Skip to main content
Log in

Spectral convergence for orthogonal polynomials on triangles

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the behavior of orthogonal polynomials on triangles and their coefficients in the context of spectral approximations of partial differential equations. In these spectral approximations one studies series expansions \(u=\sum _{k=0}^{\infty } \hat{u}_k \phi _k\) where the \(\phi _k\) are orthogonal polynomials. Our results show that for any function \(u\in C^{\infty }\) the series expansion converges faster than with polynomial order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braess, D., Schwab, C.: Approximation on simplices with respect to weighted Sobolev norms in. J. Approx. Theory 103(2), 329–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  3. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  5. Haagerup, U., Schlichtkrull, H.: Inequalities for Jacobi Polynomials, arXiv:1201.0495v1[math.RT] (2012)

  6. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Karniadakis, G.E., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  8. Koornwinder, T.: Two-Variable Analogues of the Classical Orthogonal Polynomials. In: Theory and Applications of Special Functions. Academic Press, San Diego (1975)

  9. Ma, H.: Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 35, 869–892 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, H.: Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 35, 893–908 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maday, Y., Ould kaber, S.M., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30, 321–342 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meister, A., Ortleb, S.: Sonar, Th: Application of spectral filtering to discontinuous Galerkin methods on triangulations. Num. Meth. PDE 28, 1840–1868 (2012)

    Google Scholar 

  13. Ortleb, S.: Ein diskontinuierliches Galerkin-Verfahren hoher Ordnung auf Dreiecksgittern mit modaler Filterung zur Lösung hyperbolischer Erhaltungsgleichungen, PhD thesis, Kassel University Press GmbH, Kassel (2012)

  14. Schwab, Ch.: \(p\) and \(hp\)- Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (1998)

  15. Suetin, P.: Orthogonal Polynomials in Two Variables. Gordon and Breach Science Publishers, Amsterdam (1999)

    MATH  Google Scholar 

  16. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees whose critical remarks helped to bring the paper into a better shape. The work reported on in this paper was made possible by the DFG via the project SO 363/11-1. The second author would like to express his gratitude to the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Öffner.

Appendix

Appendix

First of all we repeat some of the properties of the Jacobi polynomials which we need in this paper. For further properties see also [16]. The Jacobi polynomials \(P_n^{\alpha ,\beta }(x)\) satisfy following properties:

  • \(P_n^{\alpha ,\beta }(x)\) are orthogonal on \([-1,1]\) with respect to the weight function \(w(x)=(1-x)^\alpha (1+x)^\beta , \alpha >-1\) and \(\beta >-1\). It holds

    $$\begin{aligned} \int \limits _{-1}^1w(x)P_n^{\alpha ,\beta }(x)P_k^{\alpha ,\beta }(x)dx=\frac{\delta _{n,k}2^{\alpha +\beta +1}}{2n+\alpha +\beta +1}\frac{\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{n!\Gamma (n+\alpha +\beta +1)}. \end{aligned}$$
  • \(P_n^{\alpha ,\beta }(1)=\small \left(\begin{array}{c}{n+\alpha }\\ {n}\end{array}\right)\)

  • \(P_n^{\alpha ,\beta }(x)=(-1)^n P_n^{\beta ,\alpha }(-x)\)

  • If \(q=\max \{\alpha ,\beta \}\ge -\frac{1}{2}\), then \(\max \nolimits _{-1\le x\le 1}|P_n^{\alpha ,\beta }(x)|=\small \left(\begin{array}{c}{n+q}\\ {n}\end{array}\right)\) holds.

Now we prove the estimates of the orthogonal polynomials which are stated in Sect. 2.

Proof

(of Lemma 2.2)

With the inner product

$$\begin{aligned} (A_{m,l},A_{m,l})= \frac{1}{(2l+\gamma -\alpha )(2(m+l)+\gamma )} \frac{(l+1)_p}{(l+\beta )_p} \frac{(m+a_l)(m)_{\alpha }}{m(m+a_l)_\alpha } \end{aligned}$$

it follows

$$\begin{aligned} \frac{1}{||A_{m,l}||_{L^2(\mathbb{T },h)}}&= \sqrt{\frac{(2l+\gamma -\alpha )(2(m+l)+\gamma )}{1}\frac{m}{(m+a_l)}\frac{(l+\beta )_{p}(m+a_l)_\alpha }{(l+1)_{p}(m)_{\alpha }}}\\&\le \sqrt{\frac{(2m+2l+\gamma )(2m+2l+\gamma )(l+\beta )_p m (m+a_l)_\alpha }{(l+1)_p(m+a_l)(m)_\alpha }}\\&= (2m+2l+\gamma ) \kappa _{l,m}\\&\le 2(m+l+\gamma ) \kappa _{l,m}. \end{aligned}$$

\(\square \)

In the proof of Lemma 2.3 we prove only estimate (4) and equation (8). The inequality (5) follows directly from the fact that Jacobi polynomials take their maximum at the boundary. The proof of (6) and (7) is a combination of the approach taken in in (4) and (5).

Proof

(of Lemma 2.3)

In the proof we use the estimate

$$\begin{aligned} |(1-x^2)^{\frac{1}{4}}g_n^{\alpha ,\beta }(x)| \le \frac{C}{(2n+\alpha +\beta +1)^{\frac{1}{4}}} \quad \forall x \in [-1,1], \end{aligned}$$
(24)

with \(\alpha , \beta \ge 0, n\in \mathbb{N }_0, g_n^{\alpha ,\beta }(x)\) defined by

$$\begin{aligned} g_n^{\alpha ,\beta }(x)=\left(\frac{\Gamma (n+1)\Gamma (n+\alpha +\beta +1)}{\Gamma (n+\alpha +1)\Gamma (n+\beta +1)} \right)^{\frac{1}{2}} \left(\frac{1-x}{2} \right)^{\frac{\alpha }{2}}\left(\frac{1+x}{2} \right)^{\frac{\beta }{2}}P_n^{\alpha ,\beta }(x) \end{aligned}$$

and \(C\) is a positive constant less than 12, see [5, p.1]. With this inequality and the relation

$$\begin{aligned} \frac{\Gamma (m+\alpha )}{\Gamma (m)}=(m)_{\alpha } \end{aligned}$$

we estimate the factors of the APK polynomials in \({\stackrel{\circ }{\mathbb{T }}}\). We have

$$\begin{aligned}&|P_m^{\alpha -1,a_l}(1-2x)| \le \frac{C}{(2m+a_l+\alpha )^{\frac{1}{4}}(1-(1-2x))^{\frac{1}{4}}(1+(1-2x))^{\frac{1}{4}} }\\&\quad \times \frac{2^{\frac{\alpha -1+a_l}{2}}}{(1-(1-2x))^{\frac{\alpha -1}{2}}(1+(1-2x))^{\frac{a_l}{2}}} \left( \frac{\Gamma (m+\alpha )\Gamma (m+a_l+1)}{\Gamma (m+1)\Gamma (m+\alpha +a_l)} \right)^\frac{1}{2}\\{}&=\frac{C \cdot 2^{\frac{\alpha -1+a_l}{2}}}{(2(m+l)+\gamma )^{\frac{1}{4}}(2x)^{\frac{1}{4}+\frac{\alpha -1}{2}}(2(1-x))^{\frac{1}{4}+\frac{a_l}{2}}} \left( \frac{(m)_\alpha (m+a_l)}{(m+a_l)_\alpha m} \right)^{\frac{1}{2}}\\&=\frac{C}{(2(m+l)+\gamma )^{\frac{1}{4}}(x)^{\frac{1}{4}+\frac{\alpha -1}{2}}((1-x))^{\frac{1}{4}+\frac{a_l}{2}}\sqrt{2}}\left( \frac{(m)_\alpha (m+a_l)}{(m+a_l)_\alpha m} \right)^{\frac{1}{2}} \end{aligned}$$

and

$$\begin{aligned}&\left|P_l^{p,\beta -1}\left(\frac{2y}{1-x}-1\right)(1-x)^l\right|\\&\quad \le \frac{C(1-x)^l}{\left[(2l+p+\beta ) \left(1-\frac{2y}{1-x}+1\right)\left(1+\frac{2y}{1-x}-1\right)\right]^{\frac{1}{4}}}\\&\qquad \times \left( \frac{\Gamma (l+p+1)\Gamma (l+\beta )2^{p+\beta -1}}{(\Gamma (l+1) \Gamma (l+p+\beta )\left(2-\frac{2y}{1-x} \right)^p \left( \frac{2y}{1-x} \right)^{\beta -1}} \right)^\frac{1}{2}\\&\quad = \frac{C(1-x)^{l+\frac{p+\beta -1}{2}+\frac{1}{2}} 2^{\frac{p+\beta -1}{2}}}{\sqrt{2}(2l+\beta +p)^{\frac{1}{4}}2^{\frac{p+\beta -1}{2}} (1-x-y)^{\frac{1}{4}+\frac{p}{2} } y^{\frac{1}{4}+\frac{\beta -1}{2}} } \left(\frac{(l+1)_p}{(l+\beta )_p} \right)^{\frac{1}{2}}\\&\quad = \frac{C(1-x)^{l+\frac{p+\beta }{2}}}{\sqrt{2}(2l+\beta +p)^{\frac{1}{4}}(1-x-y)^{\frac{1}{4}+\frac{p}{2} } y^{\frac{1}{4}+\frac{\beta -1}{2}} } \left(\frac{(l+1)_p}{(l+\beta )_p} \right)^{\frac{1}{2}}. \end{aligned}$$

Hence we get an upper bound for all points \((x,y)\in {\stackrel{\circ }{\mathbb{T }}}\) as

$$\begin{aligned} |A_{m,l}(x,y)|&= \left|P_m^{\alpha -1,a_l}(1-2x)P_l^{p,\beta -1}\left(\frac{2y}{1-x}-1\right)(1-x)^l\right| \\&= \left|P_m^{\alpha -1,a_l}(1-2x)\right| \left|P_l^{p,\beta -1}\left(\frac{2y}{1-x}-1\right)(1-x)^l\right|\\&\le \frac{C}{(2(m+l)+\gamma )^{\frac{1}{4}}(x)^{\frac{1}{4}+\frac{\alpha -1}{2}}(1-x)^{\frac{1}{4}+\frac{a_l}{2}}\sqrt{2}}\left( \frac{(m)_\alpha (m+a_l)}{(m+a_l)_\alpha m} \right)^{\frac{1}{2}}\\&\quad \times \frac{C(1-x)^{l+\frac{p+\beta }{2}}}{\sqrt{2}(2l+\beta +p)^{\frac{1}{4}}(1-x-y)^{\frac{1}{4}+\frac{p}{2} } y^{\frac{1}{4}+\frac{\beta -1}{2}} } \left(\frac{(l+1)_p}{(l+\beta )_p} \right)^{\frac{1}{2}}\\&= \tilde{D}(x,y)\frac{1}{(2l+\beta +p)^{\frac{1}{4}}(2(m+l)+\gamma )^{\frac{1}{4}}\kappa _{l,m}}, \end{aligned}$$

with

$$\begin{aligned} \tilde{D}(x,y)= \frac{C^2}{2(1-x-y)^{\frac{p}{2}+\frac{1}{4}} y^{\frac{\beta -1}{2}+\frac{1}{4}}x^{\frac{\alpha -1}{2}+ \frac{1}{4}}(1-x)^{\frac{1}{4}}}. \end{aligned}$$

Finally we have to demonstrate equation (8). To this end we examine the factor

$$\begin{aligned} P_l^{p,\beta -1}\left(\frac{2y}{1-x}-1\right)(1-x)^l. \end{aligned}$$

The series expansion of the Jacobi polynomials yields

$$\begin{aligned}&P_l^{p,\beta -1}\left(\frac{2y}{1-x}-1\right)(1-x)^l\\&\quad = \frac{(1\!-\!x)^l\Gamma (p\!+\!l\!+\!1)}{l!\Gamma (p+\beta \!-\!1\!+\!l\!+\!1)} \sum \limits _{n=0}^l \left(\begin{array}{c}{l}\\ {n}\end{array}\right) \frac{\Gamma (p+\beta -1+l+n+1)}{\Gamma (p+n+1)} \left(\frac{2(y-1+x)}{2(1-x)} \right)^n\\&\quad =\frac{\Gamma (p+l+1)}{l!\Gamma (p+\beta -1+l+1)} \sum \limits _{n=0}^l \left(\begin{array}{c}{l}\\ {n}\end{array}\right) \frac{\Gamma (p+\beta -1+l+n+1)}{\Gamma (p+n+1)}\\&\qquad \times \left(y-1+x \right)^n(1-x)^{l-n}. \end{aligned}$$

If \(l\ne 0\) and \((x,y)=(1,0)\) then the value of the series is \(0\) and so part I is proven. If \(l=0\) we get

$$\begin{aligned} \displaystyle |A_{m,0}(1,0)|=\left|P_m^{\alpha -1,a_l}(-1) \cdot \frac{\Gamma (p+1)}{\Gamma (p+\beta )} \frac{\Gamma (p+\beta )}{\Gamma (p+1)}\right|= \left(\begin{array}{c}{m+a_l}\\ {m}\end{array}\right). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öffner, P., Sonar, T. Spectral convergence for orthogonal polynomials on triangles. Numer. Math. 124, 701–721 (2013). https://doi.org/10.1007/s00211-013-0530-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0530-z

Mathematics Subject Classification

Navigation