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Abstract We develop an anisotropic perfectly matched layer (PML) method for solv-

ing the time harmonic electromagnetic scattering problems in which the PML coordi-

nate stretching is performed only in one direction outside a cuboid domain. The PML

parameters such as the thickness of the layer and the absorbing medium property are

determined through sharp a posteriori error estimates. Combined with the adaptive

finite element method, the proposed adaptive anisotropic PML method provides a

complete numerical strategy to solve the scattering problem in the framework of FEM

which produces automatically a coarse mesh size away from the fixed domain and thus

makes the total computational costs insensitive to the choice of the thickness of the

PML layer. Numerical experiments are included to illustrate the competitive behavior

of the proposed adaptive method.
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1 Introduction

We propose and study an adaptive anisotropic perfectly matched layer (PML) method

for solving the time harmonic electromagnetic scattering problem with the perfectly

conducting boundary condition
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∇×∇× E − k2E = 0 in R
3\D̄, (1.1)

nD × E = g on ΓD , (1.2)

|x|
h

(∇× E) × x̂ − ikE
i

→ 0 as |x| → ∞. (1.3)

Here D ⊂ R
3 is a bounded domain with Lipschitz polyhedral boundary ΓD, E is the

electric field, g is determined by the incoming wave, x̂ = x/|x|, and nD is the unit

outer normal to ΓD. We assume the wave number k ∈ R is a constant. We remark that

the results in this paper can be easily extended to solve the scattering problems with

other boundary conditions such as Neumann or the impedance boundary condition on

ΓD, or to solve the electromagnetic wave propagation through inhomogeneous media

with a variable wave number k2(x) inside some bounded domain.

Since the work of Bérénger [5] which proposed a PML technique for solving the

time dependent Maxwell equations, various constructions of PML absorbing layers have

been proposed and studied in the literature (cf. e.g. Turkel and Yefet [36], Teixeira and

Chew [34] for the reviews). Under the assumption that the exterior solution is composed

of outgoing waves only, the basic idea of the PML method is to surround the compu-

tational domain by a layer of finite thickness with specially designed model medium

that absorbs all the waves that propagate from inside the computational domain.

The convergence of the PML method using circular PML layers is studied in Lassas

and Somersalo [27], Hohage et al [24] for the acoustic scattering problems and in Bao

and Wu [3], Bramble and Pasciak [7] for the electromagnetic scattering problems. It is

proved in [27], [24], [7] that the PML solution converges exponentially to the solution

of the original scattering problem as the thickness of the PML layer tends to infinity.

The adaptive PML method was first proposed in Chen and Wu [14] for a scattering

problem by periodic structures (the grating problem). It is extended in Chen and Liu

[12], Chen and Wu [15] for the acoustic scattering problem and in Chen and Chen

[10] for electromagnetic scattering problems in which one uses the a posteriori error

estimate to determine the PML parameters. Combined with the adaptive finite element

method, the adaptive PML method provides a complete numerical strategy to solve the

scattering problems in the framework of finite element which produces automatically a

coarse mesh size away from the fixed domain and thus makes the total computational

costs insensitive to the thickness of the PML absorbing layer.

A posteriori error estimates are computable quantities in terms of the discrete so-

lution and data that measure the actual discrete errors without the knowledge of exact

solutions. The adaptive finite element method based on a posteriori error estimates

provides a systematic way to achieve the optimal computational complexity by refin-

ing the mesh according to the local a posteriori error estimator on the elements. A

posteriori error estimates for the Nédélec H(curl)-conforming edge elements are ob-

tained in Monk [29] for Maxwell scattering problems, in Beck et al [4] for eddy current

problems, and in Chen et al [13] for Maxwell cavity problems. The restriction in [29],

[4] that the domain should be convex or have smooth boundary in order to ensure the

regularity of the functions in the Helmholtz decomposition is removed in [13] by using

the Birman-Solomyak decomposition [6].

The main purpose of this paper is to propose an anisotropic PML method for the

electromagnetic scattering problem (1.1)-(1.3) in which the PML layer is placed outside

a cuboid domain. The main advantage of the anisotropic PML method as opposed to
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the circular PML method is that it provides greater flexibility and efficiency to solve

problems involving anisotropic scatterers. One widely used anisotropic PML method

in the literature is the uniaxial PML method. The convergence of the uniaxial PML

method has been considered recently in Chen and Wu [15], Chen and Zheng [16], and

Kim and Pasciak [26] for the 2D acoustic scattering problem. The stability of the

uniaxial PML method in 3D is still an open problem due to the difficulty of the corner

regions resulting from stretching the PML coordinate in three different directions. In

our method, the PML coordinate stretching is performed only in one direction outside

the cuboid domain. The stability of the PML problem is proved by extending the

idea in [27], [7], [28] for circular or smooth PML layers. The convergence of our PML

method is then proved by using the Stratton-Chu integral representation formula of

the exterior Dirichlet problem for the time-harmonic Maxwell equation and the idea

of the complex coordinate stretching. We also consider the finite element a posteriori

error estimates and develop the adaptive anisotropic PML method. We also remark

similar idea of defining PML layer outside a cuboid domain is also proposed in Trenev

[35] for 2D Helmholtz equations and numerically tested.

The layout of the paper is as follows. In section 2 we construct our anisotropic PML

formulation for (1.1)-(1.3) by following the method of complex coordinate stretching

in Chew and Weedon [17]. In section 3 we prove the exponential decay of the PML

extension based on the Stratton-Chu integral representation formula. In section 4 we

show the stability of the PML problem in the PML layer. The results in Sections 3 and

4 are then used to prove the exponential convergence of the PML method in section 5.

In section 6 we introduce the finite element approximation. In section 7 we derive the

a posteriori error estimate which includes both the PML error and the finite element

discretization error. Finally in section 8 we describe our adaptive algorithm and present

two examples to show the competitive behavior of the adaptive method.

2 The PML equation

We first recall some notation. Let Ω ⊂ R
3 be a Lipschitz domain with boundary Γ

whose unit outer normal is denoted by n. The space

H(curl; Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3}

is a Hilbert space under the graph norm. The starting point to introduce the traces in

H(curl; Ω) is the following Green formula

Z

Ω
(∇× u · v − u · ∇ × v) dx = 〈n × u,n × v × n〉Γ , (2.1)

for any u,v ∈ H1(Ω)3, where 〈·, ·〉Γ is the duality pairing between H−1/2(Γ )3 and

H1/2(Γ )3. Let Vπ(Γ ) = πτ (H1/2(Γ )3), where for any u ∈ H1/2(Γ )3, πτ (u) = n×u×n.

We observe from (2.1) that for any u ∈ H(curl; Ω), the tangential trace γτu = n×u|Γ
can be defined as a continuous linear map on Vπ(Γ ), that is, γτu ∈ Vπ(Γ )′. The

mapping γτ : H(curl; Ω) → Vπ(Γ )′ is, however, not surjective. It is proved in Buffa et

al [8] that the map γτ is a surjective mapping to the space

H−1/2(Div; Γ ) = {λ ∈ Vπ(Γ )′ : divΓ λ ∈ H−1/2(Γ )},
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which is a Hilbert space under the graph norm. It is known [8] that for u ∈ H(curl; Ω),

the surface divergence of n × u on Γ , divΓ (n × u) = −∇× u · n ∈ H−1/2(Γ ). In the

following we denote Y (Γ ) = H−1/2(Div; Γ ).

For any v ∈ H(curl; Ω), we define the weighted norm

‖v‖H(curl;Ω) =
“

d−2
Ω ‖v ‖2

L2(Ω) + ‖∇ × v ‖2
L2(Ω)

”1/2
, (2.2)

where dΩ is the diameter of Ω. We use the weighted H1/2(Γ ) norm,

‖ v ‖H1/2(Γ ) =
“

d−1
Ω ‖ v ‖2

L2(Γ ) + |v|21
2 ,Γ

”1/2
, (2.3)

and the weighted Y (Γ ) norm

‖µ ‖Y (Γ ) =
“

d−2
Ω ‖µ‖2

V ′
π(Γ ) + ‖divΓ µ‖2

H−1/2(Γ )

”1/2
,

where

|v|21
2 ,Γ =

Z

Γ

Z

Γ

|v(x) − v(x′)|2
|x − x′|3 ds(x)ds(x′).

Thus, for any u ∈ H(curl; Ω), since divΓ (n × u) = −∇× u · n on Γ , we have

‖n × u‖Y (Γ ) =
“

d−2
Ω ‖n × u‖2

V ′
π(Γ ) + ‖∇ × u · n‖2

H−1/2(Γ )

”1/2
. (2.4)

By the scaling argument and the trace theorem we know that there exist constants

C1, C2 independent of dΩ, such that for any λ ∈ Y (Γ ),

C1‖λ ‖Y (Γ ) ≤ inf
γτ (u)|Γ =λ

u∈H(curl;Ω)

‖u‖H(curl;Ω) ≤ C2‖λ ‖Y (Γ ). (2.5)

Let D be contained in the interior of the domain

B1 = {x = (x1, x2, x3)
T ∈ R

3 : |xi| < Li/2, i = 1, 2, 3}.

Let Γ1 = ∂B1 and n1 the unit outer normal to Γ1. Given a tangential vector λ on

Γ1, the Calderon operator Ge : Y (Γ1) → Y (Γ1) is the Dirichlet-to-Neumann operator

defined by

Ge(λ) =
1

ik
n1 × (∇× Es),

where Es satisfies

∇×∇× Es − k2Es = 0 in R
3\B̄1, (2.6)

n1 × Es = λ on Γ1, (2.7)

|x|
h

(∇× Es) × x̂ − ikEs
i

→ 0 as |x| → ∞. (2.8)

Let a : H(curl; Ω1)×H(curl; Ω1) → C, where Ω1 = B1\D̄, be the sesquilinear form

a(u,v) =

Z

Ω1

(∇× u · ∇ × v̄ − k2u · v̄)dx + ik〈Ge(n1 × u),n1 × v × n1〉Γ1
.
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The scattering problem (1.1)-(1.3) is equivalent to the following weak formulation:

Given g ∈ Y (ΓD), find E ∈ H(curl; Ω1) such that nD × E = g on ΓD, and

a(E,v) = 0, ∀v ∈ HD(curl; Ω1), (2.9)

where HD(curl; Ω1) = {v ∈ H(curl; Ω1) : n × v = 0 on ΓD}.
The existence of a unique solution of the variational problem (2.9) is known [20],

[32], [30]. For the later analysis we need the inf-sup condition for the sesquilinear form

a(·, ·).

Lemma 1 There exists a constant C > 0 such that the following inf-sup condition

holds

sup
v∈HD(curl;Ω1)

|a(u,v)|
‖v‖H(curl;Ω1)

≥ C‖u‖H(curl;Ω1), ∀u ∈ HD(curl; Ω1). (2.10)

Proof. For any u ∈ HD(curl; Ω1), denote us the unique solution of (2.6)-(2.8) with

λ = n1 ×u on Γ1. Let ṽ ∈ H(curl; R3) be the extension of v ∈ HD(curl; Ω1) satisfying

‖ṽ‖H(curl;R3) ≤ C‖v‖H(curl;Ω1). The existence of such extension for H(curl) functions

on Lipschitz domains is proved e.g. in Chen et al [11].

Let B1 be included in the ball BR, R > 0. Since us satisfies (2.6), by multiplying

the equation by ¯̃v and integrating by parts over the domain BR\B̄1 we obtain

〈n1 ×∇× us,n1 × v × n1〉Γ1

=

Z

BR\Ω̄1

(∇× us · ∇ × ¯̃v − k2us · ¯̃v)dx + 〈x̂×∇× us, x̂× ṽ × x̂〉∂BR
.

Thus

a(u,v) =

Z

BR\D̄
(∇× u · ∇ × ¯̃v − k2u · ¯̃v)dx + ik〈Ge(x̂× u), x̂ × ṽ × x̂〉∂BR

.

The lemma now follows by using the inf-sup condition for the sesquilinear form based

on the Dirichlet-to-Neumann mapping on the spherical boundary, cf. e.g. Monk [29,

Lemma 10.9]. This completes the proof. ⊓⊔

Fig. 2.1 Setting of the scattering problem with the PML layer.

Now we turn to the introduction of the absorbing PML layer. Let

B2 = {x ∈ R
3 : |xi| < Li/2 + di/2, i = 1, 2, 3}
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be the domain which contains B1. We assume that

θ := 1 +
d1

L1
= 1 +

d2

L2
= 1 +

d3

L3
.

Then the diameter of B2 is d = θL, where L = (L2
1 + L2

2 + L2
3)

1/2. The domain

ΩPML = B2\B̄1 is divided into six square frusta Ω±
i , i = 1, 2, 3, where

Ω+
i = {x : xj = rsj , si = Li/2, |sj | ≤ Lj/2, j 6= i, j = 1, 2, 3, 1 < r < θ},

Ω−
i = {x : xj = rsj , si = −Li/2, |sj | ≤ Lj/2, j 6= i, j = 1, 2, 3, 1 < r < θ}.

Notice that r = r(x) = xi/(±Li/2) in Ω±
i . For t ≥ 0, let α(t) = η(t) + iσ(t) be the

model medium property, where η(t) = 1 + ζσ(t) with a constant ζ ≥ 0, and σ(t) ≥ 0

for t ≥ 0, σ(t) = 0 for t ≤ 1. The choice ζ > 0, which is also used in the engineering

literature [34], corresponds to introduce the additional damping for the evanescent

waves propagating from B1 in the PML region. We will show that this choice will

enhance the elliptic coerciveness of the PML operator (see Lemma 8 and the remark

after Lemma 8 below).

Denote r̃ the complex stretching of r

r̃(x) :=

Z r(x)

0
α(t)dt =

Z r(x)

0
η(t)dt + i

Z r(x)

0
σ(t)dt,

and define the complex coordinates x̃j = r̃(x)sj , j = 1, 2, 3, then we know that

x̃j = β(r(x))xj , where β(t) = η̂(t) + iσ̂(t), η̂ = 1 + ζσ̂, σ̂ =
1

t

Z t

0
σ(t)dt. (2.11)

We know that r(x) is continuous in ΩPML and thus the complex coordinate stretching

function x̃j is a continuous function in ΩPML. We set x̃ = x for x ∈ B̄1.

In this paper we make the following assumption on the medium property.

(H1) σ = σ̂ = σ0 for t ≥ r0 > 1, where σ0 is a constant, σ̂′(t) ≥ 0, for t ≥ 1, and

ζ ≥
√

2 max
i,j=1,2,3

Li

Lj
.

The requirement that the medium property σ = σ̂ is constant for t ≥ r0 has been

also used in [27] and [7]. To derive the PML equation, we first notice that by the

Stratton-Chu integral representation formula, the solution Es of the exterior Dirichlet

problem (2.6)-(2.8) satisfies

Es = Ψk
SL(µ) + Ψk

DL(λ) in R
3\B̄1, (2.12)

where µ = Ge(λ) ∈ Y (Γ1) is the Neumann trace of Es on Γ1, and Ψk
SL, Ψk

DL are

respectively the Maxwell single and double layer potential (cf. e.g. [9])

Ψk
SL(µ)(x) = ikΨk

A(µ)(x) + ik−1∇
h

Ψk
V (divΓ1

µ)(x)
i

, ∀x ∈ R
3\B̄1, (2.13)

Ψk
DL(λ)(x) = ∇×

h

Ψk
A(λ)(x)

i

, ∀x ∈ R
3\B̄1. (2.14)

Here Ψk
V and Ψk

A are the scalar and vector single layer potential for the Helmholtz

kernel equation

Ψk
V (φ)(x) =

Z

Γ1

φ(y)Gk(x,y)ds(y), Ψk
A(φ)(x) =

Z

Γ1

φ(y)Gk(x,y)ds(y)
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with Gk(x,y) = eik|x−y|

4π|x−y|
being the fundamental solution of the 3D Helmholtz equation.

We follow the method of complex coordinate stretching [17] to introduce the PML

equation. For any z ∈ C, denote z1/2 the analytic branch of
√

z such that Re(z1/2) > 0

for any z ∈ C\(−∞, 0]. Let

ρ(x̃,y) =
h

(x̃1 − y1)
2 + (x̃2 − y2)

2 + (x̃3 − y3)
2
i1/2

be the complex distance and define Gk(x̃,y) = eikρ(x̃,y)

4πρ(x̃,y)
. It is easy to see that Gk(x̃,y)

is smooth for x ∈ R
3\B̄1 and y ∈ B̄1. We define the modified scalar and vector single

layer potential for the Helmholtz equation

Ψ̃k
V (φ)(x) =

Z

Γ1

φ(y)Gk(x̃,y)ds(y), ∀φ ∈ H−1/2(Γ1),

Ψ̃k
A(φ)(x) =

Z

Γ1

φ(y)Gk(x̃,y)ds(y), ∀φ ∈ H−1/2(Γ1)
3,

and the modified single and double layer potential

Ψ̃k
SL(µ)(x) = ikΨ̃k

A(µ)(x) + ik−1∇̃
h

Ψ̃k
V (divΓ1

µ)(x)
i

,

Ψ̃k
DL(λ)(x) = ∇̃ ×

h

Ψ̃k
A(λ)(x)

i

.

Here ∇̃ = (∂/∂x̃1, ∂/∂x̃2, ∂/∂x̃3)
T is the gradient operator with respect to the stretched

coordinates.

For any λ ∈ Y (Γ1), let E(λ)(x) be the PML extension

E(λ)(x) = Ψ̃k
SL(µ)(x) + Ψ̃k

DL(λ)(x) for x ∈ R
3\B̄1, (2.15)

where µ = Ge(λ). It is easy to see that n1 × E(λ) = λ on Γ1.

For the solution E of the scattering problem (2.9), let Ẽ = E(n1 × E|Γ1
) be the

PML extension of n1 × E|Γ1
. Then n1 × Ẽ = n1 × E|Γ1

on Γ1. It is obvious that Ẽ

satisfies

∇̃ × ∇̃ × Ẽ − k2Ẽ = 0 in R
3\B̄1.

Let F : ΩPML → C
3 be defined by

Fj(x) = β(r(x))xj , j = 1, 2, 3.

Then x̃ = F(x) and

∇̃× = J−1DF∇× DFT , J = det(DF), DF the Jacobian matrix. (2.16)

When F : ΩPML → R
3 is a real transform, (2.16) is known, cf. e.g. [30, P.78]. For

the complex valued transform, the identity then follows from the principle of analytic

continuation. By (2.16) we obtain easily the desired PML equation

∇× A∇× (BẼ) − k2A−1(BẼ) = 0 in R
3\B̄1,

where A = J−1DFT DF and B = DFT .
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The PML problem is then to find Ê, which approximates E in Ω1 and BE in

ΩPML = B2\B̄1, as the solution of the following system

∇× A∇× Ê − k2A−1Ê = 0 in Ω2 = B2\D̄, (2.17)

nD × Ê = g on ΓD, n2 × Ê = 0 on Γ2. (2.18)

The well-posedness of the PML problem (2.17)-(2.18) and the convergence of its so-

lution to the solution of the original problem (1.1)-(1.3) will be studied in section

5.

To conclude this section, for the sake of later reference, we write down the explicit

formula for the matrix A in the domain Ω±
1 . The formulas in the other domains are

similar. We notice that r(x) = x1/s1, s1 = ±L1/2 depending x ∈ Ω±
1 . By F(x) =

β(r(x))x it is easy to check that

DF = βI + (α − β)stT =

0

B

@

α 0 0
(α−β)s2

s1
β 0

(α−β)s3

s1
0 β

1

C

A
, J = det(DF) = αβ2, (2.19)

where s = (s1, s2, s3)
T , t = s−1

1 (1, 0, 0)T , and

A = J−1DFT DF =

0

B

B

@

α
β2 +

(α−β)2

αβ2

s2
2+s2

3

s2
1

α−β
αβ

s2
s1

α−β
αβ

s3
s1

α−β
αβ

s2
s1

1
α 0

α−β
αβ

s3
s1

0 1
α

1

C

C

A

. (2.20)

From the property of elementary matrix we have DF−1 = β−1(I + β−α
α stT ). It is

easy to see that 1 ≤ |α|, |β| ≤ 1 + (1 + ζ)σmax, ‖DF‖ ≤ C0(1 + σmax), ‖DF−1‖ ≤
C0(1+σmax), ‖A‖ ≤ C2

0 (1+σmax)2, and ‖A−1‖ ≤ C2
0(1+ζ)(1+σmax)3, where σmax =

max1≤t≤r0
|σ(t)| and C0 = (1+ζ)(1+2L/ min(L1, L2, L3)) with L =

q

L2
1 + L2

2 + L2
3.

3 Exponential decay of the PML extension

In this section we prove the exponential decay of the PML extension (2.15). We start

with the following elementary lemma.

Lemma 2 For any zi = ai + ibi with ai, bi ∈ R, i = 1, 2, 3, such that a1b1 + a2b2 +

a3b3 ≥ 0 and a2
1 + a2

2 + a2
3 > 0, we have

Im(z2
1 + z2

2 + z2
3)1/2 ≥ a1b1 + a2b2 + a3b3

q

a2
1 + a2

2 + a2
3

.

Proof. The proof extends the proof of Lemma 3.2 in [15]. For any a, b ∈ R we know

that

Im(a + ib)1/2 = sgn(b)

s

−a +
√

a2 + b2

2
.
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Here we used the convention that z1/2 is the analytic branch of
√

z such that Re(z1/2) >

0 for any z ∈ C\(−∞, 0]. It is easy to check that Im(a + ib)1/2 is a decreasing function

in a ∈ R. Let z2
1 + z2

2 + z2
3 = a + ib, then

a + ib =

0

@

q

a2
1 + a2

2 + a2
3 + i

a1b1 + a2b2 + a3b3
q

a2
1 + a2

2

1

A

2

− (a1b2 − a2b1)
2 + (a1b3 − a3b1)

2 + (a2b3 − a3b2)
2

a2
1 + a2

2 + a2
3

.

Let

a′ = a +
(a2b1 − a1b2)

2 + (a1b3 − a3b1)2 + (a2b3 − a3b2)
2

a2
1 + a2

2 + a2
3

,

since b = 2(a1b1 + a2b2 + a3b3) ≥ 0, we have

Im(a′ + ib)1/2 =
a1b1 + a2b2 + a3b3
q

a2
1 + a2

2 + a2
3

.

On the other hand, since a′ ≥ a, we know that Im(a + ib)1/2 ≥ Im(a′ + ib)1/2. This

completes the proof. ⊓⊔
In the reminder of the paper we need the following assumption which is rather

mild in the practical applications as we are interested in the convergence of the PML

method when θ sufficiently large.

(H2) θ > r0, σ̄ =

Z θ

1
σ(t)dt ≥

p

3/2.

Lemma 3 Let (H1)-(H2) be satisfied. Then for any x ∈ Γ2 and y ∈ B̄1,

Im ρ(x̃,y) ≥ γ σ̄, γ =
Lmin

2

θLmin

(1 + θ + ζσ̄)L
≥ Lmin

2

Lmin

(2 + ζσmax)L
,

where Lmin = min(L1, L2, L3).

Proof. Let zj = x̃j −yj = (η̂(r(x))xj −yj)+ iσ̂(r(x))xj . Since r(x) = θ, |x| ≥ θLmin/2

for x ∈ Γ2 and |y| ≤ L/2 for y ∈ B̄1, we have

|η̂x| − |y| ≥ η̂(θ)θLmin/2 − L/2 = θLmin/2 + σ̄ζLmin/2 − L/2 ≥ θLmin/2, (3.1)

where we have used (H1)-(H2). This implies,

3
X

j=1

(η̂(θ)xj − yj) · σ̂(θ)xj ≥ σ̂(θ)|x|(|η̂(θ)x| − |y|) ≥ σ̄θL2
min/4.

On the other hand, since |x| ≤ θL/2 for x ∈ Γ2,

|η̂x− y| ≤ (1 + ζσ̂(θ))θL/2 + L/2 = (1 + θ + ζσ̄)L/2.

The lemma now follows from Lemma 2. ⊓⊔
In this paper we are interested in the convergence of the PML method when d = θL,

the diameter of B2, tends to infinite. The other PML parameters such as r0, ζ, σmax

are held fixed once they are chosen to satisfy the conditions imposed in (H1) and

(H3) below. In the following we will use C to denote the generic constants that are

independent of d but may depend on k, r0, ζ, σmax, and Lj , j = 1, 2, 3.
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Lemma 4 Let (H1)-(H2) be satisfied. Then for any x ∈ Γ2,y ∈ B̄1,

(i) |Gk(x̃,y)| ≤ Cd−1 e−γkσ̄;

(ii) |∂Gk(x̃,y)/∂yj | ≤ Ckd−1 e−γkσ̄ , j = 1, 2, 3;

(iii) |∂Gk(x̃,y)/∂xj | ≤ Ckd−1 e−γkσ̄ , j = 1, 2, 3;

(iv) |∂2Gk(x̃,y)/∂xi∂yj | ≤ Ck2d−1 e−γkσ̄, i, j = 1, 2, 3.

Proof. Note that when |η̂x − y| ≥ Lσ̄, since |σ̂x| ≤ σ̄L/2 for x ∈ Γ2, we have

|ρ(x̃,y)| ≥
“

|η̂x− y|2 − L2σ̄2/4
”1/2

≥ 1

2
|η̂x − y|. (3.2)

On the other hand, when |η̂x − y| ≤ Lσ̄, by Lemma 3 we know that

|ρ(x̃,y)| ≥ Im ρ(x̃,y) ≥ γσ̄ ≥ 1

2
γL−1|η̂x − y| ≥ C|η̂x− y|. (3.3)

Thus by (3.1)

|ρ(x̃,y)|−1 ≤ Cd−1, ∀x ∈ Γ2,y ∈ B̄1, (3.4)

which combines with Lemma 3 implies

|Gk(x̃,y)| ≤ Cd−1e−kImρ(x̃,y) ≤ Cd−1e−kγσ̄, ∀x ∈ Γ2,y ∈ B̄1.

This shows (i). Next, notice that, |x̃j − yj | ≤ |η̂x−y|+ σ̄L/2 for x ∈ Γ2,y ∈ B̄1. Thus

if |η̂x− y| ≥ σ̄L, by (3.2),

|x̃j − yj |
|ρ(x̃,y)| ≤ |η̂x − y| + σ̄L/2

|η̂x − y|/2 ≤ C, ∀x ∈ Γ2,y ∈ B̄1,

and if |η̂x − y| ≤ σ̄L, by Lemma 3,

|x̃j − yj |
|ρ(x̃,y)| ≤ |η̂x − y| + σ̄L/2

Imρ(x̃,y)
≤ C, ∀x ∈ Γ2,y ∈ B̄1.

Therefore

|x̃j − yj |
|ρ(x̃,y)| ≤ C, ∀x ∈ Γ2,y ∈ B̄1,

which yields
˛

˛

˛

˛

∂ρ(x̃,y)

∂yj

˛

˛

˛

˛

≤ C,

˛

˛

˛

˛

∂ρ(x̃,y)

∂xj

˛

˛

˛

˛

≤ C

˛

˛

˛

˛

∂Fj

∂xj

˛

˛

˛

˛

≤ C, ∀x ∈ Γ2,y ∈ B̄1.

Moreover, by (3.4), |ikρ−1 − ρ−2| ≤ Cd−1 + Cd−2 ≤ Cd−1. Now (ii) and (iii) follows

from the fact that

∂Gk(x̃,y)

∂xj
=

1

4π
(ikρ−1 − ρ−2)

∂ρ

∂xj
eikρ,

∂Gk(x̃,y)

∂yj
=

1

4π
(ikρ−1 − ρ−2)

∂ρ

∂yj
eikρ.

The estimate (iv) can be proved similarly by using the fact that
˛

˛

˛

˛

∂ρ(x̃,y)2

∂xi∂yj

˛

˛

˛

˛

=

˛

˛

˛

˛

−∂Fi

∂xi

δij

ρ
− ∂Fi

∂xi

x̃i − yi

ρ2
· ∂ρ

∂yj

˛

˛

˛

˛

≤ Cd−1.

This completes the proof. ⊓⊔
Now we are in the position to estimate the modified Maxwell single and double

layer potentials Ψ̃k
SL(µ) and Ψ̃k

DL(λ).
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Lemma 5 For any µ ∈ Y (Γ1), let

v(x) = ikΨ̃k
A(µ)(x) + ik−1∇̃

h

Ψ̃k
V (divΓ1

µ)(x)
i

,

be the modified Maxwell single layer potential. Then

‖n2 × Bv ‖Y (Γ2) ≤ C(1 + kd)e−kγσ̄‖µ ‖Y (Γ1), (3.5)

‖n2 × A∇× Bv ‖Y (Γ2) ≤ C(1 + kd)e−kγσ̄‖µ ‖Y (Γ1). (3.6)

Proof. We only prove (3.5). The estimate (3.6) can be proved similarly. Denote

v1(x) = Ψ̃k
A(µ)(x) =

Z

Γ1

Gk(x̃,y)µ(y)ds(y).

For any f ∈ L∞(Γ2), it is easy to see that

‖f‖H−1/2(Γ2)
= sup

φ∈H1/2(Γ2)

|〈f, φ〉Γ2
|

‖φ‖H1/2(Γ2)
≤ d1/2‖f‖L2(Γ2) ≤ Cd3/2‖f‖L∞(Γ2).

Similarly, for any λ ∈ L∞(Γ2)
3 ∩ V ′

π(Γ2), ‖λ‖V ′
π(Γ2) ≤ Cd3/2‖λ‖L∞(Γ2). Thus, from

(2.4)

‖n2 × Bv1 ‖Y (Γ2)

≤ Cd−1‖n2 × Bv1‖V ′
π(Γ2) + C‖∇ × Bv1 · n2‖H−1/2(Γ2)

≤ Cd1/2‖n2 × Bv1‖L∞(Γ2) + Cd3/2‖∇ × Bv1‖L∞(Γ2), (3.7)

which yields, since B = α0I on Γ2, where α0 = η(r0) + iσ(r0),

‖n2 × Bv1 ‖Y (Γ2) ≤ Cd1/2(‖v1‖L∞(Γ2) + d‖∇v1‖L∞(Γ2)). (3.8)

On the other hand,

‖v1‖L∞(Γ2) + d‖∇v1‖L∞(Γ2)

≤ max
x∈Γ2

“

‖Gk(x̃, ·)‖H1/2(Γ1) + d‖∇xGk(x̃, ·)‖H1/2(Γ1)

”

‖µ‖H−1/2(Γ1)
. (3.9)

For any x ∈ Γ2, since for y,y′ ∈ Γ1,

|Gk(x̃,y) − Gk(x̃,y′)| ≤ C‖∇yGk(x̃, ·)‖L∞(Γ1)|y − y′|,

we have

‖Gk(x̃, ·)‖H1/2(Γ1) ≤ CL1/2‖Gk(x̃, ·)‖L∞(Γ1) + CL3/2‖∇yGk(x̃, ·)‖L∞(Γ1).

This implies, by Lemma 4,

‖Gk(x̃, ·)‖H1/2(Γ1) ≤ CL1/2d−1(1 + kL)e−kγσ̄ . (3.10)

Similarly

‖∇xGk(x̃, ·)‖H1/2(Γ1) ≤ CkL1/2d−1(1 + kL)e−kγσ̄ . (3.11)



12

Substituting (3.10)-(3.11) into (3.8) and(3.9) we obtain

‖n2 × Bv1 ‖Y (Γ2) ≤ C(1 + kd)e−kγσ̄‖µ ‖H−1/2(Γ1)
.

It remains to estimate n2 × Bv2 with

v2(x) = ∇̃
h

Ψ̃k
V (divΓ1

µ)(x)
i

= B−1∇
h

Ψ̃k
V (divΓ1

µ)(x)
i

.

By (3.7) we have

‖n2 × Bv2 ‖Y (Γ2)

≤ Cd1/2‖∇Ψ̃k
V (divΓ1

µ)‖L∞(Γ2)

≤ Cd1/2 max
x∈Γ2

‖∇xGk(x̃, ·)‖H1/2(Γ1)‖divΓ1
µ‖H−1/2(Γ1)

≤ Ck(1 + kL)e−kγσ̄‖divΓ1
µ‖H−1/2(Γ1),

where we have used (3.11). In conclusion,

‖n2 × Bv ‖Y (Γ2)

≤ k‖n2 × Bv1 ‖Y (Γ2) + k−1‖n2 × Bv2 ‖Y (Γ2)

≤ Ck(1 + kd)e−kγσ̄‖µ‖H−1/2(Γ1)
+ C(1 + kL)e−kγσ̄‖divΓ1

µ‖H−1/2(Γ1)

≤ C(1 + kd)e−kγσ̄‖µ ‖Y (Γ1).

This completes the proof. ⊓⊔

Lemma 6 For any λ ∈ Y (Γ1), let

v(x) = Ψ̃k
DL(λ) = ∇̃ ×

h

Ψ̃k
A(λ)(x)

i

be the modified Maxwell double layer potential. Then

‖n2 × Bv ‖Y (Γ2) ≤ C(1 + kd)e−kγσ̄‖λ ‖Y (Γ1), (3.12)

‖n2 × A∇× Bv ‖Y (Γ2) ≤ C(1 + kd)e−kγσ̄‖λ ‖Y (Γ1). (3.13)

Proof. We only show (3.12). (3.13) can be proved similarly. For any x ∈ Γ2, since

v(x) = JDF∇×
h

BΨ̃k
A(λ)(x)

i

,

we have by (3.7)

‖n2 × Bv ‖Y (Γ2)

≤ Cd1/2‖n2 × A∇× BΨ̃k
A(λ)‖L∞(Γ2) + Cd3/2‖∇ × A∇× BΨ̃k

A(λ)‖L∞(Γ2)

= Cd1/2‖n2 × A∇× BΨ̃k
A(λ)‖L∞(Γ2) + Ck2d3/2‖A−1BΨ̃k

A(λ)‖L∞(Γ2),

≤ Cd1/2
“

‖∇Ψ̃k
A(λ)‖L∞(Γ2) + k2d‖Ψ̃k

A(λ)‖L∞(Γ2)

”

,

where we have used the fact that Ψ̃k
A(λ) satisfies the PML equation

∇× A∇× BΨ̃k
A(λ) − k2A−1BΨ̃k

A(λ) = 0 in R
3\B̄1.
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But

‖∇Ψ̃k
A(λ)‖L∞(Γ2) + k2d‖Ψ̃k

A(λ)‖L∞(Γ2)

≤ max
x∈Γ2

“

k2d‖Gk(x̃, ·)‖H1/2(Γ1) + ‖∇xGk(x̃, ·)‖H1/2(Γ1)

”

‖λ‖H−1/2(Γ1).

Now by using (3.10)-(3.11) we get

‖n2 × Bv ‖Y (Γ2) ≤ C(1 + kd)e−kγσ̄‖λ‖H−1/2(Γ1).

This completes the proof. ⊓⊔

4 The PML equation in the layer

We consider in this section the Dirichlet problem of the PML equation in the layer

∇× A∇× w − k2A−1w = 0 in ΩPML, (4.1)

n1 × w = 0 on Γ1, n2 × w = q on Γ2, (4.2)

where q ∈ Y (Γ2). Introduce the following sesquilinear form

c(u, v) =

Z

ΩPML
(A∇× u · ∇ × v̄ − k2A−1u · v̄)dx.

Then the weak formulation for (4.1)-(4.2) is: Given q ∈ Y (Γ2), find w ∈ H(curl; ΩPML)

such that n1 × w = 0 on Γ1, n2 × w = q on Γ2, and

c(w,v) = 0, ∀ v ∈ H0(curl; ΩPML). (4.3)

We will extend the idea in [7] to show the well-posedness of the problem (4.3) for

sufficiently large d. The first objective is to show that under the assumption (H1) the

matrix A is coercive. We start with the following elementary lemma.

Lemma 7 Let C = (cij) ∈ R
3×3 be a symmetric matrix such that c23 = c32 = 0 and

c22 = c33. Assume that c11 + c22 > 0 and c11c22 ≥ c212 + c213. Then the eigenvalues of

C is bounded below by
c11c22−(c2

12+c2
13)

c11+c22
.

Proof. It is easy to see that

det(C − λI) = (c22 − λ)(λ2 − (c11 + c22)λ + c11c22 − (c212 + c213)).

The eigenvalues of C are λ1 = c22 and λ± = 1
2 (c11 + c22 ±

√
∆), where ∆ = (c11 +

c22)2 − 4c11c22 + 4(c212 + c213) ≥ 0. It is clear that λ+ ≥ λ− and

λ− =
1

2
(c11 + c22 −

√
∆) =

1

2

4c11c22 − 4(c212 + c213)

c11 + c22 +
√

∆
≥ c11c22 − (c212 + c213)

c11 + c22
,

where we have used the fact that ∆ ≤ (c11 + c22)2 since c11c22 − (c212 + c213) ≥ 0. This

completes the proof because

λ1 = c22 ≥ c11c22
c11 + c22

≥ c11c22 − (c212 + c213)

c11 + c22
. ⊓⊔
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Lemma 8 Let (H1) be satisfied. Then

Re(A(x)ξ · ξ̄) ≥ 1

(1 + ζ2)(1 + |α|)|α|2|β|2 ξ · ξ̄, ∀ξ ∈ C
3, x ∈ ΩPML.

Proof. We only prove the lemma for x ∈ Ω±
1 . The other cases are similar. By (2.20),

write A(x) = (aij(x)) we know that for any x ∈ Ω±
1 ,

Re(A(x)ξ · ξ̄) =

3
X

i,j=1

Re(aij(x)ξiξ̄j) ≥
»

min
j=1,2,3

λj(x)

–

(ξ · ξ̄),

where λj(x), j = 1, 2, 3, are the eigenvalues of the symmetric matrix ReA(x).

We will use Lemma 7 to prove the lemma. First it is obvious that Re(a22) > 0.

Next by direct calculation we have

Re
h

(α − β)2ᾱβ̄2
i

= (σ − σ̂)2
h

(ζ2 − 1)(ηη̂2 − ησ̂2 − 2σσ̂η̂) + 2(ση̂2 − σσ̂2 + 2σ̂η̂η)
i

≥ (σ − σ̂)2(ζ2 − 1)(ηη̂2 − ησ̂2 − 2σσ̂η̂),

where we have used η̂2 ≥ σ̂2. It is easy to show that ηη̂2 − ησ̂2 − 2σσ̂η̂ ≥ −ζσσ̂2 since

ζ2 ≥ 2 by (H1). Thus

Re
(α − β)2

αβ2 ≥ −(σ − σ̂)2(ζ2 − 1)
ζσσ̂2

|α|2|β|4 ≥ − ζσσ̂2

|β|4 .

On the other hand, it is easy to check that

Re
α

β2
=

η(η̂2 − σ̂2) + 2σσ̂η̂

|β|4 ≥ ηη̂2 + σσ̂η̂

|β|4 , (4.4)

where we have used ση̂ ≥ ησ̂ from the definition of η and η̂. Therefore, since |s2| ≤
L2/2, |s3| ≤ L3/2 and |s1| = L1/2, we obtain by using (H1) that

Re(a11) ≥
ηη̂2

|β|4 − ζσσ̂2

|β|4 · 2max
i,j

L2
i

L2
j

≥ ηη̂2

|β|4 − ζ3σσ̂2

|β|4 ≥ ηη̂2

|β|4 − ηη̂2

|β|4 = 0.

This show that Re(a11) + Re(a22) > 0.

To proceed we notice that by (2.20)

Re(a11)Re(a22) − (Re(a12)
2 + Re(a13)

2)

= Re
α

β2 · 1

α
+

"

Re
(α − β)2

αβ2 · 1

α
−
„

Re
α − β

αβ

«2
#

s2
2 + s2

3

s2
1

= Re
α

β2
· 1

α
+

"

Re
α

β2
· Re

1

α
−
„

Re
1

β

«2
#

s2
2 + s2

3

s2
1

= Re
α

β2
· 1

α
− (σ − σ̂)2

|α|2|β|4
s2
2 + s2

3

s2
1

.
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By (4.4) and (H1) we know that

Re(a11)Re(a22) − (Re(a12)
2 + Re(a13)

2)

≥ η2η̂2 + σσ̂ηη̂

|α|2|β|4 − (σ − σ̂)2

|α|2|β|4 · 2max
i,j

L2
i

L2
j

≥ η̂2 + σ̂2

|α|2|β|4 +
σ2

|α|2|β|4

 

ζ2 − 2 max
i,j

L2
i

L2
j

!

≥ 1

|α|2|β|2 , (4.5)

where we have used the fact that η2η̂2 ≥ η̂2 + ζ2σ2 and (σ− σ̂)2 ≤ σ2. This completes

the proof by Lemma 8 by the fact that Re(a11) + Re(a22) ≤ (1 + ζ2)(1 + |α|). ⊓⊔
We remark that if ζ = 0, then η = η̂ = 1 and (4.5) becomes

Re(a11)Re(a22) − (Re(a12)
2 + Re(a13)

2) ≥ 1 + σσ̂

|α|2|β|4 − (σ − σ̂)2

|α|2|β|4 · 2 max
i,j

L2
i

L2
j

.

Thus, in order to guarantee the ellipticity, we require (σ − σ̂)2 · 2maxi,j
L2

i

L2
j

< 1. Since

σ − σ̂ = tσ̂′, if we take σ̂′ = c0(r0 − t)2(t − 1)2 for 1 ≤ t ≤ r0 as suggested in [7] and

used in our numerical experiments, then c0 should be taken very small. On the other

hand, there is no such restriction for the choice of ζ in (H1) by Lemma 8.

Lemma 9 Let (H1) be satisfied and fix some r1 > r0. Then any solution of the problem

(4.1)-(4.2) satisfies

‖∇ ×w‖L2(Ωr0) ≤ C‖w‖L2(Ωr1),

where Ωri = {x ∈ ΩPML : |xj | ≤ riLj/2, j = 1, 2, 3}, i = 0, 1.

Proof. The argument is standard. Let χ ∈ C∞(ΩPML) be the cut-off function such that

0 ≤ χ ≤ 1, χ = 1 in Ωr0 , χ = 0 in ΩPML\Ω̄r1 , and |∇χ| ≤ C/[(r1 − r0)Lmin/2] ≤ C.

By multiplying (4.1) by χ2w̄ ∈ H0(curl; ΩPML), we obtain
Z

ΩPML

“

A∇×w · ∇ × (χ2w̄) − k2A−1w · χ2w̄
”

dx = 0.

Since ∇× (χ2w̄) = χ∇× (χw̄) + ∇χ × (χw̄), we have
Z

ΩPML

A∇× w · ∇ × (χ2w̄)dx

=

Z

ΩPML

“

Aχ∇× w · ∇ × (χw̄) + A∇× w · ∇χ × (χw̄)
”

dx

=

Z

ΩPML

“

A∇× χw · ∇ × (χw̄) − A(∇χ × w) · ∇ × (χw̄)
”

dx

+

Z

ΩPML

“

A∇× χw · ∇χ × w̄ − A∇χ × w · ∇χ × w̄
”

dx.

On the other hand, since ‖A‖ ≤ C and ‖A−1‖ ≤ C, by using Lemma 8 and standard

argument we obtain that
Z

ΩPML

|∇ × (χw)|2dx ≤ C‖w‖2
L2(Ωr1 ).

This completes the proof. ⊓⊔
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Lemma 10 Let (H1)-(H2) be satisfied. Then any solution of the problem (4.1)-(4.2)

satisfies the following estimate

‖n2 × A∇× w ‖Y (Γ2) ≤ C(1 + kd)‖q ‖Y (Γ2) + C‖w‖L2(Ωr1 ).

Proof. Denote by D = ΩPML\Ω̄r0 . Let U ∈ H(curl;D) such that n2 × U = q on Γ2

and n × U = 0 on Γr0 . Multiplying (4.1) by w̄ − Ū and integrating by parts over D
we obtain

Z

D
(A∇× w · ∇ × w̄ − k2A−1w · w̄)dx

=

Z

D
(A∇× w · ∇ × Ū − k2A−1w · Ū)dx + 〈n × A∇×w, w〉Γr0

.

Since A = α−1
0 I in D, where α0 = α(r0), we have by taking the imaginary part of the

equation and using the standard argument that

Z

D

„

σ0

|α0|2
|∇ × w|2 + k2σ0|w|2

«

dx

≤ C(‖∇ × U‖2
L2(D) + k2‖U‖2

L2(D)) + |〈n × A∇×w, w〉Γr0
|

≤ C(1 + kd)2‖U‖2
H(curl;D) + |〈n × A∇× w,w〉Γr0

|.

The estimate holds for any U ∈ H(curl;D) such that n2×U = q on Γ2 and n×U = 0

on Γr0 . By (2.5) we get

Z

D
|∇ × w|2 + k2|w|2 ≤ C(1 + kd)2‖q ‖2

Y (Γ2) + |〈n × A∇× w,w〉Γr0
|. (4.6)

To estimate the second term, we multiply the equation (4.1) by w̄ and integrate by

parts over Ωr0 to get

Z

Ωr0

(A∇× w · ∇ × w̄ − k2A−1w · w̄)dx + 〈n × A∇× w,w〉∂Ωr0
= 0,

which implies, since n × w = 0 on Γ1,

|〈n × A∇×w, w〉Γr0
| ≤ C(‖∇ × w‖2

L2(Ωr0) + k2‖w‖2
L2(Ωr0))

≤ C‖w‖2
L2(Ωr1 ),

where we have used Lemma 9. Substitute the estimate to (4.6) we have

Z

D
|∇ × w|2 + k2|w|2 ≤ C(1 + kd)2‖q ‖2

Y (Γ2) + C‖w‖2
L2(Ωr1). (4.7)

Again by (2.5) and the equation (4.1) we have then

‖n2 × A∇× w ‖Y (Γ2) ≤ C‖A∇×w‖H(curl;D)

= C(d−2‖A∇× w‖2
L2(D) + ‖k2A−1w‖2

L2(D))
1/2.

This competes the proof by using (4.7). ⊓⊔
In the following we need the following assumption on the medium property.
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(H3) r0 max
1≤t≤r0

|σ̂′(t)| ≤ 1

2(1 + ζ2)3/2
.

The following theorem is the main result of this section.

Theorem 1 Let (H1)-(H3) be satisfied. The problem (4.1)-(4.2) has a unique solution

for sufficiently large d. Moreover, there exists a constant C > 0 independent of d such

that

‖n1 × (∇×w) ‖Y (Γ1) ≤ C‖q ‖Y (Γ2). (4.8)

We will use the duality argument to prove the theorem. We first recall the following

lemma formulated in [7, Theorem 3.2] (see also Girault and Raviart [22, Theorem 2.1]).

The lemma can be viewed as a variant of the Fredholm alternative.

Lemma 11 Let A0(·, ·), I(·, ·) be bounded sesquilinear forms on a complex Hilbert

space V with norm ‖ · ‖V . Let W be another Hilbert space with V compactly embedded

in W . Suppose that |I(v, v)| ≤ C1‖v‖V ‖v‖W for all v ∈ V and ‖v‖2
V ≤ C2|A0(v, v)|

for all v ∈ V . Set A = A0 + I and assume that the only u ∈ V satisfying A(u, v) = 0

for all v ∈ V is u = 0. Then, there exists C3 > 0 such that for all u ∈ V ,

‖u‖V ≤ C3 sup
v∈V

|A(u, v)|
‖v‖V

.

The proof of the following lemma will be given in the appendix of the paper.

Lemma 12 Let (H1)-(H3) be satisfied. Then for any U ∈ L2(R3)3 supported in Ωr1 ,

there exists a function v in H(curl; R
3) such that

∇× A∇× v − k2A−1v = A−1U in R
3. (4.9)

Moreover, we have the estimate ‖v‖H(curl;R3) ≤ C‖U‖L2(Ωr1 ).

Lemma 13 Let (H1)-(H3) be satisfied and θ > r1. Then there exists a function u in

H(curl; R
3\B̄1) such that

∇× A∇× u − k2A−1u = A−1U in R
3\B̄1, (4.10)

n1 × u = 0 on Γ1. (4.11)

Moreover, the following estimate holds

‖n2 × u ‖Y (Γ2) + ‖n2 × A∇× u ‖Y (Γ2) ≤ C(1 + kd)e−kσ0(θ−r1)Lmin/2‖U‖L2(Ωr1 ).

Proof. We first construct the function u that satisfies (4.10)-(4.11). Let v be the func-

tion defined in Lemma 12 and u1 = E(n1 × v|Γ1
) the PML extension given in (2.15).

Then

∇× A∇× (Bu1) − k2A−1(Bu1) = 0 in R
2\B̄1,

n1 × u1 = n1 × v on Γ1.

Moreover, by the argument in Lemmas 5-6 we know that

‖nr1 × Bu1‖Y (Γr1) + ‖nr1 × A∇× Bu1‖Y (Γr1 ) ≤ C(1 + kd)‖n1 × v‖Y (Γ1).(4.12)
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It is clear that u = v − Bu1 satisfies (4.10)-(4.11). It remains to show that u satisfies

the desired estimate.

Since A = α−1
0 I outside Ωr1 , we know that u is the solution of a time-harmonic

Maxwell scattering problem with the complex wave number k̃ = kα0 = k(η0 + iσ0),

η0, σ0 > 0. By the Stratton-Chu integral representation we have, for x ∈ R
3\Ω̄r1 ,

u(x) = Ψ k̃
SL(µ)(x) + Ψ k̃

DL(λ)(x),

where λ = nr1 × u on Γr1 , µ = 1
ik̃

nr1 ×∇× u on Γr1 , and

Ψ k̃
SL(µ)(x) = ik̃Ψ k̃

A(µ)(x) + ik̃−1∇
h

Ψ k̃
V (divΓr1

µ)(x)
i

∀x ∈ R
3\Ω̄r1 ,

Ψ k̃
DL(λ)(x) = ∇×

h

Ψ k̃
A(λ)(x)

i

∀x ∈ R
3\Ω̄r1

with the vector and scalar single layer potentials

Ψ k̃
A(λ)(x) =

Z

Γr1

Gk̃(x,y)λ(y)dx, Ψ k̃
V (φ)(x) =

Z

Γr1

Gk̃(x,y)φ(y)dx.

Recall that Gk̃(x,y) = eik̃|x−y|

4π|x−y| . For any x ∈ Γ2,y ∈ Γr1 , |x − y| ≥ (θ − r1)Lmin/2.

Thus |Gk̃(x,y)| ≤ Cd−1e−kσ0(θ−r1)Lmin/2 for x ∈ Γ2,y ∈ Γr1 . Similarly, we have

|∇xGk̃(x,y)| + |∇yGk̃(x,y)| ≤ Ckd−1e−kσ0(θ−r1)Lmin/2, ∀x ∈ Γ2,y ∈ Γr1

|∇x∇yGk̃(x,y)| ≤ Ck2d−1e−kσ0(θ−r1)Lmin/2, ∀x ∈ Γ2,y ∈ Γr1 .

By the similar argument in Lemma 5 and Lemma 6, we can obtain

‖n2 × u ‖Y (Γ2) + ‖n2 × A∇× u ‖Y (Γ2)

≤ C(1 + kd)e−kσ0(θ−r1)Lmin/2(‖λ ‖Y (Γr1 ) + ‖µ ‖Y (Γr1 )).

This completes the proof since by (4.12) and Lemma 12

‖λ ‖Y (Γr1 ) + ‖µ ‖Y (Γr1 ) ≤ C‖v‖H(curl;Ωr1) ≤ C‖U‖L2(Ωr1 ). ⊓⊔

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. Multiply the equation (4.1) by u, integrate by parts over ΩPML,

and use (4.10), we have

Z

ΩPML

A−1U · wdx + 〈n × A∇× w, ū〉∂ΩPML + 〈n × A∇× u, w̄〉∂ΩPML = 0.

This yields, by n1 × u = 0, n1 × w = 0 on Γ1,

˛

˛

˛

˛

Z

ΩPML

A−1U · wdx

˛

˛

˛

˛

≤ |〈n2 × A∇× w,n2 × ū × n2〉Γ2
| + 〈n2 × A∇× u, q̄ × n2〉Γ2

|
≤ ‖n2 × A∇× w ‖Y (Γ2)‖n2 × u ‖Y (Γ2) + ‖n2 × A∇× u ‖Y (Γ2)‖q ‖Y (Γ2).
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By Lemma 10 and Lemma 13 we know that

‖n2 × A∇× w ‖Y (Γ2)‖n2 × u ‖Y (Γ2)

≤ C
h

(1 + kd)‖q‖Y (Γ2) + ‖w‖L2(Ωr1)

i

· C(1 + kd)e−kσ0(θ−r1)Lmin/2‖U‖L2(Ωr1)

≤ C
h

‖q‖Y (Γ2) + (1 + kd)e−kσ0(θ−r1)Lmin/2‖w‖L2(Ωr1)

i

‖U‖L2(Ωr1), (4.13)

where we have used the fact that (1+ kd)2e−kσ0(θ−r1)Lmin/2 ≤ C for sufficiently large

d. By Lemma 13 and the fact that (1+ kd)e−kσ0(θ−r1)Lmin/2 ≤ C for sufficiently large

d we have

‖n2 × A∇× u ‖Y (Γ2) ≤ C‖U‖L2(Ωr1 ). (4.14)

Thus combining (4.12)-(4.14) and taking U = χ1Aw̄, where χ1 is the characteristic

function of Ωr1 , we obtain

‖w‖L2(Ωr1 ) ≤ C(1 + kd)e−kσ0(θ−r1)Lmin/2‖w‖L2(Ωr1 ) + C‖q ‖Y (Γ2). (4.15)

To prove the uniqueness of the problem (4.1)-(4.2), we set q = 0. Then it is easy to see

from (4.15) that w = 0 in Ωr1 for sufficiently large d. The uniqueness of the solution

then follows by the principle of unique continuation. The existence of the solution

then follows from Lemma 11 and the uniqueness (see [7, Theorem 5.1] for a similar

argument).

To show the desired estimate (4.15), we first note that it follows from (4.15) that

for sufficiently large d

‖w‖L2(Ωr1 ) ≤ C‖q ‖Y (Γ2).

Now by using the trace inequality (2.5) and Lemma 9

‖n1 ×∇× w ‖Y (Γ1) ≤ C(‖∇ × w‖L2(Ωr0 ) + L−2‖w‖L2(Ωr0)) ≤ C‖w‖L2(Ωr1).

This completes the proof. ⊓⊔

5 The convergence of the PML method

We first reformulate (2.17)-(2.18) in the bounded domain Ω1 by imposing the boundary

condition

n1 × (∇× Ê)|Γ1
= Ĝe(n1 × Ê|Γ1

),

where the approximate Calderon operator Ĝe : Y (Γ1) → Y (Γ1) is defined as

Ĝe(λ) :=
1

ik
n1 × (∇× u), (5.1)

with u satisfying

∇× A(∇× u) − k2A−1u = 0 in ΩPML, (5.2)

n1 × u = λ on Γ1, n2 × u = 0 on Γ2. (5.3)
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By Theorem 1 we know that Ĝe is well-defined for sufficiently large d. Based on the

operator Ĝe, let â : H(curl; Ω1) × H(curl; Ω1) → C be the sesquilinear form

â(Ê,v) =

Z

Ω1

(∇× Ê · ∇ × v̄ − k2Ê · v̄)dx + ik〈Ĝe(n1 × Ê),n1 × v × n1〉Γ1
.

Then the weak formulation of (2.17)-(2.18) on the bounded domain Ω1 is: Given g ∈
Y (ΓD), find Ê ∈ H(curl; Ω1) such that nD × Ê = g on ΓD, and

â(Ê,v) = 0, ∀v ∈ HD(curl; Ω1). (5.4)

Lemma 14 Let (H1)-(H3) be satisfied. Then, for sufficiently large d, we have

‖ (Ĝe − Ge)(λ) ‖Y (Γ1) ≤ C(1 + kd)e−kγσ̄‖λ ‖Y (Γ1),

for any λ ∈ Y (Γ1).

Proof. For any λ ∈ Y (Γ1), let E(λ) be the PML extension defined in (2.15). It is

easy to see that 1
ikn1 × E(λ) = Ge(λ) on Γ1. Now by (5.2)-(5.3), we know that

(Ge − Ĝe)(λ) = 1
ikn1 × (∇× v), where v satisfies

∇× A(∇× v) − k2A−1v = 0 in ΩPML,

n1 × v = 0 on Γ1, n2 × v = n2 × BE(λ) on Γ2.

By Theorem 1, Lemma 5 and Lemma 6, we have

‖n1 × (∇× Bv) ‖Y (Γ1) ≤ C‖n2 × BE(λ) ‖Y (Γ2) ≤ C(1 + kd)e−kγσ̄‖λ ‖Y (Γ1).

This completes the proof. ⊓⊔
The following theorem is the main result of this section.

Theorem 2 Let (H1)-(H3) be satisfied. Then for sufficiently large d > 0, the PML

problem (2.17)-(2.18) has a unique solution Ê ∈ H(curl; Ω2). Moreover, we have the

following estimate

‖E − Ê‖H(curl;Ω1) ≤ C(1 + kd)e−kγσ̄‖n1 × E ‖Y (Γ1). (5.5)

Proof. First by (2.9) and (5.4) we have, for any v ∈ HD(curl; Ω1),

â(E − Ê,v) = â(E,v) − a(E,v)

= ik〈(Ĝe − Ge)(n1 × E),n1 × v × n1〉Γ1
. (5.6)

By Lemma 1, Lemma 6 and Lemma 14 we know that for sufficiently large d,

sup
v∈HD(curl;Ω1)

|â(E,v)|
‖v‖HD(curl;Ω1)

≥ C‖E‖HD(curl;Ω1) − C(1 + kd)e−kγσ̄‖n1 × E‖Y (Γ1)

≥ C‖E‖HD(curl;Ω1).

This shows that the PML problem (2.17)-(2.18) has a unique solution. The desired

estimate then follows from (5.6), the above inf-sup condition, and Lemma 14. This

completes the proof. ⊓⊔
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6 Finite element approximation

We start by introducing the weak formulation of the PML problem (2.17)-(2.18). Let

b(u,v) =

Z

Ω2

(A∇× u · ∇ × v̄ − k2A−1u · v̄)dx. (6.1)

Then the weak formulation of (2.17)-(2.18) is: Given g ∈ Y (ΓD), find Ê ∈ H(curl, Ω2),

such that nD × Ê = g on ΓD, n2 × Ê = 0 on Γ2, and

b(Ê,v) = 0, ∀v ∈ H0(curl; Ω2). (6.2)

Let Mh be a regular partition of the domain Ω2 whose elements may have curved

boundaries on ΓD. We will use the lowest order Nédélec edge element [31] for which

the finite element space Uh over Mh is defined by

Uh = {u ∈ H(curl; Ω2) : u|K = aK + bK × x,∀aK , bK ∈ R
3,∀K ∈ Mh}.

Degrees of freedom of functions u ∈ Uh on every K ∈ Mh are
R

ei
u · dl, i = 1, . . . , 6,

where e1, . . . , e6 are the six edges of K. Denote by
◦
Uh = Uh ∩H0(curl; Ω2). The finite

element approximation to (6.2) reads as follows: Find Eh ⊂ Uh such that n×Eh = gh

on ΓD, n × Eh = 0 on Γ2, and

b(Eh,vh) = 0, ∀vh ∈
◦
Uh. (6.3)

Here gh is some edge element approximation of g on ΓD. The existence and uniqueness

of the discrete problem (6.3) is a difficult problem due to the non-coerciveness of the

sesquilinear form b : H(curl; Ω2) × H(curl; Ω2) → C. By extending the argument in

[30, Section 7.2] for the Maxwell cavity problem, the unique existence of (6.3) for a

sufficiently small mesh size h < h∗ can be proved by using the unique existence of the

continuous problem (6.2). In this paper we are interested in a posteriori error estimates

and the associated adaptive algorithm. Thus in the following, we simply assume the

discrete problem (6.3) has a unique solution Eh.

For any K ∈ Mh, we denote by hK its diameter. Let Fh be the set of all faces

of the mesh Mh that do not lie on ΓD and Γ2. For any F ∈ Fh, hF stands for its

diameter. For any interior face F which is a common face of K1 and K2 in Mh, we

define the following jump residuals across F

[[n × (A∇× Eh)]] = nF × (A∇× (Eh|K1
− Eh|K2

)),

[[k2A−1Eh · n]] = k2A−1(Eh|K1
− Eh|K2

) · nF ,

using the convention that the unit norm vector nF to F points from K2 to K1. The

local error indicator ηK for any K ∈ Mh is defined as

η2
K = h2

K‖ k2A−1Eh −∇× (A∇× Eh) ‖2
L2(K)

+ h2
K‖ div(k2A−1Eh) ‖2

L2(K)

+ hK‖ [[n × (A∇× Eh)]] ‖2
L2(∂K) + hK‖ [[k2A−1Eh · n]] ‖2

L2(∂K).

The following theorem is the main result of this paper.
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Theorem 3 Let (H1)-(H3) be satisfied. Then for sufficiently large d, there exists a

constant C depending on the minimum angle of the mesh Mh but independent of d

such that the following a posteriori error estimate is valid

‖E − Eh‖H(curl;Ω1) ≤ C‖ g − gh ‖Y (ΓD) + C
“

X

K∈Mh

η2
K

”1/2

+C(1 + kd)e−kγσ̄‖n1 × Eh ‖Y (Γ1).

The proof of this theorem will be given in Section 7. One of the key ingredients of the

a posteriori error analysis is the Birman-Solomyak decomposition theorem in Lipschitz

domains [6], [21], [13]. More precisely, the following result whose proof can be found in

[21], [13] will be used.

Lemma 15 For any v ∈ H0(curl, Ω2), there exists a vs ∈ H0(curl, Ω2) ∩ H1(Ω2)3

and a ϕ ∈ H1
0(Ω2) such that v = vs + ∇ϕ in Ω2, and

‖vs ‖H1(Ω2) + ‖ϕ ‖H1(Ω2) ≤ C‖v‖H(curl;Ω2).

Let Vh be the standard H1-conforming linear finite element space over Mh and
◦
V h = H1

0 (Ω2)∩ Vh. In Section 7, we will use the Clément operator rh : H1
0(Ω2) →

◦
V h

in [18] and the Beck-Hiptmair-Hoppe-Wohlmuth interpolation operator πh : H1(Ω2)3∩
H0(curl; Ω2) →

◦
Uh in [4] which satisfy the following estimates

‖ϕ − rhϕ ‖L2(K) ≤ ChK‖∇ϕ ‖L2(K̃), (6.4)

‖ϕ − rhϕ ‖L2(F ) ≤ Ch
1/2
F ‖∇ϕ ‖L2(F̃ ), (6.5)

‖v − πhv ‖L2(K) ≤ ChK‖∇v ‖L2(K̃), (6.6)

‖v − πhv ‖L2(F ) ≤ Ch
1/2
F ‖∇v ‖L2(F̃ ), (6.7)

where Ã is the union of elements in Mh with non-empty intersection with A, A =

K ∈ Mh or F ∈ Fh.

7 A posteriori error analysis

In this section, we prove the a posteriori error estimates in Theorem 3. To begin with,

let u ∈ H(curl; Ω1) such that nD×u = g−gh on ΓD , then E−Eh−u ∈ HD(curl; Ω1).

Thus by (2.10) we have

‖E − Eh − u‖H(curl;Ω1) ≤ C sup
v∈HD(curl;Ω1)

|a(E − Eh − u,v)|
‖v‖H(curl;Ω1)

.

Since |a(u,v)| ≤ C‖u‖H(curl;Ω1)‖v‖H(curl;Ω1), we obtain

‖E − Eh‖H(curl;Ω1) ≤ C‖u‖H(curl;Ω1) + C sup
v∈HD(curl;Ω1)

|a(E − Eh,v)|
‖v‖H(curl;Ω1)

.
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The above estimate is valid for any u ∈ H(curl; Ω1) such that n × u = g − gh on ΓD ,

we get by the trace theorem

‖E − Eh‖H(curl;Ω1) ≤ C‖g − gh ‖Y (ΓD) (7.1)

+ C sup
v∈HD(curl;Ω1)

|a(E − Eh,v)|
‖v‖H(curl;Ω1)

.

For any v ∈ HD(curl; Ω1), we extend v to ΩPML, denoted by E(v), such that

w = E(v)|ΩPML satisfies

∇× A∇× w − k2A−1w = 0 in ΩPML, (7.2)

n1 × w = n1 × v on Γ1, n2 × w = 0 on Γ2. (7.3)

We know from Theorem 1 that E(v) is well-defined. Moreover, by (5.1)

Ĝe(n1 × v) =
1

ik
n1 ×∇× E(v).

Lemma 16 (Error representational formula) For any v ∈ H(curl; Ω1), let ṽ in H(curl; Ω2)

be its extension defined by

ṽ = E(v̄).

Then for any vh ∈
◦
Uh, we have

a(E− Eh,v) = −b(Eh, ṽ − vh) + ik〈(Ĝe − Ge)(n1 × Eh),n1 × v × n1〉Γ1
.

Proof. By (2.9) and the definition of the sesquilinear forms a(·, ·) and b(·, ·), we have

a(E− Eh,v)

= −
Z

Ω1

“

∇× Eh · ∇ × v̄ − k2Eh · v̄
”

dx

−ik〈Ge(n1 × Eh),n1 × v × n1〉Γ1

= −b(Eh, ṽ) +

Z

ΩPML

“

A∇× Eh · ∇ × ¯̃v − k2A−1Eh · ¯̃v
”

dx

−ik〈Ge(n1 × Eh),n1 × v × n1〉Γ1
.

But ¯̃v = E(v̄) satisfies

∇× A∇× ¯̃v − k2A−1 ¯̃v = 0 in ΩPML,

we have
Z

ΩPML

“

A∇×Eh · ∇ × ¯̃v − k2A−1Eh · ¯̃v
”

dx

= 〈n × Eh,n × A∇× ṽ × n〉Γ1∪Γ2
.

Since n × Eh = 0 on Γ2 and n = −n1 on Γ1 for the domain ΩPML, we then get
Z

ΩPML

“

A∇×Eh · ∇ × ¯̃v − k2A−1Eh · ¯̃v
”

dx

= −〈n1 × Eh,n1 × A∇× ṽ × n1〉Γ1

= −〈n1 × E(Eh),n1 × A∇× ṽ × n1〉Γ1
,
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where E(Eh) is the extension of Eh in ΩPML by (7.2)-(7.3). Now integrating by parts

twice and using the equation (7.2) we obtain

Z

ΩPML

“

A∇× Eh · ∇ × ¯̃v − k2A−1Eh · ¯̃v
”

dx

=

Z

ΩPML

“

A∇× E(Eh) · ∇ × ¯̃v − k2A−1
E(Eh) · ¯̃v

”

dx

= −〈n1 × ¯̃v,n1 ×∇× E(Eh) × n1〉Γ1

= ik〈Ĝe(n1 × Eh),n1 × ṽ × n1〉Γ1
.

This completes the proof because ṽ = v on Γ1. ⊓⊔
Now we are in the position to prove the main result of this paper.

Proof of Theorem 3. Our starting point is (7.1). To estimate the second term in

(7.1), for any v ∈ H(curl; Ω1) such that nD × v = 0 on ΓD, we denote ṽ = E(v̄)

its extension to ΩPML. Thus ṽ ∈ H0(curl; Ω2). By Lemma 15, there exists vs ∈
H0(curl; Ω2) ∩ H1(Ω2)3 and ϕ ∈ H1

0(Ω2) such that ṽ = vs + ∇ϕ, and

‖vs‖H1(Ω2) + ‖ϕ‖H1(Ω2) ≤ C‖ṽ‖H(curl;Ω2).

By Theorem 1, ‖ṽ‖H(curl;ΩPML) ≤ C‖n1×v‖H−1/2(Div;Γ1)
. Thus by the trace theorem

in H(curl; Ω1), we have

‖vs‖H1(Ω2) + ‖ϕ‖H1(Ω2) ≤ C‖v‖H(curl;Ω1). (7.4)

Let

vh = ∇rhϕ + πhvs,

where rh : H1
0 (Ω2) →

◦
V h and πh : H1(Ω2)

3∩H0(curl; Ω2) →
◦
Uh are the interpolation

operators defined at the end of Section 6. By the error representation formula in Lemma

16, we have

a(E −Eh, v)

= −b(Eh, vs + ∇ϕ − (πhvs + ∇rhϕ)) + ik〈(Ĝe − Ge)(x̂× Eh), (n1 × v) × n1〉Γ1

= −
Z

Ω2

“

A∇× Eh · ∇ × (v̄s − πhv̄s) − k2A−1Eh · (v̄s − πhv̄s)
”

dx

+

Z

Ω2

k2A−1Eh · ∇(ϕ̄ − rhϕ̄)dx

+ik〈(Ĝe − Ge)(n1 ×Eh), (n1 × v) × n1〉Γ1

:= I + II + III.

By using integration by parts, the estimates (6.4)-(6.7), and standard argument in the

a posteriori error analysis, we obtain

|I + II| ≤ C
“

X

K∈Mh

η2
K

”1/2
(‖ϕ‖H1(Ω2) + ‖vs‖H1(Ω2))

≤ C
“

X

K∈Mh

η2
K

”1/2
‖v‖H(curl;Ω1),
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where we have used (7.4) in the last inequality. By Lemma 6 and trace inequality for

H(curl; Ω1), we have

|III| ≤ C(1 + kd)e−kγσ̄‖n1 × Eh ‖Y (Γ1)‖v‖H(curl;Ω1).

This completes the proof by (7.1). ⊓⊔

8 Numerical examples

In this section we report two numerical examples to illustrate the performance of the

adaptive anisotropic PML method. The implementation of the adaptive finite element

method is based on the parallel adaptive finite element package PHG [33], [37] which

is based on the unstructured mesh and MPI. The computations are performed on the

cluster LSSC-III in the State Key Laboratory of Scientific and Engineering Computing

of Chinese Academy of Sciences.

First we choose L1, L2, L3 such that D ⊂ B1. We take ζ =
√

2 maxi,j
Li
Lj

in η =

1 + ζσ and choose the medium property σ such that σ̂′ = c0(r0 − r)2(r − 1)2 for

1 ≤ r ≤ r0. Then we choose r0, c0 and θ such that the exponentially decaying factor:

ω = e−kγσ̄ ≤ 10−8, (8.1)

which makes the PML error negligible compared with the finite element discretization

errors. Once the PML region and the medium property are fixed, we use the standard

finite element adaptive strategy to modify the mesh according to the a posteriori error

estimate.

The adaptive finite element algorithm is based on the a posteriori error estimate

in Theorem 3. With the local error estimator ηK in Theorem 3 we define the global a

posteriori error estimate

E :=

0

@

X

K∈Mh

η2
K

1

A

1/2

.

Now we describe the adaptive algorithm used in this paper.

Algorithm. Given a tolerance tol > 0 and the initial mesh M0. Set Mh = M0.

1. Solve the discrete problem (6.3) on M0.

2. Compute the local error estimator ηK on each K ∈ M0, the global error estimate

E .

3. While E > tol do

– Refine the elements in M̂h ⊂ Mh, where M̂h is the minimum subset of Mh

such that

0

@

X

K∈M̂h

η2
K

1

A

1/2

≥ 1

2
E .

– Solve the discrete problem (6.3) on Mh.

– Compute the local error estimator ηK on each K ∈ Mh, the global error

estimate E .
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end while.

This discrete algebraic system is solved by the MUMPS (MUltifrontal Massively

Parallel Sparse direct Solver) [1], [2].

Example 1. Let the scatterer D = [−0.5, 0.5] × [−1, 1] × [−1.5, 1.5], L1 = 2, L2 =

3, L3 = 4 and k = 4π. We consider the scattering problem whose exact solution is

known as

E = M0
1(|x|, x̂) = ∇× {xh

(1)
1 (|x|)Y 0

1 (x̂)},

where h
(1)
1 (|x|) is the spherical Hankel function of the first kind and order one, Y 0

1 (x̂)

is the zeroth spherical harmonics of order one. In this example we are interested in

the accuracy of our adaptive PML method and the influence of different choices of the

thickness of the PML layer to the performance of the adaptive PML method. For this

purpose we choose different thickness of the layer d1 = 4, d2 = 6, d3 = 8, θ = 3, r0 = 2,

c0 = 13 or d1 = 6, d2 = 9, d3 = 12, θ = 4, r0 = 2, c0 = 10.

Figures 8.2 shows the logN-log||E − Eh||H(curl) and logN-logE curves with dif-

ferent choices of θ, where N is the number of the degrees of freedom. It indicates

clearly that the meshes and the associated numerical compexity are quasi-optimal:

||E − Eh||H(curl) ≈ CN− 1
3 and E ≈ CN− 1

3 are valid asymptotically. This figure also

shows the total computational costs are insensitive to the choice of the thickness of the

PML layer using the adaptive PML method.

Fig 8.3 shows the far fields in the direction (1, 0, 0) when θ = 3.

Example 2. Let the scatterer be the screen Σ = [−0.5, 0.5]× [−0.5, 0.5]×{0}. We

set the incident wave Ei = (eikx3 , 0, 0)T . Let k = 2π and take L1 = L2 = 2, L3 = 1,

d1 = d2 = 4, d3 = 2, r0 = 2 and c0 = 13.

Figure 8.4 indicates that the meshes and the associated numberical compexity are

quasi-optimal: E ≈ CN− 1
3 is valid asymptotically. The adaptive mesh on the x3 = 0

is plotted in Figure 8.5 with 1370291 elements (3237584 DOFs). We observe the mesh

is much refined around the scatterer.

Figures 8.6 shows the modulus of the far fields on the x1 −x2 plan for the different

choices of the incident waves. We observe the far fields converge rather fast in our

adaptive mesh refinement steps.

9 Appendix: Proof of Lemma 12

We prove the lemma by a constructive argument. For any z ∈ C̄
++ = {z : Re(z) ≥

0, Im(z) ≥ 0} and x ∈ R
3, we let x̃z = Fz(x) = βz(r(x))x, where βz(r(x)) = 1 +

zσ̂(r(x)). Let γ(z) be the multivalued analytic function satisfying γ(z)2 = z defined on

the Riemann surface corresponding to
√

z. We define the stretched complex distance

d(x̃z, ỹz) = γ
h

(x̃1
z − ỹ1

z)2 + (x̃2
z − ỹ2

z)2 + (x̃3
z − ỹ3

z)2
i

, ∀x,y ∈ R
3,

where x̃z = (x̃1
z, x̃2

z, x̃3
z)T , ỹz = (ỹ1

z , ỹ2
z , ỹ3

z)T . We require that for z ∈ R, d(x̃z, ỹz) is

on the top sheet of the Riemann surface in which Reγ(z) ≥ 0. By the argument in the

proof of [28, Theorem 2.8] we know that Jz(y)Gk(x̃z, ỹz), where Jz(y) = det(DFz(y))
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Fig. 8.2 The quasi-optimality of the adaptive mesh refinemensts of the error ||E −
Eh||H(curl;(Ω1)) and the a posteriori error estimate for Example 1 (θ = 3, 4).

and Gk(x̃z, ỹz) = eikd(x̃z,ỹz)

4πd(x̃z,ỹz)
, is the fundamental solution of the stretched Helmholtz

equation

(∆̃z + k2)Gk(x̃z, ỹz) = −δ(x− y), (9.1)

where ∆̃z = J−1
z div(JzDF−1

z DF−T
z ∇). When z = ζ + i, we write Fζ+i(x) = F(x),

x̃ζ+i = x̃, and ∆̃ζ+i = ∆̃, to be in conform with the notation in section 2.

Lemma 17 Let (H1)-(H3) be satisfied. We have

|d(x̃, ỹ)| ≥ C|x − y|, −Im[d(x̃, ỹ)] ≤ C, ∀x,y ∈ R
3. (9.2)

Proof. By definition we have x̃i − ỹi = ai + ibi, where

ai = xi − yi + ζ(σ̂(r(x))xi − σ̂(r(y))yi), bi = σ̂(r(x))xi − σ̂(r(y))yi.
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Fig. 8.3 The module of the far fields in the direction (1, 0, 0) for Example 1 (θ = 3).

Simple calculation shows that

|d(x̃, ỹ)|4 =

"

3
X

i=1

(a2
i − b2i )

#2

+ 4

"

3
X

i=1

aibi

#2

=

3
X

i=1

(a2
i + b2i )2 + 2(a1a2 + b1b2)

2 + 2(a1a3 + b1b3)
2 + 2(a2a3 + b2b3)

2

− 2(a1b2 − a2b1)
2 − 2(a1b3 − a3b1)

2 − 2(a2b3 − a3b2)
2.

It is easy to see by Young’s inequality that

a2
i + b2i = (xi − yi)

2 + (1 + ζ2)b2i + 2ζ(xi − yi)bi ≥
1

1 + ζ2 |xi − yi|2.

On the other hand, for a = (a1, a2, a3)
T ,b = (b1, b2, b3)

T , we have

(a1b2 − a2b1)2 + (a1b3 − a3b1)
2 + (a2b3 − a3b2)

2 = |a × b|2 = |(x − y) × b|2.
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Fig. 8.4 The quasi-optimality of the adaptive mesh refinemensts of the a posteriori error
estimate for Example 2.

For x,y ∈ R
3\Ω̄r0 we have σ̂(r(x)) = σ̂(r(y)) = σ0 and consequently |(x−y)×b| = 0.

If one of x,y is in Ωr0 , without loss of generality, we may assume y ∈ Ωr0 , we have

|(x − y) × b| = |(x − y) × (σ̂(r(x))x− σ̂(r(y))y)|
= |(x − y) × y(σ̂(r(x)) − σ̂(r(y)))|
≤ |x − y| · r0L/2 · max

1≤t≤r0

|σ̂′(t)|‖∇r‖L∞(R3)|x − y|.

From the definition we know that ‖∇r‖L∞(R3) ≤ maxi=1,2,3(Li/2)
−1. Now by (H1)

we have

|(x − y) × b| ≤ r0 max
i=1,2,3

(L/Li) max
1≤t≤r0

|σ̂′(t)||x− y|2

≤ r0(1 + ζ2)1/2 max
1≤t≤r0

|σ̂′(t)||x − y|2.

Thus by the assumption (H3) we obtain

|d(x̃, ỹ)|4 ≥ 1

(1 + ζ2)2
|x − y|4 − 2|(x − y) × b|2 ≥ 1

2(1 + ζ2)2
|x − y|4.

This shows the first inequality in (9.2). To show the second estimate in (9.2). We

first notice that if x,y ∈ R
3\Ω̄r0 , Im

“

P3
i=1(x̃i − ỹi)

2
”

= 2
P3

i=1 aibi ≥ 0. Thus

Im[d(x̃, ỹ)] ≥ 0. For y ∈ Ωr0 , if |x| ≥ r0L, then σ̂(r(x)) = σ0, σ̂(r(y)) ≤ σ0, |y| ≤
r0L/2, and thus

3
X

i=1

aibi ≥ (x− y) · (σ̂(r(x))x− σ̂(r(y))y) ≥ σ0|x|(|x| − 2|y|) ≥ 0.
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Fig. 8.5 The adaptive mesh on the x3 = 0 plane with 1370291 elements (3237584 DOFs) for
Example 2.
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Fig. 8.6 The module of the far fields on the x1 − x2 plane for Example 2 when Ei =
(ei2πx3 , 0, 0)T , d1 = d2 = 4, d3 = 2.
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This implies Im[d(x̃, ỹ)] ≥ 0. For the remaining case of y ∈ Ωr0 , |x| ≤ r0L, we obviously

have −Im[d(x̃, ỹ)] ≤ |d(x̃, ỹ)| ≤ C. This completes the proof. ⊓⊔
Now we are in the position to complete the proof Lemma 12.

Proof of Lemma 12. Let H̃1
0 (R3) denote the completion of C∞

0 (R3) in the norm

‖∇v‖L2(R3). By Lemma 8

Re(A−1(x)ξ, ξ̄) = Re(A(A−1ξ), A−1ξ) ≥ C|A−1ξ|2 ≥ C|ξ|2, ∀ξ ∈ C
3,x ∈ R

3.

Thus for any U ∈ L2(R3)3 supported in Ωr1 , there exists a function φ ∈ H̃1
0(R3) such

that

(A−1∇φ,∇v)R3 = (A−1U,∇v)R3 , ∀v ∈ H̃1
0(R3). (9.3)

Let Ũ = U −∇φ, then ∇ · (A−1Ũ) = 0 in R
3 and ‖Ũ‖L2(R3) ≤ C‖U‖L2(Ωr1 ). Now

we define

v1(x) =

Z

R3

Gk(x̃, ỹ)J(y)B−1(y)Ũ(y)dy, B = DFT . (9.4)

Since J(y)Gk(x̃, ỹ) is the fundamental solution of the stretched Helmholtz equation,

we know that

(∆̃ + k2)v1 = −B−1Ũ. (9.5)

Moreover, since ∇̃x̃Gk(x̃, ỹ) = −∇̃ỹGk(x̃, ỹ), we have

∇̃ · v1(x) = −
Z

R3

∇̃ỹGk(x̃, ỹ) · J(y)B−1(y)Ũ(y)dy

= −
Z

R3

DF−T (y)∇yGk(x̃, ỹ) · J(y)B−1(y)Ũ(y)dy

= −
Z

R3

∇yGk(x̃, ỹ) · A−1(y)Ũ(y)dy.

Thus ∇̃·v1 = 0 because ∇·(A−1Ũ) = 0 and Gk(x̃, ỹ) decays exponentially as |y| → ∞
for fixed x. Now by the well-known identity −∆̃ = ∇̃×∇̃−∇̃ · ∇̃, we obtain from (9.5)

that

∇̃ × ∇̃ × v1 − k2v1 = B−1Ũ,

which by (2.16) is equivalent to

∇× A∇× (Bv1) − k2A−1(Bv1) = A−1Ũ.

This shows that v = Bv1 −∇φ satisfies the equation (4.9).

Now we estimate ‖v‖H(curl;R3). By (9.3) we have ‖∇φ‖L2(R3) ≤ C‖U‖L2(Ωr1),

which yields

‖v‖H(curl,R3) ≤ ‖Bv1‖H(curl,R3) + C‖U‖L2(Ωr1) ≤ C‖v1‖H1(R3) + C‖U‖L2(Ωr1).

It is clear that

‖v1‖H1(R3\Ω̄r1) ≤
‚

‚

‚

‚

‚

Z

Ωr0

Gk(x̃, ỹ)J(y)B−1(y)Ũ(y)dy

‚

‚

‚

‚

‚

H1(R3\Ω̄r1 )

+

‚

‚

‚

‚

‚

Z

R3\Ω̄r0

Gk(x̃, ỹ)J(y)B−1(y)Ũ(y)dy

‚

‚

‚

‚

‚

H1(R3\Ω̄r1)
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Since Gk(x̃, ỹ) decays exponentially as |x| → ∞ for y ∈ Ωr0 , we have

‚

‚

‚

‚

‚

Z

Ωr0

Gk(x̃, ỹ)J(y)B−1(y)Ũ(y)dy

‚

‚

‚

‚

‚

H1(R3\Ω̄r1)

≤ C‖Ũ‖L2(Ωr0).

Notice that for x ∈ R
3\Ω̄r1 and y ∈ R

3\Ω̄r0 , σ̂(r(x)) = σ̂(r(y)) = σ0, by Lemma 2 we

have Im[d(x̃, ỹ)] ≥ σ0|x − y|, and consequently

‚

‚

‚

‚

‚

Z

R3\Ω̄r0

Gk(x̃, ỹ)J(y)B−1(y)Ũ(y)dy

‚

‚

‚

‚

‚

H1(R3\Ω̄r1 )

≤ C

‚

‚

‚

‚

‚

Z

R3\Ω̄r0

e−kσ0|x−y|

|x − y| |Ũ(y)|dy
‚

‚

‚

‚

‚

H1(R3\Ω̄r1)

.

Denote by h1(x,y) = e−kσ0|x−y|(|x−y|−1+|x−y|−2). By Cauchy-Schwarz inequality

we have

‚

‚

‚

‚

‚

Z

R3

e−kσ0|x−y|

|x − y| |Ũ(y)|dy
‚

‚

‚

‚

‚

H1(R3)

≤ C

Z

R3

˛

˛

˛

˛

Z

R3

h1(x,y)|Ũ(y)|dy
˛

˛

˛

˛

2

dx

≤ C

Z

R3

Z

R3

h1(x,y)|Ũ(y)|2dydx ·
Z

R3

h1(x,y)dy

≤ C‖Ũ‖L2(R3). (9.6)

Thus we have ‖v1‖H1(R3\Ω̄r1) ≤ C‖Ũ‖L2(R3). To estimate ‖v1‖H1(Ωr1), we split the

integration in (9.4) in two domains Ω2r1 and R
3\Ω̄2r1 . Since Gk(x̃, ỹ) decays expo-

nentially as |y| → ∞ for x ∈ Ωr1 , we have

‚

‚

‚

‚

‚

Z

R3\Ω̄2r1

Gk(x̃, ỹ)J(y)B−1(y)Ũ(y)dy

‚

‚

‚

‚

‚

H1(Ωr1)

≤ C‖Ũ‖L2(R3).

For the integral in Ω2r1 , we first note that since r(x) is Lipschitz continuous, |x̃i− ỹi| ≤
C|x − y|. Thus the first estimate in (9.2) implies that |x̃i − ỹi|/|d(x̃, ỹ)| ≤ C. By the

second estimate in (9.2) we have |eikd(x̃,ỹ)| ≤ C. Thus |∂Gk(x̃, ỹ)/∂xi| ≤ Ch2(x,y)

for any x,y ∈ R
3, where h2(x,y) = |x − y|−1 + |x − y|−2. Now it is easy to see that

‚

‚

‚

‚

‚

Z

Ω2r1

Gk(x̃, ỹ)J(y)B−1(y)Ũ(y)dy

‚

‚

‚

‚

‚

H1(Ωr1)

≤ C

‚

‚

‚

‚

‚

Z

Ω2r1

h2(x,y)|Ũ(y)|dy
‚

‚

‚

‚

‚

L2(Ω2r1 )

≤ C‖Ũ‖L2(Ω2r1 ),

where we have used the similar argument in (9.6) in the last inequality. This shows

‖v1‖H1(Ωr1) ≤ C‖Ũ‖L2(R3) ≤ C‖U‖L2(Ωr1 ) and completes the proof. ⊓⊔
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