Skip to main content
Log in

Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a streamline diffusion shock capturing spacetime discontinuous Galerkin (DG) method to approximate nonlinear systems of conservation laws in several space dimensions. The degrees of freedom are in terms of the entropy variables and the numerical flux functions are the entropy stable finite volume fluxes. We show entropy stability of the (formally) arbitrarily high order accurate method for a general system of conservation laws. Furthermore, we prove that the approximate solutions converge to the entropy measure valued solutions for nonlinear systems of conservation laws. Convergence to entropy solutions for scalar conservation laws and for linear symmetrizable systems is also shown. Numerical experiments are presented to illustrate the robustness of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barth, T.J.: Numerical methods for gas-dynamics systems on unstructured meshes. In: Kroner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics of Conservation Laws. Lecture Notes in Computational Science and Engineering, Vol. 5, pp. 195–285. Springer, Berlin (1999)

  2. Barth, T.J.: An introduction to upwind finite volume and finite element methods: some unifying and contrasting themes. In: VKI Lecture Series 2006-01, 34th CFD-higher order discretization methods (EUA4X) (2006)

  3. Cockburn, B., Coquel, F., LeFloch, P.G.: Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal. 32(3), 687–705 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Lin, S-y, Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  7. DiPerna, R.J.: Measure valued solutions to conservation laws. Arch. Rat. Mech. Anal. 88(3), 223–270 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fjordholm, U.S., Mishra, S., Tadmor, E.: Energy preserving and energy stable schemes for the shallow water equations. In: Cucker, F., Pinkus, A., Todd, M. (eds.) Foundations of Computational Mathematics. Proceeding of the FoCM Held in Hong Kong 2008. London Mathematical Society Lecture Notes Series, Vol. 363, pp. 93–139 (2009)

  10. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. J. FoCM (2012, to appear)

  11. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrary order accurate essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lim, H., Yu, Y., Glimm, J., Li, X.L., Sharp, D.H.: Chaos, transport and mesh convergence for fluid mixing. Acta Math. Appl. Sin. 24(3), 355–368 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Godlewski, E., Raviart, P.A.: Hyperbolic systems of conservation laws. In: Mathematiques et Applications. Ellipses Publ., Paris (1991)

  14. Harten, A., Engquist, B., Osher, S., Chakravarty, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Google Scholar 

  15. Hiptmair, R., Jeltsch, R., Kressner, D.: Numerische Mathematik für Studiengang Rechnergestützte Wissenschaften. Lecture Notes. ETH, Zurich (2007)

    Google Scholar 

  16. Hiltebrand, A., Mishra, S.: An arbitrarily high order accurate convergent DG method for scalar conservation laws (2012, In preparation)

  17. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for CFD I: symmetric forms of the compressible Euler and Navier–Stokes equations and the second law of thermodynamics. Comput. Meth. Appl. Mech. Eng. 54, 223–234 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 54105436 (2009)

    Google Scholar 

  19. Jaffre, J., Johnson, C., Szepessy, A.: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Model. Meth. Appl. Sci. 5(3), 367–386 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Johnson, C., Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49(180), 427–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Johnson, C., Hansbo, P., Szepessy, A.: On the convergence of shock capturing streamline diffusion methods for hyperbolic conservation laws. Math. Comput. 54(189), 107–129 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete entropy conservative schemes of arbitraty order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge university press, Cambridge (2002)

    Book  MATH  Google Scholar 

  24. Persson, P.-O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329–345 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory schemes—II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shu, C.W.: High-order ENO and WENO schemes for computational fluid dynamics. In: High-Order Methods for Computational Physics. In: Barth, T.J., Deconinck, H. (eds.) Lecture Notes in Computational Science and Engineering, Vol. 9, pp. 439–582. Springer, Berlin (1999)

  27. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comp. 49, 91–103 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numerica. 12, 451–512 (2003)

    Google Scholar 

Download references

Acknowledgments

SM thanks Dr. T. J. Barth, NASA, Ames, USA for interesting discussions on spacetime DG methods and for providing the particular forms of the shock capturing operators used by him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiltebrand, A., Mishra, S. Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126, 103–151 (2014). https://doi.org/10.1007/s00211-013-0558-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0558-0

Mathematics Subject Classification

Navigation