Skip to main content
Log in

A discrete weighted Helmholtz decomposition and its application

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose a discrete weighted Helmholtz decomposition for edge element functions. The decomposition is orthogonal in a weighted \(L^2\) inner product and stable uniformly with respect to the jumps in the discontinuous weight function. As an application, the new Helmholtz decomposition is applied to demonstrate the quasi-optimality of a preconditioned edge element system for solving a saddle-point Maxwell system in non-homogeneous media by a non-overlapping domain decomposition preconditioner, i.e., the condition number grows only as the logarithm of the dimension of the local subproblem associated with an individual subdomain, and more importantly, it is independent of the jumps of the physical coefficients across the interfaces between any two subdomains of different media. Numerical experiments are presented to validate the effectiveness of the non-overlapping domain decomposition preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alonso, A., Valli, A.: Some remarks on the characterization of the space of tangential traces of \(H({ curl};\Omega )\) and the construction of an extension operator. Manuscr. Math. 89, 159–178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso, A., Valli, A.: An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comp. 68, 607–631 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albanese, R., Rubinacci, G.: Magnetostatic field computations in terms of two-component vector potentials. Int. J. Numer. Meth. Eng. 29, 515–532 (1990)

    Article  MATH  Google Scholar 

  4. Bramble, J., Pasciak, J., Schatz, A.: The construction of preconditioner for elliptic problems by substructuring. IV. Math. Comp. 53, 1–24 (1989)

    Google Scholar 

  5. Bramble, J., Pasciak, J., Vassilev, A.: Analysis of the inexact Uzawa algorithm for saddle-point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J., Pasciak, J.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp. 50, 1–18 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  8. Buffa, A., Ciarlet Jr, P.: On traces for functional spaces related to Maxwell’s equations.II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24, 31–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cessenat, M.: Mathematical Methods in Electromagnetism. World Scientific, River Edge (1998)

    Google Scholar 

  10. Ciarlet Jr, P., Zou, J.: Finite element convergence for the Darwin model to Maxwell’s equations. RAIRO Math. Model. Numer. Anal. 31, 213–250 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Ciarlet Jr, P., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82, 193–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Degond, P., Raviart, P.-A.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum Math. 4, 13–44 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grisvard, P.: Elliptic problems in nonsmooth domains. In: Monographs and Studies in Mathematics, vol. 24. Pitman, London (1985)

  14. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, Q.: Preconditioning Poincare–Steklov operators arising from domain decompositions with mortar multipliers. IMA J. Numer. Anal. 24, 643–669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, Q., Liang, G., Lui, J.: Construction of a preconditioner for domain decomposition methods with polynomial multipliers. J. Comput. Math. 19, 213–224 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Hu, Q., Zou, J.: An iterative method with variable relaxation parameters for saddle-point problems. SIAM J. Matrix Anal. Appl. 23, 317–338 (2001)

    Google Scholar 

  19. Hu, Q., Zou, J.: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems. Numer. Math. 93, 333–359 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, Q., Zou, J.: A nonoverlapping domain decomposition method for Maxwell’s equations in three dimensions. SIAM J. Numer. Anal. 41, 1682–1708 (2003)

    Google Scholar 

  21. Hu, Q., Zou, J.: Substructuring preconditioners for saddle-point problems arising from Maxwell’s equations in three dimensions. Math. Comput. 73, 35–61 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Hu, Q., Zou, J.: A weighted Helmholtz decomposition and applications to domain decomposition for saddle-point Maxwell systems. Technical Report 2007–15 (355), Department of Mathematics, The Chinese University of Hong Kong

  23. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Springer, New York (1992)

    MATH  Google Scholar 

  24. Klawonn, A., Widlund, O., Dryja, M.: Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40, 159–179 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  26. Rusten, T., Winther, R.: A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl. 13, 887–904 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saranen, J.: On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media. J. Math. Anal. Appl. 91, 254–275 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Toselli, A.: Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math. 86, 733–752 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Toselli, A.: Dual-primal FETI algorithms for edge element approximations: three-dimensional h finite elements on shape-regular meshes. IMA J. Numer. Anal. 26, 96–130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory, vol. 34. In: Springer Series in Computational Mathematics. Springer, Berlin (2005)

  31. Toselli, A., Widlund, O., Wohlmuth, B.: An iterative substructuring method for Maxwell’s equations in two dimensions. Math. Comp. 70, 935–949 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, J., Zou, J.: Some nonoverlapping domain decomposition methods. SIAM Rev. 40, 857–914 (1998)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referee for many constructive and insightful comments which have led to a great improvement of the results and organization of the paper, and also thank Dr. Junxian Wang and Dr. Chunsheng Feng from Xiangtan University for their help with the numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zou.

Additional information

The work of Q. Hu was supported by the Major Research Plan of Natural Science Foundation of China G91130015, the Key Project of Natural Science Foundation of China G11031006 and National Basic Research Program of China G2011309702. The work of S. Shu was supported by NSFC Projects G91130002 and G11171281, the Project of Scientific Research Fund of Hunan Provincial Education Department (12A138) and the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT1179). The work of J. Zou was substantially supported by Hong Kong RGC grant (Project 405110) and CUHK Focused Investment Scheme 2012/2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Shu, S. & Zou, J. A discrete weighted Helmholtz decomposition and its application. Numer. Math. 125, 153–189 (2013). https://doi.org/10.1007/s00211-013-0536-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0536-6

Mathematics Subject Classification

Navigation