(x)l and Re y(x)
o

CFL =0.028 t =4.4e+02 CFL =0.028 t =5e+02

-15 -10 -5

o

5 10 15 -15 -10 -5

X O

5 10 15

x

0.5 0.5

lp(x)l and Re y(x)
¢ o
lyp(x)l and Re y(x)
o

CFL =0.028 t=5.6e+02 CFL =0.028 t =6.2e+02

_ . . . 1 . . . .
-15 -10 -5 10 15 -15 -10 -5 5 10 15

X Or
(&)
X Or

FIGURE 2. Instability of non symplectic integrators

is based on the variational characterization of the soliton 1 as the unique real
symmetric minimizer of the problem

(4.1) Noin H (¥)

where H is the Hamiltonian (1.2) and N the norm (1.3).

Remark 4.1. — By the method of Lagrange multipliers there exists A > 0
such that

—Oua) = 11° = =,
Remark 4.2. — We only consider the case where N(n) = 1 in order to avoid
the introduction of a supplementary parameter. It is clear to the reader that we

could also consider the numerical approximation of any given soliton, provided
that its L2 norm enters into all the constants appearing in the estimates below.

In the following, we set
V={yeH(RC) | y(-z)=19()}

We also define the real scalar product

(,) = Re /R o(2) D)z,
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1 1
- 05 - 05
% X
= =
Q Q
o 4
g2 0 2 0
© ©
X X
= =
= 05 = 05

CFL =057 t=1e+03 CFL =057 t=1e+04
-1 -1
215 -10 -5 0 5 10 15 215 -10 -5 0 5 10 15
X X
1 1
- 05 - 05
% X
= =
Q Q
oc o
2 0 2 o
© ©
X X
= =
= 05 = 05
CFL =057 t=1e+05 CFL =057 t=1e+06
_1 ‘ ‘ ‘ ‘ ‘ i ‘ ‘ ‘ ‘ ‘
15 -10 -5 0 5 10 15 215 -10 -5 0 5 10 15
X X

FIGURE 3. Long time stability for 7/h% = 0.57

This scalar product allows to identify H!(R;C) with the product H!(R;R) x
H(R;R) as follows: If 1) = %(q%—ip) and ¢ = %(q’ +ip') where p, q, p’ and

q' are real symmetric H'(R;R) functions, then we have

(p,9) = ;/Rq(:c)q’(:c) + p(2)p (z)dz.

The real scalar product on H'(R;C) ~ H'(R;R) x H*(R;R) is then given by
(%W - <907¢) =+ <827§07 3z¢>,
and we set

2 1
el g = (o, 0) = 2/R|8xp’2 +102q1 + |p* + |g|*d=

for ¢ = %. In the rest of this paper, we often amalgamate the two complex

and real notations.
In the following, we set

(4.2) U(R) = {p € V| dist(y,T) < R},

where T is defined in (1.5), and the distance is measured in H' norm.
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Note that the Hamiltonian function H and the norm N are smooth in
H! (using the fact that H' is an algebra). Moreover, these functions are
gauge invariant, in the sense that for all ¢ € H! and all @ € R, we have
H(e"p) = H(p) and N(e“p) = N(y). Due to this invariance, it is immediate
to realize that the whole manifold I is formed by minima of the minimization
problem (4.1). Then it is well known [20, 13, 14, 12] that these minima are
nondegenenerate in the directions transversal to the orbit I' defined in (1.5),
for symmetric functions.

More precisely, following [12], we define the following set of coordinates in
the vicinity of I': set

(4.3) W ={u €V |{u,n) = (u,in) = 0},

equipped with the H' norm induced by the space V. As in is tangent to
the curve I" and orthogonal") to 7, the previous W can be interpreted as the
space orthogonal to the plane containing the planar curve I'. Note that W
is invariant under the multiplication by complex number: for any z € C, if
u € W then zu € W.

We define the map x as follows:

(4.4) TxRxW 3 (a,ru) — x(a,ru) = (1 +r)n+u) €V,
where T = R/(27Z) is the one-dimensional torus.
The following Lemma can be found in [12, Section 5, Proposition 1]. In

our symmetric situation, we give here an independent proof that will later be
easily transfered to the situation of discrete systems:

Lemma 4.3. — There exist constants rq and R such that the application x
is smooth and bounded with bounded derivatives from T x [—rg,ro] X B(R)
to V, and such for all ¢ € U(R), there exists (a,r,u) € T x R x W such
that ¢ = x(a,r,u). Moreover, the application x~! is smooth with bounded
derivatives on U(R), and there exists a constant C' such that for all ¢ € U(R),
we have

(4.5) [u()] o < C dist(y, T).

Proof. — The first part of this lemma is clear using the explicit formula for
x. To prove the second one, let us consider the projection of ¢ onto the plane
generated by (n,in):

(W, mn + (¥, inyin = 2(Y)n
with z(¢) = (¢, n) +i(¢,in) = [¢n € C. Note that the application ¢ — 2z (1))
is smooth with bounded derivatives from V to C. Moreover, we have

dist(v,1)* > inf N( — ') > ||2(¢)* — 1.

(M Recall that here (-, -) is a real scalar product.
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Hence for R < 1/2 and for all v € U(R), we have |2(¢)| € [1/2,3/2]. This
shows that the applications

UR) 3 ¢ = a(y) = arg(z(¢)) € T
and
UR) 3 ¢ = () = |2(P)| - 1 € [-1/2,1/2]
are well defined and smooth with bounded derivatives on U(R) (as compo-
sition of smooth functions with bounded derivatives). Moreover, we have

W — z(¢)n € W: as W is invariant under the multiplication by complex num-
bers, the function

W) == e My — (1 + 7))y = e W) (Y — 2(¢)n)

is in W, smooth for ¢ € U(R), and satisfies ) = x(&(v), (), 4(v))).

To prove (4.5) let ¥* € T' be the element of I' realizing the minimum in
the right-hand side (which exists by compactness of I'). As ¢* € I" we have
u(y*) = 0. As the fonction ¢ — (1)) is uniformly Lipschitz in U (R), we have

which gives the result. O

Let us now define the function u — r(u) from W to R by the implicit
relation

N(x(a,r(u),u)) = 1.

By explicit calculation, we have

(4.6) r(u) = —-14+/1—N(u),

from which we deduce that r(u) is well defined and smooth in a neighborhood
of 0 in H*, and moreover that (Wl = O(H“H;) if u is sufficiently small.
Hence, (o, u) — x(a,7(u),u) is a local parametrization of S in a neighborhood
of I' C §, where

(4.7) S={YeV|Nw)=1}.
Now let us define the function
(4.8) H(u) = H(x(a,r(u),u)),

which is well defined on W by gauge invariance of H. Moreover, this function
is smooth in a neighborhood of 0. Then it can be shown (see [12]) that u =10
is a non degenerate minimum of H(u): we have

dH(0) =0, and YU e W, d*H(0)(U,U)=d|U|7,.



NUMERICAL SOLITONS FOR DNLS 13

Note that as H is smooth with locally bounded derivatives, the last coerciv-
ity estimate extends to a neighborhood of 0 uniformly: there exist positive
constants ¢ and p such that

(4.9) VueBlp), VU eW, CHwU,U)=c|Ul, .,

where B(p) denotes the ball of radius p in W. In other words, the function H
is strictly convex on B(p) and has a strict minimum at u = 0.

With these results at hand, let ¢» € S, and assume that dist(¢, ') is small
enough so that we can write

Y= ((1+r(w)n+u),

for some (o, u) € T x W. Then for some constant C' an sufficiently small u,
we have

dist(v,T) < ¢ = e“nll o < Cr(w) + |lull 1) < Cllull, -

Now as v = 0 is a minimum of the strictly convex function H on the ball B(p),
we can write

H() — H(n) = H(u) = H(0) > v]lull 5, > edist(y,T)?

for some constants v and ¢ > 0 depending only on p. Then a Taylor expansion
of H around u = 0 shows that

[H(u) — H(0)] < Clull?, .

for some constant C' depending on p and H but not on u € B(p). Hence using
(4.5) we obtain the existence of constants ¢, C' and Ry > 0 such that for all
1 € S such that dist(¢),T') < Ry, we have

cdist(y,T)? < [H(¢p) — H(n)| < Cdist(,T)>.

The stability result (1.6) is then an easy consequence of this relation: As-
sume that ¢y € S satifies dist(1(0),I') < § < dp where g < Ry, and let ¥(¢),
t > 0 be the solution of (1.1) starting at 1(0) = 1¢»9. Then by preservation of
the energy H and norm N, we have ¢(t) € S for all t > 0, and moreover as
long as () is such that dist(¢(¢),I') < Ry we can write
(4.10)

edist(y(1),T)* < |H((t)) — H(n)| = |H(¥(0)) — H(n)| < Cdist(:(0),I)*.

Hence if d¢ is small enough, this shows that for all ¢, dist(¢(¢),T') < Ry and
that (4.10) is in fact valid for all times ¢ > 0. This implies (1.6) in the case

N() = 1.
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5. An abstract result

In this section, we prove an abstract result for the existence and stability of
discrete solitons. We first give conditions ensuring that a discrete Hamiltonian
acting on a discrete subspace of H' possesses a minimizing soliton. We then
show how the existence of a discrete flow (almost) preserving the Hamiltonian
and the L? norm ensures the numerical orbital stability over long times. In
the next sections, we will apply this result to the three levels of discretization
described above.

5.1. Approximate problems. — We consider a set of parameter ¥ € RP
and a function € : ¥ — R™. This function will measure the “distance” between
the discrete and continuous problems.

For all € ¥, we consider a Hilbert space V,, equipped with a norm ||- Hu For

a given number R, we denote by B,(R) the ball of radius R in V,,. Moreover,
for a given k£ > 0 a function F': V), — C of class C*, and a given Yy € Vy, we
set foralln=0,...,k

. d"F(y,) (U, ..., U"
[P, = sup IO O
B AV 72 R 7

and we set

F = sup sup ||[d"F(v,)] .
1 e, () nzO,...,kwMeBM(R)H ull,

Moreover, we say that F'is gauge invariant if it satisfies, for all a € T and all
Y € Vi, F(e®,) = F(1p,). Similarly, we say that G : V,, x Vy, — Cis gauge
invariant if for all ¢, and ¢, in V,,, and all « € T, we have G(e"*p,, e *,) =
G(us Yu)-
We assume that the family (V,),ex satisfies the following assumptions:
(i) For all u € X, there exist a linear embedding i, : V, — H! and a
projection m, : H L V,, that are gauge invariant in the sense that
for all « € T and ¥, € V, eiaiuwu = iueiadJu and for all v € V,
emﬂ,ﬂp = ﬂuemw. Morever, we assume that i, and 7, are real in the
sense that i,1, =i M@ and m = WM@, and that they satisfy the relation
Ty Oy = id|vu- Finally, we assume that there exists a constant Ry > 1
such that for all 4 € ¥, and ¢, € B, (Ro),

2 . 2 . 2
leull, = lineull g | < e@llipsull -
(ii) For all i € ¥, there exists a gauge invariant real scalar product (-, -),

such that setting N, (v) = (¥u, ¥u)u, we have N, (1) < ||¢“”i and

HN © i# - N“HCQ(B#(RO)) < E(M)'
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(iii) For all u € ¥, there exists a gauge invariant function H,, : V,, — R which
is a modified Hamiltonian in the sense that

HH © i,u - H””CQ(B#(RO)) < E('u)'

(iv) If n is the continuous soliton (1.4) defined in the previous section, we
have for all 4 €

(5.1) tumun — 77HH1 < €e(p).

Note that using (i), there exist constants ¢, C' and €y such that for ¢, € V,
and p € ¥ such that e(pu) < eg, we have

(5.2) CHZ'MZ)MHH1 < W’u”u < C||iu¢u||H1 .

In the rest of this Section, we will assume that the hypothesis (i)—(iv) are
satisfied.

5.2. Local coordinate system. — We will assume here that all the yp € &
considered satisfy the relation e(u) < eg for some constant €y to be precised
along the text. In echo to (4.7) we define for all p € ¥

Sy =t € Vi [ Nu(p) = 13,
and the tangent space to m,n (compare (4.3)):

W, ={uu € Vi | (up, 1) = (up, imum), = 0},

Note that 7,W, is not included in W.
By a slight abuse of notation, we will write w, € B,(7y) the ball of radius
v in W, (instead of B, (y) N W,) for v > 0. We also set for R > 0 (compare

(4.2))

(5.3) {thy € Viu| disty (s, m ') <7},
where dist,, denotes the distance measured in the norm || - Hu and where
m = U {e"mm}.
acR

We then define the discrete application x, (see (4.4)):
T xR x W, 2 (a, 7,u,) = Xpula,ryu,) = (1 +7)mum +u,) € Vi,

Lemma 5.1. — There exist constants €g, 1o, C and R such that for all p €
Y with €(n) < €q, the application X, is smooth and bounded with uniformly
bounded derivatives (with respect to p) from T x [—rg, o] X B, (R) to V, and
such for all v, € U,(R), there exists (a,r,uu) € T x R x W such that ¢, =
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Xu(a,r,u,). Moreover, the application lel 18 smooth with uniformly bounded
derivatives on U, (R), and for all ¢, € U,(R), we have

(5-4) ()l o < C disty (Y, mL).

Proof. — The proof is exactly the same as the one of Lemma 4.3 by replacing
(-,-) by (-, )u, N by N, and n by m,n. The fact that the constants are
uniform in p is a consequence of the direct construction made in the proof of
this Lemma and of the hypothesis (i)-(iv). Note that we use the fact that

(5.5) [Nu(mun) = 1] < Ce(p),

for some constant C' independent on p, which is a consequence of (ii) and
(5.1), provided e(u) < € is small enough to ensure that H7T,m|]u < Ry (which
is possible upon using (5.1) and (5.2)). O

Note that using the gauge invariance of i,, we have for all (o, 7,u,) €
TxRxW,

i,uXu(ay 7", u#) - X(av T: iu“’#) = eia(l + T)(i/ﬂr#n - 77)

and hence for all u, € W, and r € R,

(5.6) X (o mun) — x(o,ryigup)ll gy < (1 [r])e(p).
Following the formalism of the previous section, we define for all 4 € ¥ the
function w, — 7,(u,) on W, by the implicit relation

Nu(Xu(aaru(uu)au#)) =1,
so that (a,u,) is a local coordinate system close to a rescaling of m,I". Using
the definition of N, and x,, we immediately obtain that
N,

(un)
ru(uy) = =1+ 1 —
e N,u(ﬂfm)
With this explicit expression, and using again (ii) and (5.6) there exist con-
stants pg, C' and €y such that for all y € ¥ with e(p) < €o, r, is C*(Bu(po)),
and

(5.7) < Ce(p),

I =70 bl o, oy

where the function r is defined in (4.6). Now defining (compare (4.8))
Hpu(uy) := Hy(xpla, ru(ug), wp)),

the previous relations, together with (iii) and (5.6) imply that if pg is suffi-

ciently small, #,, is well defined on B, (po), and moreover

(5'8) H/H ° Z-/L - /H“||C2(Bu(po)) < CE(/‘)'

for some constant C' independent of p, and for all u € ¥ such that e(u) < €.
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5.3. Existence of a discrete soliton. — In the previous section, we have
shown that the continuous function H can be approximated by a function
H,, on balls of fixed radius pg in V;. This is the key argument to prove the
following result:

Theorem 5.2. — Under the previous hypothesis, there exists eg such that for
all € ¥ with e(p) < €o, there exists a discrete soliton 1, € V), that realizes
the minimum of H, under the constraint N, (1,) = 1, and such that

(5.9) 70 = munlly,, < €(n).

Moreover, there exist constants C, dy and ~y such that for all p € X with
e(p) < €0, and all § < dy,

(5.10) dist (i1, T)? < C(1Hu(Wu) — Hu(n)| + e(p) +6),
for all 4, such that dist(i 1, T') < o and |N,(¢¥,) — 1] < 6.

Proof. — Let us take ¢y and pg as in the previous section. Recall that as 7 is
a minimizer of the continuous Hamiltonian H, and by definition of H, we have
dH(0) = 0. Using (5.8), we deduce that for all u € 3 such that e(u) < €,

(5.11) [dH,.(0)]],, < Cep)-

Moreover, for all U € W, and u, € B,(po), we have using again (5.8)
. N 2
|*H,, (w,) (U, U) = P H (i) (iU, i,U)| < C€(M>HUHH~

Using (4.9) and (5.2), this shows that #, is uniformly strictly convex in
B(po), i.e. satisfies

2
Yu, € Bu(po), YU €W, d*H,(u,)(U,U) > colUll,,

with a constant ¢g independent on p such that e(u) < €g small enough.

As H,, is strictly convex on the closed ball B,,(po), H, reaches its minimum
on By, (po) at some point u’ € By(po) (see for instance [6]). We want to prove
that the minimum is reached in the interior of the ball. So assume on the
contrary that uj, is such that ||u;:||u = po, then we have

Hy(uy,) = Hu(0) = dH,(0) - w, + h(uy,)

with h(u},) > collu (see (5.11)) we

get

* 2 * *

4112, Hence, as [d#,(0) - uj| < Ce(u)u]
Hyu(u) — Huu(0) > copy — Ce(p)po-

This shows that for ¢ sufficienly small, H,,(u},) > H,,(0) which is a contradic-

tion. Hence the v}, is in the open ball B,(pg) and thus

o
dH,,(uf) = 0.
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Moreover, as H,, is uniformly convex on the ball B, (pg), we have
Jul, < CldH, () = A, 0], < Celp).

for some constant C' independent on y. Then setting

(5.12) N = Xp(0, 7 (w)s uy) = (1 + 7 (uy))mun + g,

we verify using (5.7) and (5.12) that we have ||m,n — nuH# < Ce(p) for some

constant C' independent on pu.
It remains to prove (5.10). Let ¢, € V,, and o € T, we have

2utn — €mﬁ||H1 < ltptn — 6miw;ﬂl||H1 + [lipmun — 77||H1
< Cllgu - SWTFMHM + Ce(p),

where we used (5.2). Hence we have for all 1,

(5.13) dist (i, I') < Cdisty (1, 7u1) + Ce(p)
for some constant independent of y. Similarly we prove that
(5.14) dist, (v, m,I') < Cdist(i 9, T') + Ce(p),

for some constant C' independent on p. Now let ¢, be a function such that
dist(iyu,I)) < v, with vy small enough. Assume first that N,(v,) = 1.
Using (5.14), v, belongs to a set U, () with a constant v depending on g
and €p. If these parameters are sufficiently small, we can define an element wu,,
of B,,(po) and « € T such that ¢, = x,. (o, 7u(uy), uy) (vecall that Ny(1p,) = 1)
with wu,, satisfying (5.4). Hence we have

| Hy () — Hu(np)| = [H(uy) — H(“Z”?

where uj, is the minimizer of H, associated with the discrete soliton 7,. This
implies that there exists a constant C independent of p such that

)
lup — UMHM < ClHu(Yu) — Hyu(n)l-

Then using that ||qu||# < Ce(u), that ||uu||# = dist, (Y, m.I') + O(e(p)), and
the inequalities (5.13) and (5.14) we obtain (5.10) in the case N,(v,) = 1.
Now if N, (¢,) # 1 but |[N(¢,) — 1| < 6 with ¢ sufficiently small, there exists
a point v, such that HU“”M < ¢ and N(¢, —v,) = 1. We can then apply the
previous estimate to 1, —v,, and we use the uniform bounds on the derivative

H,, to conclude. The approximation 1, ~ v, gives rise to the terms C' in
(5.10). O
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5.4. Discrete orbital stability. — In the previous paragraph, we have
shown that the conditions (i)—(iv) are sufficient to ensure the existence of a
modified soliton for the modified energy H,,, and that this soliton is sufficiently
close to the exact soliton 7 to allow the control of the distance between I' and
1, via the distance between the Hamiltonian of H,,(¢,,) and H(n,), see (5.10).
As a consequence we obtain the following stability result

Theorem 5.3. — Assume that the hypothesis (1)—(iv) are satisfied, and as-
sume moreover that for all Ry and all p € ¥ there exist B(p) > 0 and an
application ®,, : B,(Ro) — V,, such that

un € Blt(RO)a Nu(‘I’u(T/Ju)) - Nu(wu)

and

(5.15) Vipu € BH(R0)> ’Hu(q)u(¢u)) - Hu(¢u)| < 5(#)-

Then there exist 6g > 0 and a constant C such that for all positive § < &y and
all p € ¥ such that e(n) < €9 and 1/12 satisfying dist(iuwg,l“) < § then the
sequence (Yy;)n>0 defined by
Vn >0, ¢Z+1 = ®,(¢y)
satisfies
Vn >0, dist(iyyy,,[) < OO0+ e(p))

as long as nf(p) < e(u) +46.

Proof. — Using the hypothesis on 1/12 and (5.2), there exists Ry depending
only on dp such that 1/12 € B,(Ry/2) uniformly in p and there exists 7 € T’

such that ||, — 7| ;1 < 0. Thus using the gauge invariance of H, we have
]H(iuwg) — H(n)| < Co. Then with hypothesis (iii) and (5.9), we get

[ Hyu () = Hu(n)] < C(8 + e().
On the other hand, using (5.15), we have for all n > 0

n—1

|Hu(¢ﬁ) - Hu(ﬁu)| < |Hu(¢2) - Hu(nu)‘ + Z |Hu(wﬁ+1) - Hu(ﬂj,}m
k=0

< C+e(p) +np(p) < (C+1)(0+€(p)
as long as nfB(u) < e(p) + 6 and HT%HM < Ry. Using the fact that N, (¢};) =
N“(wg) =14 O(9) and (5.10), we get
(5.16) dist (i), T) < C(6 + €(p))
as long as prHu < Ry and for some constant C' independent of y and n.
Then by a bootstrap argument, there exists dy and eg sufficiently small such
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that, for 0 < § < dp and 0 < € < €, (5.16) ensures that this is the case for
nB(o) < e(u)+ 0. This proves the result. O

6. Applications

We now prove the three Theorems presented in Section 2. We only need to
verify the hypothesis (i)-(iv) and to precise the constants e(u) and S(u).

6.1. Discrete Schrodinger equation. — Consider the DNLS equation
(2.2) for a given positive number A > 0. In the previous formalism, we set
¥ = {h € R*}, and the natural modified Hamiltonian and L? norm are given
by (2.3). We also define the real scalar product

W, oo = R(0Dw75).
JEZL
For all u € ¥, the embedding i, is defined by (2.5), and the projection 7, by
the application
VjEeL, (mp);=1(jh),
for some 1) € H!. Defining the semi norm

2 i+ — ¥l
LTS pLetiee
JEZ
on Vp, we have by explicit calculation that

(6.1) Y1, = lind

where |¢],, denotes the semi norm in H 1. This fact allows to prove (i) and
(i) with the function € : ¥ — R defined by €(h) = h. This has already been
proved in [2, Lemma 4.2]. Similarly, (iii) has been proved in [2, Proposition
4.1] with e(h) = h.

Finally, by classical arguments on finite elements approximation, there ex-
ists an universal constant C such that for any function ¢ € H?

(6.2) 70t = ¥l o < ChlIY]| s -

This proves (iv) upon using (5.2).

Let us define @ (¢) the flow associated with the Hamiltonian Hj. Using
standard estimates, one shows that it is well defined for sufficiently small ¢,
say 0 <t < tg, uniformly in h. Theorem 2.1 is then a consequence of Theorem
5.3 with 8(h) = 0 and ®, = ®! with ¢t € (0,%9). Remark that, in particular,
since <I>Zt = (<I>Z)" remains localized around the curve I' of solitons for all n
and for all ¢ € (0,¢), the flow ®! (¢) is defined globally.
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6.2. Dirichlet cut-off. — Recall that in comparison with the previous case,
the space Vj, i defined in (2.7) is a finite dimensional space included in Vj,.
We have seen that the modified energy and norm Hj  and Nj, g, and the
embedding i are defined by restriction to Vj, k. To define the projection
Th K, We set

Y(h) it |7 < K

(T (¥)); = { o
0 it || > K.

With these definitions, it is clear that the hypothesis (i)-(iii) are satisfied with
Y = {(h,K) € RT, xN} and with a priori e(u) = h for u = (h, K). However,
the estimate (5.1) is no longer true with the space cut-off without changing
the definition of €(u).

To have an estimate of ||i, g 74 kn—")|| ,,,, we only need to estimate |7, gn—

HU
m1||, which is equal to
2 [n(sh)[? :
|7, xn — Tl = 2h Z T T h Z In(in)?
i[> K l31>K

By definition of 7, there exist constants C; and v such that for all z € R,
In(z)] < Cre*I#l. Substituting this estimate in the previous one, we get

2 2 e 2ih —2ujh
I7wncn —mamll, < 2CTh Y 2 +h Y e
li1>K 51> K
4C% +2 o
< —phd e
n>K

< % exp(—vKh)

for some constant v, and provided h < hg sufficiently small.
This shows that (iv) is valid with the function

(6.3) e(p) =h+ %exp(—yKh), p=(h,K)eXx

With these notations, Theorem 2.2 is a consequence of Theorem 5.3 with

B(u) = 0.

6.3. Time splitting method. — Let us now consider the case where (2.6)
is discretized in time by a splitting method of the form ®7 o ®% as described
in Section 2. The space discretization being the same as in the previous Sec-
tions, the hypothesis (i)-(iii) will be automatically fulfilled with the function
€ defined in (6.3). In particular, we can check directly that the norm N}, g is
preserved by splitting schemes. However, splitting methods do not preserve
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the energy Hj g for given h and K: more precisely, taking H,, = Hj g in
(5.15) only yields an error of order S(u) = hr.
In this section, we set

Y i={(h,K,7) e Rt x Nx Rt}

For u = (h,K,T) € X, we set VH = Vh,Ky iu = ih,K = 1y, and Ty = Th K-
In the next section we will prove

Theorem 6.1. — Let Ry > 0 and M € N be fixed. There exist 79 and hg
such that for all p = (h, K,7) € ¥ satisfying 7 < 19, h < hg and

T 27
6.4 2M 4+ 3)— < —.
(6.4) (M +3)25 < =
then there exist a constant C, depending only on Rg and M, and a smooth
gauge invariant polynomial function H, = Hy, i . defined on V), such that

<0<

(6.5) 1y = H ol o, (o)) < €

and

(6.6) [[@F 0 ®4(v) — 2, ()], < oMY for all o € V,, with I, < Ro.

With this result, the final statement of Theorem 2.4 is a consequence of
Theorem 5.3 applied with

e(u) =h+ % exp(—vKh) + T
h h

and B(p) = 7M*1. The proof of Theorem 6.1 occupies the rest of this paper,

and is a variant of the theory developed in [3, 11]. Here we summarize it

and repeat the proofs with some details in order to have a quite self contained

presentation.

7. Construction of the modified energy

7.1. Formal part.— We start by recalling the algorithm of construction of
the modified energy H,, introduced in the previous section. As a variant of the
theory developed in [11], we work here at the level of the vector fields instead
of Hamiltonian functions. Recall that at the continuous level, we identified
the space H'(R;C) ~ H!(R;R)? through the identification 1) = %(q + ip).
This identification obviously transfers to the space V' of symmetric functions,
and to the discretized space Vj, i via the identification

1
(7.1) U= sl i), =Ko K
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Hence we can endow V), g with the Hamiltonian structure induced by the
symplectic form Z]K:_ xdpj A dg;. In the following we make the constant
identification between 1) = (wj)]Ksz and (q,p) = (qj,pj)]Ksz given by (7.1).
For a given real functional H(y) = H(q,p), we associate the Hamiltonian
vector fied X by

OH OH K
7.2 Xu(q,p) = < D), =5 q,p>
(72) @0 = (g, @r 5, @n)
Note that this formula makes sense, because all the Hamiltonian functions
H (%)) that we consider are real valued.
In this setting, A and P denote the vector fields associated respectively to
the real Hamiltonian functions
K
_ e — the—1]? __h 4
Ha()=h Y, ——5—— and Hp()=-3 > |l
(=—K
which can obviously be expressed in terms of (g;,p;). Note that A and P

depend on A, but we omit this dependence in the notation. We look for a
formal vector field, namely a formal power series

(7.3) Z(e) =Y Zi",
n>0

where each Z,, is a Hamiltonian vector field on V}, g, such that

(7.4) Vel <7, ®hodl =L, Agi=7A.

€)’

Here <I>§( denotes the Hamiltonian flow on V}, i associated with the vector field
X at time t.
Notice that, in particular, at order zero (7.4) implies

(75) Zo = Ao =TA.

Ideally, the approximate Hamiltonian we are looking for would be Hy, i, :=
1H 7(7) (see (7.19)) but the formal series defining Z is not convergent and we
will have to truncate the sum in (7.3).

It is well known that it is convenient to look at the equality (7.4) in a dual way,
namely to ask that the following equality is fulfilled for any smooth function
w Vh7 K — C:

(7.6) w(®5 0 ®h,) = w(@l,) .
The key ingredient of the construction is given by the formal formula

(7.7) Vi, eFxw =wo dY |
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where Ly is the Lie operator associated with X. In our Hamiltonian case if
X = (Xg,Xlg)]Ksz is a vector field (according to the decomposition (7.2)),
we have in real coordinated (g;, p;),

K

S Ow  Ow
Lyw = xi 20 xi 9%
j:ZK Pop; 10

and the exponential is defined in a formal way by
1
&‘LX P _ k‘ k}
e Xw = Z e Lyw .
k>0
In this formalism (7.6) reads
elaoeflry = elzew.

Deriving with respect to £ one gets (by working on the power series)

(78) (ZLAO €ELPLPU) = eLZ(E) LQ(E)U),
where
1 .
(7.9) Qle) =) CEm ady ) Z'(e) with adg X :=[Z,X],
k>0
where [-,-] denote the Lie bracket of two vector fields. Finally (7.8) leads

to the equation Q(¢) = P from which we are going to construct Z(e). The
construction goes as follows: first one remarks that the r.h.s. of (7.9) has
the formal aspect of an operator applied to Z’(¢), so the idea is first of all
to invert such an operator. We remark that the power series defining the
wanted operator is >~ 2%/(k + 1)! = (e* — 1)/, so that one would expect

its inverse to be x/(e® — 1) = 3", <, 2" (By/k!), where By are the so called
Bernoulli numbers and the power series is convergent provided |z| < 27. So
one is tempted to rewrite Q(¢) = P in the form

(7.10) Viel<r, Z'(e) =

Plugging an Ansatz expansion Z(g) = >~ e'Z, into this equation, we get,
for n > 0, the recursive equations

(7.11)
B
(n+1)Zp i1 = ]TfA,(j), with A= S adg, ---adg, P.
k>0 O+l =n
Remark 7.1. — The analysis made to obtain this recursive equation is for-

mal. To obtain our main result, we will verify that some of the series we
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manipulate are in fact convergent series, while the others will be truncated in
order to get meaningfull expressions.

Remark 7.2. — Assume that P is a polynomial of degree ¢ (in our case
ro = 3), and that Z, is a collection of vector fields satisfying the previous
relation, then for all n, Z,, is a polynomial of degree (n — 1)(rg — 1) + 9.

Remark 7.3. — If the vector fields P and A are Hamiltonian then the same
is true for the vector fields Z,. This is an immediate consequence of the
fact that all the construction involves only Lie Brackets, which are operations
preserving the Hamiltonian nature of the vector fields.

7.2. Analytic estimates. — We first introduce a suitable norm for mea-
suring the size of the polynomials. In echo with the notations of the previous
sections, we consider in the following a fixed p = (h, K,7) € X. Recall that
the space V), = Vj, g does not depend on 7, as well as the norm || - Hu If

X is a vector field on V), which is a homogeneous polynomial of degree s
we can associate to it a symmetric multilinear form X (¢1,...,1s,) such that

X)) = X(4,...,9). We put

IXI], o= s [ X(r, )],
Jasell =1

i=1,...,51
We then extend this norm to general polynomial vector field X by defining its
norm as the sum of the norms of the homogeneous components.

Definition 7.4. — We denote by Ps the space of the polynomials of degree
less than s, which furthermore have a finite norm || - Hu

Remark 7.5. — With this definition, we note that the norm ”PHu is uni-
formly bounded with respect to p.

Lemma 7.6. — Let sy > 1 and s > 1, and let X € P, andY € P,,. Then
[X,Y] € Ps,4s,-1, and

<
(7.12) X, Y1l < (s + s2)IX I, IV
Proof. — We give the proof in the case of homogeneous polynomials, the

general case immediately follows. Denote again by X and Y the symmetric
multilinear forms associated to X and Y, then one has

[X,Y](1) = s1 X (Y (1), 9000, ¥0) = 2Y (X (), 0., 0),

from which the result immediately follows. O
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Lemma 7.7. — For h < <=, the operator Ay = —1A}, satisfies

f}
(7.13) 4ol < 375
Proof. — Let us first note that if (u]) _g is in V,, we have
’UJ+1 2 - = 2
(7.14) |lull} = 2h S ) Z il < (D (kY ).
j=—K j=—K
Note that Ag = —7A,, is homogeneous of degree one. Moreover, we can write
e e B A
(Ag) = B2 B ),

where ay = (¢p11 — 1¢)/h. Using the discrete Sobolev inequality (7.14) and
the Minkowski inequality, we get that

K
/
], <2/ Gy + 7 (n P A"

We conclude by remarking that

K , 1 )
(h > lail?) < 5002
j=—K

We deduce that

|Ao¥l,, < V8420 4]

which shows the result. O

Remark 7.8. — Lemmas 7.6 and 7.7 can be rephrased in a form suitable for
the following by saying that, for X € Pg, one has that the operator

adX : PSl — Ps+3171

is bounded and its norm (induced by the norm || - ||“ and for fixed s and s1)
fulfills
(7.15) lad X | < (s +s)lIX]],

In particular, using the previous result we have for a given s; > 2

(7.16) ada, 1 Ps; = Ps; and  [lada,l, < 3(s1+ 1)%

Proposition 7.9. — Let M be an integer satisfying
27

T
7.17 2M +3)— < —
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Then, for alln < M, Z, is well defined and Z,, € Py, with r, = 2n+ 1, and
the norm of Z, is uniformly bounded with respect to .

Proof. — We prove the proposition by induction. We set Zy = Ap. Assume
that Zy € Py, for £ < n < M — 1 are constructed. Let us prove that (7.11)
defines a term Z,11 € Pp,.,. Rewrite (7.11) by incorporating the terms
containing Zy = Ap and by substituting the estimate of the single terms to
the ad terms. The advantage of doing that is that the product of the estimates
is commutative, while the multiplication of the ad operators is not. We get
first

k
(n) k—i k!
145 ||Ms§;||adAo||u G 2 ladz 0, ladz, 0,17,

€1+...+Zi:n

£;>1
< Enllad kaigggﬁiggf > @)™ Zel, N2l 1P
e Aol (=)l Myl e, T,
=1 €1+...+€i:n

£;>1

where we used that, if # > n and ¢; > 0 then ¢; + ... + ¢; > n and the fact
that, since by hypothesis the involved polynomials have degrees smaller then
rar, one has || ady, Hu < 2rp || Ze|| p for £ < n.

Remarking that the result of the above sum with respect to ¢1,--- ,¢; does
not depend on k, using (7.16) with s; = rjs, and noticing that HPH“ is uni-

formly bounded with respect to u, we get

1 Bi ~= [(TMT ki k!
y%mp<|2(2> = Cr
= n+1 = KL=\ n (k —a)la!

Cn+1 Z da? T ’
=0

k>0 b= T
I3

for some constant C),, independent of p. This shows that the series defin-
ing Z,41 is convergent, that Z,,1 € P, and that ”Z"HHM is finite and

uniformly bounded with respect to p. O

7.3. Proof of Theorem 6.1. — First remark that in our case all the vector
fields are Hamiltonian. Explicitely, by Poincaré Lemma, the Hamiltonian
function of a Hamiltonian vector field X is given by

1
(7.18) Hx (v) ::/0 sw(X (s),)ds ,

where w is the symplectic form. In particular, this formula shows that the
Hamiltonian function of a smooth polynomial vector field is also a smooth
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polynomial function. For ¢ < 7, let us define
M .
ZM)(g) = ZsJZj .
=0
By construction ZM)(g) satisfies (7.10) up to order e included from which

we deduce that it satisfies (7.4) up to order e (see [11] Theorem 4.2 for
details). Therefore defining for u = (h, K, 1),

M
1 i
(7.19) H, = ;HZ<M>(T) = § T 'Hy, |
=0

estimate (6.6) holds true with a constant independent of p.

It remains to compare the two Hamiltonians H,, = Hj, i r and Hj i in the
C? norm on the ball centered at the origin and of arbitrary radius Ry in Vi
Let us define

1
H{Y = —(Hz, + THz,)

and recall that Zy = Ag = T7A, and that by construction

k

B

(7.20) Z1 =Y j% ad P .
£>0

Now we have

M
HY —H, =Y r7Hy,.
j=2

But using (7.18) and the fact that Z; is of degree r;, we get for all ¢ € B,,(Ry),

M
i ri41
(7.21) [HD () = Hu) < > 777l By < O
j=2

for some constant C' independent of h, K and 7 < 7y sufficiently small. To
estimate H,Sl) — Hj, i, we notice using (7.20),

k
(7.22) Xy = Xny o =% —P=r1 > i) ad¥, | ada, P
k>0
But in view of (6.4), 2—5 < m, and thus the operator [Zkzo %adio is

bounded on Ps, uniformly with respect to p. Therefore for ¢ € B,(Ryp), we
have

|H{D () — Hp ()| < C|Haa,y, p(¥)].
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for some constant C' independent on p = (h, K, 7). Now we calculate explicitly
that the Hamiltonian associated with ad 4, P is given by

. K
Haa,, p(¥) =;% N @err + Gt — 200)[bel*e — (esr + o1 — 200) [P
-K

K

> S((Werr + em1 — 200) [ *e).-
—K

T

H2
But we have
K

D (o1 + o1 — 200 by

=

—K
K
= > (o1 — o) |voel* e — (e — 1) [tbel* e

=K

K k-1 -
Z (o1 — Ol e — Y (Wer1 — Yoo e
=— (=—K-1

K-
Z (o1 — Vo) (0?0 = e [*Peir) = Vrlx POx + O-r|v-k [k

using the boundary conditions ¥xy1 = ¥_g_1 = 0. Taking the imaginary
part, we obtain

K-
Haa,, p( 12 Z (o1 — ) (e e — o1 [*Pes1)).

But we have

|S((Yes1 — Po) (el e — [tber1 Pesn))| < Blbers — el (el + [pesa ).
Then we use that )
[Whe1 — o) < plill,

to obtain i .
Haasy P(O)] < 220101,

and therefore for ¢ € B,,(Ry),

(7.23) |HD () — Hy i ()] < Ci .
Combining (7.21) and (7.23) we get, for all ¢ € B,(Ry),
(7.24) \H, () — Hy i ()] < C- .

1
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Furthermore, since both functionals are analytic in ¢ and the above estimate
is uniform in ¢ € B,(Rp), we have similar estimates for the first and the

second derivative of ¢ — H,,(¢) — Hp i (V). O
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