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Abstract

This paper concerns singular value decomposition (SVD)-based computable formu-
las and bounds for the condition number of the Total Least Squares (TLS) problem.
For the TLS problem with the coefficient matrix A and the right-hand side b, a new
closed formula is presented for the condition number. Unlike an important result in the
literature that uses the SVDs of both A and [A, b], our formula only requires the SVD
of [A, b]. Based on the closed formula, both lower and upper bounds for the condition
number are derived. It is proved that they are always sharp and estimate the condition
number accurately. A few lower and upper bounds are further established that involve
at most the smallest two singular values of A and of [A, b]. Tightness of these bounds
is discussed, and numerical experiments are presented to confirm our theory and to
demonstrate the improvement of our upper bounds over the two upper bounds due to
Golub and Van Loan as well as Baboulin and Gratton. Such lower and upper bounds
are particularly useful for large scale TLS problems since they require the computation
of only a few singular values of A and [A, b] other than all the singular values of them.

Keywords: total least squares, perturbation, condition number, singular value decom-
position.

AMS subject classification (2000): 65F35, 15A12, 15A18.

1 Introduction

For given A ∈ R
m×n(m > n), b ∈ R

m, the total least squares (TLS) problem can be
formulated as (see, e.g., [2, 6, 17])

min ‖[E, f ]‖F , subject to b+ f ∈ R(A+E), (1)

where ‖ · ‖F denotes the Frobenius norm of a matrix and R(·) denotes the range space.
Suppose that [ETLS , fTLS] solves the above problem. Then x = xTLS that satisfies the
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equation (A+ETLS)x = b+ fTLS is called the TLS solution of (1). The TLS problem is a
formulation of the linear approximation problem Ax ≈ b. In this paper, we concentrate on
the inconsistent linear approximation problem, i.e., b /∈ R(A). Otherwise, [ETLS , fTLS] =
O, the zero matrix.

Given a problem, the condition number measures the worst-case sensitivity of its solution
to small perturbations in the input data. It is well known that the condition number is
independent of perturbations themselves and is expressed by some information about the
original data. Combined with backward errors, it provides a (possibly approximate) linear
upper bound for the forward error, i.e., the difference between a perturbed solution and
the exact solution. Since the 1980’s, algebraic perturbation analysis for the TLS problem
has received considerable attention; see [4, 6, 15, 21] and the references therein. From the
expressions of perturbation bounds presented in [4, 6, 15, 21], we can see that there are
some essential distinctions between them and a standard form. The perturbation bound
in [6] is a standard one in the sense that it is expressed as some perturbation independent
factor times backward errors. So, this factor is naturally an upper bound for the TLS
condition number. The perturbation bound in [21] is nonstandard and unusual since the
perturbation bound is not zero when a perturbation is exactly zero. Actually, a careful
observation reveals that the bound is never less than a certain positive constant under the
assumption b /∈ R(A). As a result, it makes no sense to extract an upper bound for the TLS
condition number from this perturbation bound. The perturbation bounds in [4, 15] are
very different from a standard perturbation bound in that they contain some information
about the perturbed TLS problem, e.g., the TLS solution x̃TLS of the perturbed TLS
problem in [4] and the right singular vectors associated with the smallest singular values of
both [A, b] and its perturbed matrix in [15]. Because of these features and the fact that
the condition number itself has nothing to do with perturbations, it is impossible to extract
upper bounds for the TLS condition number from the perturbation bounds in [4, 15]. If one
attempts to find suitable upper bounds for the TLS condition number, some further and
complicated treatments are required and it is necessary to make each of their perturbation
bounds become a standard one, that is, some perturbation independent factor times the
backward error.

In recent years, asymptotic perturbation analysis and TLS condition numbers have been
investigated. Zhou et al. [22] and the authors [14] have presented a first order perturbation
analysis of the TLS problem and established Kronecker product-based condition number
formulas. Baboulin and Gratton [1] have derived an SVD-based closed formula for the TLS
condition number, which involves all the singular values and the right singular vectors of
both A and [A, b], and an upper bound, which involves only several singular values of A
and [A, b]. To our best knowledge, however, there has been no lower bound available for
the TLS condition number in the literature.

It is well known that the TLS solution xTLS involves the smallest singular value and the
corresponding right singular vector of [A, b], see, e.g., [6]. Very recently, a new classification
has been proposed in [9] for the TLS problem in AX ≈ B with B ∈ R

m×d and d ≥ 1. It
is based on properties of the SVD of the extended matrix [B, A] and has established
further results on existence and uniqueness of the TLS solution. In this paper, based on
the intimate relation between SVDs and TLS problems and motivated by the work of [1],
we continue our work in [14] to study SVD-based TLS condition number theory. We will
derive a number of results. Firstly, we establish a new closed formula of the TLS condition
number. It is distinctive that, unlike the result in [1] that requires the SVDs of both A and
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[A, b], our formula only uses the singular values and the right singular vectors of [A, b].
Secondly, starting with the closed formula, we present both lower and upper bounds for
the condition number that involve the singular values of [A, b] and the last entries of the
right singular vectors of [A, b]. Furthermore, we prove that these bounds are always sharp
and can estimate the condition number accurately. We then focus on cheaply computable
bounds for the TLS condition number. We establish lower and upper bounds that involve
at most the smallest two singular values of A and [A, b]. We discuss how tight the bounds
are. These bounds are particularly useful for large scale TLS problems since they require
to compute only very few of the smallest singular values of A and [A, b] rather than all the
singular values of them. So we can compute these bounds by using some iterative solvers
for large SVDs, e.g., [11, 12]. From [6], as mentioned previously, an upper bound for the
TLS condition number can be extracted. It has been simplified and applied to evaluate
the conditioning of the TLS problem in [3]. We will present numerical experiments to
demonstrate improvements of our upper bounds over the two upper bounds due to Golub
and Van Loan [6] and Baboulin and Gratton [1], respectively.

We mention that for given A and b the standard least squares (LS) problem is always
and can be much better conditioned than the corresponding TLS problem; see, e.g., [2,
p.180]. The results in this paper allow us to compare the sensitivity of solution of the
standard LS problem to the sensitivity of the solution of the TLS problem. So it may be
better to solve the LS problem if possible. This is the case when all the errors are confined
to the “observation” b but A is assumed to be free of errors. However, this assumption may
be unrealistic: sampling errors, human errors, modeling errors and instrument errors often
imply inaccuracies of A as well. If both A and b are subject to errors, a reasonable way to
take the errors in A into account may be to introduce perturbations also in A. The TLS
problem (1) is just a natural formulation for this purpose. We refer the reader to [2, 6, 20]
for more on the introduction of the TLS problem.

The paper is organized as follows. In Section 2, we present some preliminaries necessary.
In Section 3, we establish some useful and necessary results related to a specific orthogonal
matrix. In Section 4, we present a new closed formula for the TLS condition number.
The bounds for the TLS condition number are derived in Section 5. In Section 6, we
report numerical experiments to show the tightness of our bounds for the TLS condition
number and improvements over Golub-Van Loan’s bound and Baboulin-Gratton’s bound.
We conclude the paper with some remarks and future work in Section 7.

Throughout the paper, for given positive integers m,n, denote by R
n the space of n-

dimensional real column vectors, by R
m×n the space of all m×n real matrices, and by ‖ · ‖

and ‖ · ‖F the 2-norm and Frobenius norm of their arguments, respectively. Given a matrix
A, A(1 : i, 1 : j) is a Matlab notation that denotes the submatrix in the intersection of rows
1, . . . , i and columns 1, . . . , j, and σi(A) denotes the ith largest singular value of A. For
a vector a, a(i) denotes the ith component of a, and diag(a) is a diagonal matrix whose
diagonals are a(i)’s. In denotes the n×n identity matrix and Om,n denotes the m×n zero
matrix with O a zero matrix whose dimension is clear from the context. For the matrices
A = [a1, . . . , an] = [aij ] ∈ R

m×n and B, A⊗B = [aijB] is the Kronecker product of A and
B, and the linear operator vec : Rm×n → R

mn is defined by vec(A) = [aT1 , . . . , a
T
n ]

T .
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2 Preliminaries

Throughout the paper, let A = Ûdiag(σ̂1, . . . , σ̂n)V̂
T be the thin SVD of A ∈ R

m×n, where
σ̂1 ≥ · · · ≥ σ̂n, Û ∈ R

m×n, V̂ ∈ R
n×n and ÛT Û = In, V̂ T V̂ = In, and let [A, b] =

Udiag(σ1, . . . , σn+1)V
T be the thin SVD of [A, b] ∈ R

m×(n+1), where σ1 ≥ · · · ≥ σn+1,
U = [u1, . . . , un+1] ∈ R

m×(n+1), V = [v1, . . . , vn+1] ∈ R
(n+1)×(n+1) and UTU = In+1,

V TV = In+1.

The TLS problem (1) may not have a solution, but it does have a unique solution if the
following condition holds [17]:

A has rank n and b 6⊥ Umin, (2)

where Umin denotes the left singular vector subspace of A corresponding to its smallest
singular value. Throughout the paper, we always assume that (2) holds.

It is noted in [17] that condition (2) means σn+1 < σ̂n, the existence and uniqueness
condition of the TLS solution given in [6]. Under the condition that σn+1 < σ̂n, it is proved
in [6] that

xTLS = (ATA− σ2
n+1I)

−1AT b (3)

= −
[

vn+1(1)

vn+1(n+ 1)
, . . . ,

vn+1(n)

vn+1(n+ 1)

]T

. (4)

We comment that (2) implies that AT b 6= 0. So xTLS 6= 0.

Given the TLS problem (1), let Ã = A+∆A, b̃ = b+∆b, where ∆A and ∆b denote the
perturbations in A and b, respectively. Consider the perturbed TLS problem

min ‖[E, f ]‖F subject to b̃+ f ∈ R(Ã+ E). (5)

Under the assumption that b /∈ R(A), it follows from (2) that 0 < σn+1 < σ̂n. In [14], the
following result is established for the TLS solution x̃TLS of the perturbed TLS problem (5).

Theorem 1 Suppose that the TLS problem (1) satisfies 0 < σn+1 < σ̂n. Define r =
AxTLS − b and G = [xTTLS , −1]⊗ Im ∈ R

m×(mn+m). If ‖[∆A, ∆b]‖F is small enough, then

the perturbed problem (5) has a unique TLS solution x̃TLS. Moreover,

x̃TLS = xTLS +K

[

vec(∆A)
∆b

]

+O(‖[∆A, ∆b]‖2F ), (6)

where

K =
(

ATA− σ2
n+1In

)−1
(

2AT r

‖r‖
rT

‖r‖G−ATG− [In ⊗ rT , On,m]

)

∈ R
n×(mn+m). (7)

It is shown in [6] that

σ2
n+1 =

‖r‖2
1 + ‖xTLS‖2

(8)

and

AT r =
‖r‖2

1 + ‖xTLS‖2
xTLS = σ2

n+1xTLS . (9)
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From (4), it follows that

vn+1 =
1

√

1 + ‖xTLS‖2

[

xTLS

−1

]

(10)

up to a sign ±1. We will use the above two relations later. The following basic properties
of the Kronecker products of matrices can be found in [8] and are needed later:

(A1 ⊗A3)(A2 ⊗A4) = (A1A2)⊗ (A3A4),

(A1 ⊗A2)
T = AT

1 ⊗AT
2 ,

where Ai, i = 1, . . . , 4 are matrices of appropriate sizes.

3 Some results related to a specific orthogonal matrix

In this section, we establish a number of results that are related to a specific orthogonal
matrix. They play a central role in deriving our lower and upper bounds for the condition
number of the TLS problem in Section 5.

Proposition 1 Let W be an arbitrary (n + 1) × (n + 1) orthogonal matrix with W (n +
1, n + 1) = −α, 0 < α < 1. Denote W11 = W (1 : n, 1 : n). Then

σ1(W11) = · · · = σn−1(W11) = 1, σn(W11) = α. (11)

Furthermore, W can be written as

W =

[

W11

√
1− α2 ūn√

1− α2 v̄Tn −α

]

, (12)

where ūn and v̄n are the left and right singular vectors associated with the smallest singular

value of W11.

Proof. It is an immediate result of Theorem 2.6.3 in [7]. ✷

Let [β̄1, . . . , β̄n,−α] be the last row of W . From (12) we have

v̄Tn =
1√

1− α2
[β̄1, . . . , β̄n]. (13)

Since (α−1, ūn, v̄n) is the largest singular triplet of W−T
11 , from (11) we get the SVD of

W−T
11 :

W−T
11 = α−1ūnv̄

T
n +

n−1
∑

i=1

ūiv̄
T
i ,

where ūi, v̄i, i = 1, . . . , n − 1 represent the left and right singular vectors associated with
the singular value one. Then, by (13) we obtain

W−T
11 =

[

α−1ūn, ū1, . . . , ūn−1

]













β̄1√
1−α2

· · · β̄n√
1−α2

v̄1(1) . . . v̄1(n)
... · · · ...

v̄n−1(1) · · · v̄n−1(n)













(14)

=

[

α−1β̄1√
1− α2

ūn + w1, . . . ,
α−1β̄n√
1− α2

ūn + wn

]

, (15)
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where v̄i(k) denotes the kth component of v̄i and

wk =

n−1
∑

i=1

v̄i(k)ūi, k = 1, . . . , n. (16)

From (14) we get
√

√

√

√

n−1
∑

i=1

v̄2i (n) =

√

1− α2 − β̄2
n√

1− α2
, (17)

which will be used later.

Before proceeding, we need the following lemma.

Lemma 1 For given matrices A1, A2 ∈ R
n×n, if AT

1 A2 = O, then

1

2
(‖A1‖+ ‖A2‖) ≤ ‖A1 +A2‖ ≤ ‖A1‖+ ‖A2‖. (18)

Proof. The upper bound in (18) is obvious. It suffices to prove the lower one. For an
arbitrary vector x ∈ R

n, from (A1x)
T (A2x) = 0 it follows that

‖A1x‖, ‖A2x‖ ≤ ‖A1x+A2x‖

and that

‖A1‖ = max‖x‖=1‖A1x‖ ≤ max‖x‖=1‖A1x+A2x‖ = ‖A1 +A2‖,
‖A2‖ = max‖x‖=1‖A2x‖ ≤ max‖x‖=1‖A1x+A2x‖ = ‖A1 +A2‖.

So, the assertion is proved. ✷

Now we are in a position to show the following two propositions.

Proposition 2 Let W be an arbitrary (n + 1) × (n + 1) orthogonal matrix with W (n +
1, n + 1) = −α, 0 < α < 1. Let W11 = W (1 : n, 1 : n) and [β̄1, . . . , β̄n,−α] be the last row

of W . Then for S̄ = diag(s̄1, . . . , s̄n) with s̄1, . . . , s̄n arbitrary positive numbers ordered as

0 < s̄1 ≤ s̄2 ≤ · · · ≤ s̄n, we have

c :=
1

2





α−1
√

β̄2
1 s̄

2
1 + · · · + β̄2

ns̄
2
n√

1− α2
+

√

1− α2 − β̄2
n√

1− α2
s̄n





≤
∥

∥

∥
W−T

11 S̄
∥

∥

∥
≤ c̄ :=

α−1
√

β̄2
1 s̄

2
1 + · · ·+ β̄2

ns̄
2
n√

1− α2
+ s̄n. (19)

Proof. Following (15), we get

W−T
11 S̄ =

[

α−1β̄1s̄1√
1− α2

ūn + s̄1w1, . . . ,
α−1β̄ns̄n√
1− α2

ūn + s̄nwn

]

.

Define the matrices

A1 =

[

α−1β̄1s̄1√
1− α2

ūn, . . . ,
α−1β̄ns̄n√
1− α2

ūn

]

6



and
A2 = W−T

11 S̄ −A1 = [s̄1w1, . . . , s̄nwn] . (20)

Then

‖A1‖ =
α−1

√
1− α2

√

β̄2
1 s̄

2
1 + · · ·+ β̄2

ns̄
2
n. (21)

From (16) and (17) we obtain

‖wn‖ =

√

√

√

√

n−1
∑

i=1

v̄2i (n) =

√

1− α2 − β̄2
n√

1− α2
and ‖[w1, . . . , wn]‖ =

∥

∥

∥

∥

∥

n−1
∑

i=1

ūiv̄
T
i

∥

∥

∥

∥

∥

= 1.

Furthermore, since ‖S̄‖ = s̄n, it follows from

‖s̄nwn‖ ≤ ‖A2‖ ≤ ‖[w1, . . . , wn]‖ ‖S̄‖

that
√

1− α2 − β̄2
n√

1− α2
s̄n ≤ ‖A2‖ ≤ s̄n. (22)

Note that AT
1 A2 = O. Based on Lemma 1 and combining (20), (21) with (22), we establish

the desired inequality. ✷

Proposition 3 Suppose that 0 < α ≤ 1
2 , where α is defined as in Proposition 2. Then for

c and c̄ in Proposition 2, we have

c < c̄ < 4c. (23)

Proof. If |β̄n|√
1−α2

<
√
3
2 , it is easy to verify that

√

1− α2 − β̄2
n√

1− α2
>

1

2

and that

c >
1

4
c̄.

Thus, (23) holds. If |β̄n|√
1−α2

≥
√
3
2 , then

α−1 |β̄n|√
1− α2

≥
√
3

2
α−1 > 1,

so α−1 |β̄n|√
1−α2

s̄n > s̄n, from which and the definitions of c̄ and c it follows that

c̄ <
α−1

√

β̄2
1 s̄

2
1 + · · · + β̄2

ns̄
2
n√

1− α2
+ α−1 |β̄n|√

1− α2
s̄n

≤
2α−1

√

β̄2
1 s̄

2
1 + · · ·+ β̄2

ns̄
2
n√

1− α2

≤
2α−1

√

β̄2
1 s̄

2
1 + · · ·+ β̄2

ns̄
2
n√

1− α2
+

2
√

1− α2 − β̄2
n√

1− α2
s̄n = 4c.
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Thus, (23) holds. ✷

This proposition means that the upper bound is at most four times of the lower bound

in Proposition 2. So we can estimate
∥

∥

∥W−T
11 S̄

∥

∥

∥ accurately by its lower or upper bound

within no more than four times of the exact
∥

∥

∥W−T
11 S̄

∥

∥

∥.

4 A closed formula for the TLS condition number

Throughout the paper, we follow the definition of condition number in [5, 19]. Let g :
R
p −→ R

q be a continuous map in normed linear spaces defined on an open set Dg ⊂ R
p.

For a given a0 ∈ Dg, a0 6= 0, with g(a0) 6= 0, if g is differentiable at a0, then the absolute
condition number of g at a0 is

κg(a0) = ‖g′(a0)‖, (24)

and the relative condition number is

κrelg (a0) =
‖g′(a0)‖‖a0‖

‖g(a0)‖
, (25)

where g′(a0) ∈ R
q×p denotes the Jacobian of g at a0.

In [1], an SVD-based closed formula for the condition number of the TLS problem was
presented. Denote by κg(A, b) the absolute TLS condition number. It was shown in [1] that

κg(A, b) =
√

1 + ‖xTLS‖2
∥

∥

∥D̂ [V̂ T , On,1] V [D, On,1]
T
∥

∥

∥ , (26)

where

D̂ = diag

(

1

σ̂2
1 − σ2

n+1

, . . . ,
1

σ̂2
n − σ2

n+1

)

,

D = diag

(

√

σ2
1 + σ2

n+1, . . . ,
√

σ2
n + σ2

n+1

)

.

Next we will derive a new SVD-based formula for the TLS condition number. It is
distinctive that, unlike (26) that involves the singular values and right singular vectors of
both [A, b] and A, our formula only uses those of [A, b].

Denote a = vec(A) and define the following function in a small neighborhood of
[aT , bT ]T ∈ R

m(n+1):

g : Rm(n+1) −→ R
n

[

ã

b̃

]

7−→ x̃TLS = (ÃT Ã− σ̃2
n+1In)

−1ÃT b̃,

where Ã = A+∆A, ã = vec(Ã) = a+vec(∆A), b̃ = b+∆b, and σ̃n+1 = σn+1([Ã, b̃]). Then
we have g([aT , bT ]T ) = xTLS . Based on Theorem 1, we can present the following result.

Theorem 2 Given the TLS problem (1), let κg(A, b) and κrelg (A, b) be the absolute and

relative condition numbers of the TLS problem, respectively. Then

κg(A, b) = ‖K‖, κrelg (A, b) =
‖K‖‖[A, b]‖F

‖xTLS‖
, (27)

where K is defined as in (7).
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Proof. Recall that our TLS problem satisfies 0 < σn+1 < σ̂n. By Theorem 1 and the
definition of g, we see that g is differentiable at [aT , bT ]T and g′

(

[aT , bT ]T
)

= K. Then the
assertion follows from (24) and (25) . ✷

The formulas for the TLS problem in Theorem 2 depend on Kronecker products of
matrices. We comment that the formula for κrelg (A, b) has the same form as that for κKSTLS

with λ = 1 in Theorem 3.3 of [14], and as stated in [14], mathematically we have κrelg (A, b) =

κMSTLS when λ = 1 in Theorem 3.1 of [22], where κMSTLS is the relative condition number of
the Scaled TLS problem with λ the scaling factor that is derived in [22].

Now we can establish our computable formula for the TLS condition number.

Theorem 3 Given the TLS problem (1), let [A, b] = Udiag(σ1, . . . , σn+1)V
T be the thin

SVD of [A, b] with V11 = V (1 : n, 1 : n). Then

κg(A, b) =
√

1 + ‖xTLS‖2 ‖V −T
11 S‖, (28)

where S = diag(s1, . . . , sn) with si =

√
σ2
i +σ2

n+1

σ2
i −σ2

n+1
, i = 1, . . . , n.

Proof. Consider expression (7) of K. By the properties of Kronecker product of
matrices, we get

GGT =
(

[xTTLS , −1]⊗ Im
)

([

xTLS

−1

]

⊗ Im

)

= (1 + ‖xTLS‖2)Im,

[In ⊗ rT , On,m]GT = [In ⊗ rT , On,m]

[

xTLS ⊗ Im
−Im

]

= (In ⊗ rT )(xTLS ⊗ Im) = xTLS rT

and

[In ⊗ rT , On,m]

[

In ⊗ r
Om,n

]

= (In ⊗ rT )(In ⊗ r) = ‖r‖2In.

Thus, we have

(

2AT r

‖r‖
rT

‖r‖G−ATG− [In ⊗ rT , On,m]

)

·
(

2GT r

‖r‖
rT

‖r‖A−GTA−
[

In ⊗ r
Om,n

])

= (1 + ‖xTLS‖2)ATA+ ‖r‖2In − xTLSr
TA−AT rxTTLS

= (1 + ‖xTLS‖2)ATA+ ‖r‖2In − 2σ2
n+1xTLSx

T
TLS ,

where the last equality uses the relation AT rxTTLS = σ2
n+1xTLSx

T
TLS, which is obtained

from (9). Denote P = ATA− σ2
n+1In. We get

KKT = P−1
(

(1 + ‖xTLS‖2)ATA+ ‖r‖2In − 2σ2
n+1xTLSx

T
TLS

)

P−1

= (1 + ‖xTLS‖2)P−1

(

ATA+ σ2
n+1In − 2σ2

n+1xTLSx
T
TLS

1 + ‖xTLS‖2

)

P−1 (29)

= (1 + ‖xTLS‖2)
(

P−1 + 2σ2
n+1P

−1

(

In − xTLSx
T
TLS

1 + ‖xTLS‖2
)

P−1

)

, (30)

9



where the second equality used (8). Denote V = [v1, . . . , vn+1] and note that

[A, b]T [A, b]− σ2
n+1In+1 =

n+1
∑

i=1

σ2
i viv

T
i − σ2

n+1

n+1
∑

i=1

viv
T
i

=

n
∑

i=1

(σ2
i − σ2

n+1)viv
T
i .

We get

P = [In, O]
n
∑

i=1

(σ2
i − σ2

n+1)viv
T
i

[

In
O

]

= [In, O][v1, . . . , vn]







σ2
1 − σ2

n+1
. . .

σ2
n − σ2

n+1













vT1
...
vTn







[

In
O

]

= V11diag(σ
2
1 − σ2

n+1, . . . , σ
2
n − σ2

n+1)V
T
11 := V11ΛV

T
11. (31)

Similarly, since vn+1 =
1√

1+‖xTLS‖2

[

xTLS

−1

]

(c.f. (10)), we have

In+1 −
1

1 + ‖xTLS‖2
[

xTLSx
T
TLS −xTLS

−xTLS 1

]

= In+1 − vn+1v
T
n+1 = [v1, . . . , vn]







vT1
...
vTn







and

In − xTLSx
T
TLS

1 + ‖xTLS‖2
= V11V

T
11. (32)

Combining (31) and (32), we have

P−1 + 2σ2
n+1P

−1

(

In − xTLSx
T
TLS

1 + ‖xTLS‖2
)

P−1

= V −T
11 Λ−1V −1

11 + 2σ2
n+1

(

V −T
11 Λ−1V −1

11

)

V11V
T
11

(

V −T
11 Λ−1V −1

11

)

= V −T
11 Λ−1V −1

11 + 2σ2
n+1V

−T
11 Λ−2V −1

11 (33)

= V −T
11

(

Λ−1 + 2σ2
n+1Λ

−2
)

V −1
11 =

(

V −T
11 S

)(

V −T
11 S

)T

.

Then it follows from (30) and Theorem 2 that the desired equality holds. ✷

By Theorem 3, we can calculate κg(A, b) by solving a linear system with the coefficient
matrix V T

11. Next we show that the condition number of V T
11 is exactly

√

1 + ‖xTLS‖2.

Theorem 4 Under the conditions of Theorem 3, we have

σ1(V11) = · · · = σn−1(V11) = 1, σn(V11) =
1

√

1 + ‖xTLS‖2
(34)

and

κ(V11) =
σ1(V11)

σn(V11)
=
√

1 + ‖xTLS‖2. (35)

Proof. By (10) we get V (n + 1, n + 1) = − 1√
1+‖xTLS‖2

. Recalling that xTLS 6= 0, we get

1√
1+‖xTLS‖2

< 1. Applying Proposition 1, we prove the theorem. ✷
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5 Bounds for the TLS condition number

5.1 Sharp lower and upper bounds based on the SVD of [A, b]

In this subsection, we apply Theorem 3 and show how to estimate κg(A, b) accurately

without computing
∥

∥

∥
V −T
11 S

∥

∥

∥
.

For the TLS problem (1), from now on we denote α = −V (n+1, n+1). By (10) we get

α =
1

√

1 + ‖xTLS‖2
. (36)

Recalling that xTLS 6= 0, we have 0 < α < 1. Then we have the following theorem.

Theorem 5 For the TLS problem (1), it holds that

κ := α−1

√

σ2
n + σ2

n+1

σ2
n − σ2

n+1

≤ κg(A, b) ≤ κ̄ := α−2

√

σ2
n + σ2

n+1

σ2
n − σ2

n+1

. (37)

Proof. As before, let [A, b] = Udiag(σ1, . . . , σn+1)V
T be its thin SVD with V11 = V (1 :

n, 1 : n). From (34) and (36) it follows that

σn(V
−T
11 ) = (σ1(V11))

−1 = 1, σ1(V
−T
11 ) = (σn(V11))

−1 = α−1. (38)

Define S = diag(s1, . . . , sn) with si =

√
σ2
i +σ2

n+1

σ2
i −σ2

n+1
, i = 1, . . . , n. We then have

sn = σn(V
−T
11 )‖S‖ ≤ ‖V −T

11 S‖ ≤ ‖V −T
11 ‖‖S‖ = α−1sn.

Therefore, by Theorem 3 we get the desired inequality. ✷

We see that in (37) the ratio of the upper bound and the lower bound is 1
α
. As a

consequence, both the bounds estimate κg(A, b) within 1
α

times. Therefore, if α ∈ (0, 1)
is not small, say 1

2 < α < 1, both the bounds are very tight and they estimate κg(A, b)
accurately.

Starting with (26), Baboulin and Gratton [1, Corollary 1] have derived the following
upper bound

κg(A, b) ≤ α−1

√

σ2
1 + σ2

n+1

σ̂2
n − σ2

n+1

:= κ̄(A, b), (39)

which uses σ̂n − σn+1 to estimate the conditioning of xTLS. The smaller σ̂n − σn+1 is, the
possibly worse conditioned the TLS problem is. It has two distinctions with our lower and
upper bounds in (37). First, (39) involves the SVDs of both A and [A, b] while (37) only
makes use of that of [A, b]. Second, since σ̂2

n − σ2
n+1 ≤ σ2

n − σ2
n+1 and σ1 ≥ σn, our lower

and upper bounds can be considerably more accurate than (39) for α not small. We now
present a family of examples to illustrate it and the tightness of the bounds in (37) for
1
2 < α < 1.

Example. We construct TLS problems as in [1, Example 1]: Define

[A, b] = Q

[

Σ
O

]

V T ∈ R
m×(n+1), Q = Im − 2yyT , V = In+1 − 2zzT ,

11



ep α σ̂n − σn+1 κg(A, b) α−1
√

σ2
n+σ2

n+1

σ2
n−σ2

n+1
α−2

√
σ2
n+σ2

n+1

σ2
n−σ2

n+1
α−1

√
σ2
1+σ2

n+1

σ̂2
n−σ2

n+1

10−3 0.516 9.89 × 10−4 1.38× 103 1.37 × 103 2.66 × 103 4.16 × 105

10−7 0.792 9.99 × 10−8 8.93× 106 8.93 × 106 1.13 × 107 2.54 × 109

10−10 0.859 1.00 × 10−10 8.24× 109 8.23 × 109 9.59 × 109 2.33 × 1012

where y ∈ R
m and z ∈ R

n+1 are random unit vectors, and Σ = diag(n, n− 1, . . . , 1, 1− ep)
for a given parameter ep. Note that ep = σn − σn+1. We have ep ≥ σ̂n − σn+1. By
taking small values of ep, we get different TLS problems whose conditioning becomes worse
and condition number becomes larger as ep becomes smaller. Fixing m = 100, n = 20,
and taking ep = 10−3, 10−7, 10−10, respectively, we get three different TLS problems whose
solutions are computed by the SVD of [A, b] and (4). As indicated by the results of κg(A, b),
as ep decreases, the TLS problem becomes worse conditioned. This is also reflected by the
decay of σ̂n − σn+1; see (39), and Theorems 8–9 and [6]. Since the α’s are bigger than 0.5
and not small, the lower and upper bounds in (37) estimate the TLS condition numbers
accurately, and they are much sharper than bound (39) by roughly two to three orders.

In view of (37) and the comments after its proof as well as the above example, it is
only possible and significant to improve the bounds essentially for the case that α is small
relative to one. Without loss of generality, we assume that

0 < α ≤ 1

2
. (40)

It will appear that we can establish some lower bound κ and upper bound κ̄ such that
κ < κ̄ < 4κ holds. As a result, together with (37), we can estimate the TLS condition
number κg(A, b) accurately.

Theorem 6 Given the TLS problem (1), let [A, b] = Udiag(σ1, . . . , σn+1)V
T be its thin

SVD. Denote [β1, . . . , βn,−α] be the last row of V and S = diag(s1, . . . , sn), si =

√
σ2
i +σ2

n+1

σ2
i −σ2

n+1
,

i = 1, . . . , n. Then

κ :=
1

2

(

α−2
√

β2
1s

2
1 + · · ·+ β2

ns
2
n√

1− α2
+

√

1− α2 − β2
n√

1− α2
α−1sn

)

≤ κg(A, b) ≤ κ̄ :=
α−2

√

β2
1s

2
1 + · · ·+ β2

ns
2
n√

1− α2
+ α−1sn.

Moreover, if 0 < α ≤ 1
2 , then

κ < κ̄ < 4κ.

Proof. Recall that 0 < α < 1. Noticing that 0 < s1 ≤ s2 ≤ · · · ≤ sn and applying
Proposition 2, we have

1

2

(

α−1
√

β2
1s

2
1 + · · ·+ β2

ns
2
n√

1− α2
+

√

1− α2 − β2
n√

1− α2
sn

)

≤
∥

∥

∥V −T
11 S

∥

∥

∥ ≤ α−1
√

β2
1s

2
1 + · · · + β2

ns
2
n√

1− α2
+ sn,
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where V11 = V (1 : n, 1 : n). By Theorem 3, we get the first part of the theorem. Further-
more, we obtain the second part of the theorem by Proposition 3. ✷

The significance of this theorem is that we can estimate the condition number κg(A, b)
accurately by its lower or upper bound without calculating ‖V −T

11 S‖, i.e., solving the matrix
equation V T

11W = S for W and computing the 2-norm of W , which is expensive when n is
large.

5.2 Lower and upper bounds based on a few singular values of A and

[A, b]

In [16], some bounds for the condition number of the Tikhonov regularization solution have
been established using only a few singular values of A, where A is the coefficient matrix
of the least squares problem under consideration. Such kind of bounds are particularly
appealing for large scale TLS problems, because the condition number in Theorem 3 and
the bounds in Theorem 6 involve all the singular values of [A, b] and are impractical for
computational purpose.

Actually, we have presented such kind of bound (37), but as we commented there, for
small α, the bounds may overestimate or underestimate κg(A, b). In the following, we
establish some new lower and upper bounds in the same spirit and finally achieve sharper
lower and upper bounds for the case of 0 < α ≤ 1

2 .

Theorem 7 For the TLS problem (1), we have

κ1 ≤ κg(A, b) ≤ κ̄1, (41)

where

κ1 = α−1

√

σ̂2
n−1 + σ2

n+1

σ̂2
n−1 − σ2

n+1

, κ̄1 = α−1

√

σ̂2
n + σ2

n+1

σ̂2
n − σ2

n+1

. (42)

Proof. Recall that r = AxTLS − b. Denote

M = (ATA− σ2
n+1In)

−1
(

(1 + ‖xTLS‖2)ATA+ ‖r‖2In
)

(ATA− σ2
n+1In)

−1.

From (29), we have

KKT = M − 2σ2
n+1(A

TA− σ2
n+1In)

−1xTLSx
T
TLS(A

TA− σ2
n+1In)

−1. (43)

From now on, denote by λi(M) the ith algebraically largest eigenvalue of M , where M is
an arbitrary symmetric matrix. By the Courant-Fischer theorem [10, p. 182], we get

λ2(M) ≤ λ1(KKT ). (44)

Furthermore, since 2σ2
n+1(A

TA − σ2
n+1In)

−1xTLSx
T
TLS(A

TA − σ2
n+1In)

−1 is nonnegative
definite, the following inequality holds

λ1(KKT ) ≤ λ1(M). (45)

Combining (44) with (45) and based on (27), we have
√

λ2(M) ≤ κg(A, b) ≤
√

λ1(M).
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It is easy to verify that the eigenvalues of M form the set

{

(1 + ‖xTLS‖2)σ̂2
j + ‖r‖2

(σ̂2
j − σ2

n+1)
2

}n

j=1

.

We define the function

h(σ) =
(1 + ‖xTLS‖2)σ2 + ‖r‖2

(σ2 − σ2
n+1)

2
, σ > σn+1

and differentiate it to get

h′(σ) =
−2σ3(1 + ‖xTLS‖2)− 2σ(1 + ‖xTLS‖2)σ2

n+1 − 4σ‖r‖2
(σ2 − σ2

n+1)
3

.

It is seen that h′(σ) < 0 and h(σ) is decreasing in the interval (σn+1,∞). Thus, we get

λ1(M) =
(1 + ‖xTLS‖2)σ̂2

n + ‖r‖2
(σ̂2

n − σ2
n+1)

2
, λ2(M) =

(1 + ‖xTLS‖2)σ̂2
n−1 + ‖r‖2

(σ̂2
n−1 − σ2

n+1)
2

and
√

(1 + ‖xTLS‖2)σ̂2
n−1 + ‖r‖2

σ̂2
n−1 − σ2

n+1

≤ κg(A, b) ≤
√

(1 + ‖xTLS‖2)σ̂2
n + ‖r‖2

σ̂2
n − σ2

n+1

.

Recalling (36) and that ‖r‖2
1+‖xTLS‖2 = σ2

n+1 completes the proof. ✷

Remark. Since σ̂n ≤ σn and σn ≤ σ1, we have proved that

κ̄1 ≤ α−1

√

σ2
1 + σ2

n+1

σ̂2
n − σ2

n+1

:= κ̄(A, b), (46)

which is just the upper bound (39) derived by Baboulin and Gratton [1]. Therefore, our
upper bound κ̄1 in (42) is always sharper than Baboulin-Gratton’s bound. Moreover, the
improvement must be significant when σ1

σ̂n
> 1 considerably.

It is seen that the lower and upper bounds in Theorem 7 are marginally different pro-
vided that σ̂n and σ̂n−1 are close. This means that in this case both bounds are very tight.
For the case that σ̂n and σ̂n−1 are not close, we next give a new lower bound that can be
better than that in Theorem 7.

Theorem 8 It holds that

κ2 ≤ κg(A, b) ≤ κ̄1,

where κ̄1 is defined as in Theorem 7 and

κ2 =
1

α
√

σ̂2
n − σ2

n+1

.

Moreover, when σ̂n−1 ≥ σn+1 +
√

σ̂2
n − σ2

n+1, we have

κ1 ≤ κ2.
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Proof. Denote P = ATA− σ2
n+1In. From (30), we have

1

1 + ‖xTLS‖2
KKT = P−1 + 2σ2

n+1P
−1

(

In − xTLSx
T
TLS

1 + ‖xTLS‖2
)

P−1.

Since the second term in the right-hand side of the above relation is positive definite, we
have

(1 + ‖xTLS‖2)λ1(P
−1) ≤ λ1( KKT ),

that is,
1 + ‖xTLS‖2
σ̂2
n − σ2

n+1

≤ κ2g(A, b),

which used (27). Thus, recalling (36), we obtain the first part of the theorem.

The second part of the theorem is obtained by noting that

√

σ̂2
n−1 + σ2

n+1

σ̂2
n−1 − σ2

n+1

<
1

σ̂n−1 − σn+1
≤ 1
√

σ̂2
n − σ2

n+1

under the assumption that σ̂n−1 − σn+1 ≥
√

σ̂2
n − σ2

n+1. ✷

Remark 1. At a first glance, the assumption in the second part of the theorem seems
not so direct but we can justify that it indeed implies that σ̂n and σ̂n−1 are not close.
Actually, it is direct to verify that the second part of Theorem 8 holds under the slightly
stronger but much simpler condition that

σ̂n−1 ≥ 2σ̂n.

Remark 2. From

κ̄1
κ2

=

√

σ̂2
n + σ2

n+1
√

σ̂2
n − σ2

n+1

=

√

√

√

√

√

1 +
σ2
n+1

σ̂2
n

1− σ2
n+1

σ̂2
n

,

it is seen that κ̄1
κ2

> 1 provided that σn+1 > 0. Only for σn+1 = 0, κ̄1 = κ2 holds. Then,

b ∈ R(A) and r = 0.

We observe from the above Remark 2 that the bounds for κg(A, b) in Theorem 8 are
tight when σn+1

σ̂n
is considerably smaller than one. On the other hand, if σn+1

σ̂n
is not small,

these bounds may not be tight. For this case, we will present a new upper bound for better
estimating κg(A, b).

Keep (36) and (40) in mind. Based on Propositions 2–3, we establish the following
theorem.

Theorem 9 If 0 < α ≤ 1
2 , then

κ2 :=
1

α
√

σ̂2
n − σ2

n+1

≤ κg(A, b) < κ̄2 :=

√

1 + 31ρ2

1− ρ2
1

α
√

σ̂2
n − σ2

n+1

, (47)

where ρ = σn+1

σn
.
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Proof. The lower bound is the same as that in Theorem 8. We only need to prove the
right-hand side of (47). As before, let [A, b] = Udiag(σ1, . . . , σn+1)V

T be its thin SVD with
V11 = V (1 : n, 1 : n). From (30), (31) and (33), we get

1

1 + ‖xTLS‖2
KKT = P−1 + 2σ2

n+1P
−1

(

In − xTLSx
T
TLS

1 + ‖xTLS‖2
)

P−1,

= V −T
11 Λ−1V −1

11 + 2σ2
n+1V

−T
11 Λ−2V −1

11 := P−1 + C, (48)

where P = ATA− σ2
n+1In, Λ = diag(σ2

1 − σ2
n+1, . . . , σ

2
n − σ2

n+1). Denote

D = diag(d1, . . . , dn), di =
σn+1

σ2
i − σ2

n+1

, i = 1, . . . , n,

T = diag(t1, . . . , tn), ti =
1

√

σ2
i − σ2

n+1

, i = 1, . . . , n.

Then P−1 =
(

V −T
11 T

)

(

TV −1
11

)

and C = 2
(

V −T
11 D

)

(

DV −1
11

)

.

Note that 0 < d1 ≤ d2 ≤ · · · ≤ dn and 0 < t1 ≤ t2 ≤ · · · ≤ tn. From Proposition 2, we
get

1

2

(

α−1
√

β2
1d

2
1 + · · · + β2

nd
2
n√

1− α2
+

√

1− α2 − β2
n√

1− α2
dn

)

≤
∥

∥

∥
V −T
11 D

∥

∥

∥
≤ α−1

√

β2
1d

2
1 + · · ·+ β2

nd
2
n√

1− α2
+ dn (49)

and

1

2

(

α−1
√

β2
1t

2
1 + · · · + β2

nt
2
n√

1− α2
+

√

1− α2 − β2
n√

1− α2
tn

)

≤
∥

∥

∥
V −T
11 T

∥

∥

∥
≤ α−1

√

β2
1t

2
1 + · · ·+ β2

nt
2
n√

1− α2
+ tn,

respectively, where [β1, . . . , βn,−α] is the last row of V as defined previously. Define kn =
dn
tn

= σn+1√
σ2
n−σ2

n+1

. Then

d1
t1

=
σn+1

√

σ2
1 − σ2

n+1

≤ kn , . . . ,
dn−1

tn−1
=

σn+1
√

σ2
n−1 − σ2

n+1

≤ kn.

Thus, from (49) we get

1√
2
‖C‖ 1

2 =
∥

∥

∥V −T
11 D

∥

∥

∥ ≤ kn

(

α−1
√

β2
1t

2
1 + · · ·+ β2

nt
2
n√

1− α2
+ tn

)

. (50)

For the lower and upper bounds on
∥

∥

∥V −T
11 T

∥

∥

∥ above, Propositions 2–3 tell us that

α−1
√

β2
1t

2
1 + · · ·+ β2

nt
2
n√

1− α2
+ tn < 2

(

α−1
√

β2
1t

2
1 + · · ·+ β2

nt
2
n√

1− α2
+

√

1− α2 − β2
n√

1− α2
tn

)

< 4
∥

∥

∥
V −T
11 T

∥

∥

∥
. (51)
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Therefore, based on (50) and (51), we obtain

1√
2
‖C‖ 1

2 < 4kn

∥

∥

∥
V −T
11 T

∥

∥

∥
= 4kn‖P−1‖ 1

2

and
‖C‖ < 32k2n‖P−1‖. (52)

Combining (48) with (52) and based on (27), we get

κg(A, b) = ‖K‖ = ‖KKT ‖ 1
2 <

√

1 + 32k2n
√

1 + ‖xTLS‖2‖P−1‖ 1
2

=

√

1 + 31ρ2

1− ρ2

√

1 + ‖xTLS‖2
√

σ̂2
n − σ2

n+1

=

√

1 + 31ρ2

1− ρ2
1

α
√

σ̂2
n − σ2

n+1

,

where the last equality uses (36). ✷

Remark. It is clear that the bounds in Theorem 9 are tight when ρ = σn+1

σn
is con-

siderably smaller than one. Note that the lower and upper bounds in Theorem 8 differ
considerably when σn+1

σ̂n
is close to one. The result in this theorem is of particular impor-

tance when σn+1

σ̂n
is close to one, since the upper bound here can be considerably sharper

than the upper bound of Theorem 8 when ρ = σn+1

σn
is small.

The improvement of κ̄2 over κ̄1 can be illustrated as follows. For ρ = σn+1

σn
small, we

have

κ̄rel2 :=
κ̄2

‖xTLS‖
‖[A, b]‖F =

√

1 + 31ρ2

1− ρ2

√

1 + ‖xTLS‖2
‖xTLS‖

‖[A, b]‖F
√

σ̂2
n − σ2

n+1

,

an upper bound for κrelg (A, b), is a moderate multiple of 1√
σ̂2
n−σ2

n+1

, while

κ̄rel1 :=
κ̄1

‖xTLS‖
‖[A, b]‖F =

√

1 + ‖xTLS‖2
‖xTLS‖

√

σ̂2
n + σ2

n+1

σ̂2
n − σ2

n+1

‖[A, b]‖F

is a moderate multiple of 1
σ̂2
n−σ2

n+1
. So the improvement of κ̄rel2 over κ̄rel1 becomes significant

when σn+1 and σ̂n are close.

Golub and Van Loan [6] derive an upper bound for the relative condition number of the
TLS problem, which, in our notation and case, is simplified as

κrelTLS(A, b) :=
9σ1

σn − σn+1

(

1 +
‖b‖

σ̂n − σn+1

) ‖[A, b]‖F
‖b‖ − σn+1

. (53)

From (39), Babcoulin and Gratton [1] get the following upper bound for the relative con-
dition number for the TLS problem:

κ̄rel(A, b) :=

√

1 + ‖xTLS‖2
‖xTLS‖

√

σ2
1 + σ2

n+1

σ̂2
n − σ2

n+1

‖[A, b]‖F . (54)

We will numerically illustrate improvements of our bounds κ̄rel1 and κ̄rel2 over (53) and
(54) in the next section.
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6 Numerical experiments

We present numerical experiments to illustrate the tightness of the bounds in Theorems
8–9 and to show that our upper bounds can be much better than (53) and (54). For a given
TLS problem, the TLS solution is computed by (4). All the experiments were run using
Matlab 7.8.0 with the machine precision ǫmach = 2.22×10−16 under the Microsoft Windows
XP operating system. Keep 0 < α < 1 in mind. As we have seen from Theorem 5 and the
comments after it as well as the numerical example there, for α not small, e.g., α ∈ (12 , 1),
we can estimate the TLS condition number accurately since the lower and upper bounds
in (37) are both sharp in this case. Next we will be concerned with only the case that α is
not near one. For all the test problems, we always have 0 < α < 1

2 .

Example 1. The data A ∈ R
m×(m−2), b ∈ R

m are taken from [20]:

A =



















m− 1 −1 · · · −1
−1 m− 1 · · · −1
...

... · · · ...
−1 −1 · · · m− 1
−1 −1 · · · −1
−1 −1 · · · −1



















, b =



















−1
−1
...
−1

m− 1
−1



















.

So the exact

xTLS = [−1,−1, . . . ,−1]T ∈ R
m−2, σ̂n =

√
2m, σn+1 =

√
m, α =

1√
m− 1

.

m κrelg (A, b) κrel2 κ̄rel2 κ̄rel1 κ̄rel(A, b) κrelTLS(A, b)

200 2.01 × 102 2.00 × 102 2.15 × 102 3.46 × 102 2.83 × 103 5.15 × 103

500 5.01 × 102 5.00 × 102 5.15 × 102 8.65 × 102 1.12 × 104 1.21 × 104

1000 1.00 × 103 1.00 × 103 1.02 × 103 1.73 × 103 3.16 × 104 2.35 × 104

Table 1: Example 1

m σn+1/σn σn+1/σ̂n σ1/σ̂n
200 7.07 × 10−2 7.07 × 10−1 1.00 × 101

500 4.47 × 10−2 7.07 × 10−1 1.58 × 101

1000 3.16 × 10−2 7.07 × 10−1 2.24 × 101

Table 2: Example 1

In Table 1, we list the results of the relative TLS condition number κrelg (A, b) and its
bounds

κrel
2 :=

κ2
‖xTLS‖

‖[A, b]‖F , κ̄rel2 :=
κ̄2

‖xTLS‖
‖[A, b]‖F , κ̄rel1 :=

κ̄1
‖xTLS‖

‖[A, b]‖F ,

and κrelTLS(A, b) and κ̄rel(A, b) (see (53) and (54)), where κ2 and κ̄2 are defined in (47) and
κ̄1 is defined in (42). In Table 2, we give some important ratios which have effects on some
of the relative condition numbers listed above.
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We can see that the test TLS problems are well conditioned. Both the distance of σn+1

and σ̂n and that of σn+1 and σn are not very small so that κrel
2 , κ̄rel2 and κ̄rel1 all estimate

κrelg (A, b) accurately. Since the three σ1/σ̂n are considerably bigger than one, it is known

from (46) and the comments after it that our upper bound κ̄rel1 is significantly more accurate
than κ̄rel(A, b). Table 1 confirms this. Furthermore, we see that κrelTLS(A, b) and κ̄rel(A, b)
are comparable and also good, but they are not as good as our bounds and overestimate
κrelg (A, b) by one to two orders.

Example 2. In this example, we take the TLS problem from [13]. Specifically, a lower
m× (m− 2ω) Toeplitz matrix T̄ is constructed such that the first column

ti,1 =

{ 1√
2πβ2exp

[

(ω−i+1)2

2β2

] i = 1, 2, . . . , 2ω + 1,

0 otherwise,

and the first row is zero except t1,1, where β = 1.25 and ω = 8. A Toeplitz matrix A and a
right-hand side vector b are constructed as A = T̄ +E and b = ḡ+ e, where ḡ = [1, . . . , 1]T ,
E is a random Toeplitz matrix with the same structure as T̄ and e is a random vector. The
entries in E and e are generated randomly from a normal distribution with mean zero and
variance one, and scaled so that

‖e‖ = γ‖ḡ‖, ‖E‖ = γ‖T̄ ‖, γ = 0.001.

m κrelg (A, b) κrel2 κ̄rel2 κ̄rel1 κ̄rel(A, b) κrelTLS(A, b)

100 3.41 × 107 3.24 × 107 6.68 × 108 1.31 × 1011 9.66× 1014 4.70 × 1017

300 1.62 × 108 1.57 × 108 4.96 × 109 1.10 × 1012 2.24× 1016 2.54 × 1019

500 9.50 × 107 9.13 × 107 4.31 × 109 2.46 × 1011 7.55× 1015 1.91 × 1019

Table 3: Example 2

m σn+1/σn σn+1/σ̂n σ1/σ̂n
100 0.964 1− 6.08 × 10−8 1.04 × 104

300 0.984 1− 2.03 × 10−8 2.87 × 104

500 0.993 1− 1.37 × 10−7 4.34 × 104

Table 4: Example 2

In this example, for each test TLS problem, we compute the same quantities as those in
Tables 1–2. The results are reported in Tables 3–4. As indicated by the κrelg (A, b)’s, these
TLS problems are all ill conditioned. Their ill conditioning is also reflected by the fact that
σn+1 and σ̂n are close. As estimates of the relative condition number κrelg (A, b), both the

lower bound κrel2 and the upper bound κ̄rel2 are sharp since σn+1 and σn are not so close,
but the upper bound κ̄rel1 is not tight any longer and overestimates κrelg (A, b) by about four

orders. We see that κ̄rel2 improves κ̄rel1 by two orders. Even though it is not satisfying, κ̄rel1

is still much better than κrelTLS(A, b) and κ̄rel(A, b), and the latter two severely overestimate
κrelg (A, b) by seven to eight orders and ten to twelve orders, respectively.

Example 3. Keep in mind that the distance between σn+1 and σ̂n can control the
conditioning of the TLS problem; see Theorems 8–9 or (53) and (54). In this example, we
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Figure 1: log10(κ
rel
g (A, b)) (+), log10(κ

rel
2 ) (◦), log10(κ̄

rel
2 ) (⋄), log10(κ̄

rel
1 ) (✷),

log10(κ̄
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TLS(A, b)) (∗) for (m,n) = (500, 350).

compare the bounds κrel
2 , κ̄rel2 , κ̄rel1 , κrelTLS(A, b) and κ̄rel(A, b) for various distances between

σn+1 and σ̂n. On the other hand, keep (36) in mind. Lemma 4.3 in [6] gives

|ûTn b|
2‖xTLS‖

≤ σ̂n − σn+1 ≤
‖b‖

‖xTLS‖
, (55)

which tells us that a small α implies that σ̂n and σn+1 are close in some sense. In view
of it, for given m,n, we construct A ∈ R

m×n and b ∈ R
n with different distances between

σn+1 and σ̂n by taking different values of α.

To do this, we first generate two n × n random orthogonal matrices Ū and V̄ in the
standard normal distribution. Then we take α = 10−2, 10−3, . . . , 10−7 and run the following
function

V = generator(n, α, Ū , V̄ )

u = Ū(:, n);

vt = V̄ (:, n)′;

V11 = Ū(:, 1 : n− 1) ∗ V̄ (:, 1 : n− 1)′ + α ∗ u ∗ vt;
t = sqrt(1− α ∗ α);
V = [ [V11, t ∗ u]; [t ∗ vt,−α] ] ;

respectively. In such a way, we get six orthogonal matrices V ∈ R
(n+1)×(n+1) with V (n +

1, n + 1) = −α and α = 10−2, 10−3, . . . , 10−7, respectively. The idea of construction comes
from Proposition 1. We generate randomly one m × (n + 1) matrix C1, and compute
C1 = UΣV T

1 , the thin SVD of C1. With the matrices U and Σ unchanged, we construct
six matrices C = UΣV T by replacing V1 by the six orthogonal matrices V ’s generated above.
Set A = C(:, 1 : n), b = C(:, n + 1), respectively. Then we get six different TLS problems.
For each of them, [A, b] = UΣV T is the thin SVD of [A, b] and V (n+1, n+1) = −α, where
α = 10−2, 10−3, . . . , 10−7, respectively.
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In such a way, with (m,n) = (500, 350) and (1000, 750), we generate 100 samples for
each α, respectively. For each set of TLS problems with the same α, we compute κrelg (A, b),

κrel
2 , κ̄rel2 , κ̄rel1 , κrelTLS(A, b) and κ̄rel(A, b). We plot the (log scale) averages of these quantities

and the corresponding (log scale) α in Figures 1–2. We also report the averages of 1− σn+1

σ̂n
,

a measure of the distance between σn+1 and σ̂n, in Table 5. We comment that the averages
of σn+1

σn
for (m,n) = (500, 350) and (1000, 750) are 0.943 and 0.958, respectively.
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Figure 2: log10(κ
rel
g (A, b)) (+), log10(κ

rel
2 ) (◦), log10(κ̄

rel
2 ) (⋄), log10(κ̄

rel
1 ) (✷),

log10(κ̄
rel(A, b)) (∆) and log10(κ

rel
TLS(A, b)) (∗) for (m,n) = (1000, 750).

(m,n) = (500, 350)
α 10−2 10−3 10−4 10−5 10−6 10−7

1− σn+1

σ̂n
2.91 × 10−4 2.92 × 10−6 2.92 × 10−8 2.92 × 10−10 2.92 × 10−12 2.88 × 10−14

(m,n) = (1000, 750)
α 10−2 10−3 10−4 10−5 10−6 10−7

1− σn+1

σ̂n
3.65 × 10−4 3.66 × 10−6 3.66 × 10−8 3.66 × 10−10 3.66 × 10−12 3.52 × 10−14

Table 5: Example 3

We can see from Figures 1–2 and Table 5 that as α decreases, σ̂n and σn+1 become closer,
and the TLS problem becomes worse conditioned. κrelTLS(A, b) always severely overestimates
κrelg (A, b). For α = 10−2 in which σ̂n and σn+1 are not very close, κ̄rel1 is tight and estimate

κrelg (A, b) accurately. For α = 10−3, σ̂n and σn+1 are closer. In this case, κ̄rel1 is no longer

tight and estimate κrelg (A, b) poorly but it still improves κrelTLS(A, b) and κ̄rel(A, b) by about

four orders and one order, respectively. We observe from Figures 1–2 that κ̄rel1 , κrelTLS(A, b)
and κ̄rel(A, b) estimate κrelg (A, b) more poorly as α decreases. Even so, κ̄rel1 is always smaller

than κrelTLS(A, b) and κ̄rel(A, b) by about four orders and one order, respectively. Remarkably,
for all the cases, since σn and σn+1 are not so close, κrel

2 and κ̄rel2 always estimate κrelg (A, b)
accurately.

Example 4. In this example, we generate the entries of A and b as random vari-
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(m,n) κrelg (A, b) κrel2 κ̄rel2 κ̄rel1 κ̄rel(A, b) κrelTLS(A, b)

(200, 75) 1.46 × 103 5.59 × 102 8.58 × 103 3.19 × 105 1.01× 106 2.48 × 108

(500, 350) 9.16 × 103 3.46 × 103 7.22 × 104 1.23 × 106 9.45× 106 8.16 × 109

(1000, 75) 3.14 × 103 6.19 × 102 2.22 × 104 2.57 × 105 3.58× 105 2.13 × 109

(1000, 750) 9.73 × 104 3.13 × 104 6.41 × 105 3.25 × 108 3.15× 109 1.10× 1012

Table 6: Example 4

ables normally distributed with mean zero and variance one and observe κrel2 , κ̄rel2 , κ̄rel1 ,
κrelTLS(A, b) and κ̄rel(A, b). For each (m,n), we conducted 100 random experiments. We
report the average results of 100 experiments in Table 6. We observe that, as estimates of
κrelg (A, b), both κrel2 and κ̄rel2 are tight. The upper bound κ̄rel2 improves κ̄rel1 by one to two

orders and improves κrelTLS(A, b) and κ̄rel(A, b) by about five orders and one to four orders,
respectively. κ̄rel1 is always smaller than κ̄rel(A, b). Clearly, the test TLS problems are quite
well conditioned, but κrelTLS(A, b) is a rather poor upper bound and overestimate κrelg (A, b)
too much.

7 Concluding Remarks

In the paper, we have studied the SVD-based condition number theory of the TLS problem.
For the TLS condition number, we have established a new closed formula. Starting with it,
we have derived sharp lower and upper bounds. Importantly and more practically, we have
presented both lower and upper bounds that use only the smallest two singular values of
A and [A, b]. Numerical experiments have demonstrated the tightness of our bounds and
the improvements of them over the two upper bounds in [1, 6]. Throughout the paper, the
considered TLS problem is assumed to satisfy condition (2) and has a unique TLS solution.
It is significant and important to extend the results presented in the paper to a general
generic TLS problem [20, 21] that has non-unique TLS solutions or to the non-generic TLS
problem [20]. We will consider these problems in forthcoming papers. Besides, it might
be worthwhile to investigate how to apply the core problem theory [18] to study the TLS
condition number.

Acknowledgements

The authors wish to thank the anonymous referees and the editor Professor Lothar
Reichel for their suggestions and comments, which made us improve the presentation of the
paper.

References

[1] M. Baboulin, S. Gratton, A contribution to the conditioning of the total least squares

problem, SIAM J. Matrix Anal. Appl., 32 (2011) 685–699.
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