Skip to main content
Log in

Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study locally mass conservative approximations of coupled Darcy and Stokes flows on polygonal and polyhedral meshes. The discontinuous Galerkin (DG) finite element method is used in the Stokes region and the mimetic finite difference method is used in the Darcy region. DG finite element spaces are defined on polygonal and polyhedral grids by introducing lifting operators mapping mimetic degrees of freedom to functional spaces. Optimal convergence estimates for the numerical scheme are derived. Results from computational experiments supporting the theory are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, D., Brezzi, F.: Mixed and non-conforming finite element methods: implementation, post-processing and error estimates. Math. Model. Numer. Anal. 19, 7–35 (1985)

    MATH  MathSciNet  Google Scholar 

  4. Arnold, D., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods. Theory, Computation and Applications, vol. 11, pp. 89–101. Springer, Berlin (2000)

    Chapter  Google Scholar 

  5. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beavers, G., Joseph, D.: Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  7. Beirão da Veiga, L., Gyrya, V., Lipnikov, K., Manzini, G.: Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228, 7215–7232 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beirão da Veiga, L., Lipnikov, K.: A mimetic discretization of the Stokes problem with selected edge bubbles. SIAM J. Sci. Comput. 32, 875–893 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berndt, M., Lipnikov, K., Moulton, J.D., Shashkov, M.: Convergence of mimetic finite difference discretizations of the diffusion equation. East West J. Numer. Math. 9, 253–284 (2001)

    MathSciNet  Google Scholar 

  10. Berndt, M., Lipnikov, K., Shashkov, M., Wheeler, M., Yotov, I.: Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43, 1728–1749 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brenner, S.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73, 1067–1087 (2004)

    Article  MATH  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, Vol. 15. Springer, New York (2002)

  13. Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal. 43, 277–295 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43, 1872–1896 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meth. Appl. Sci. 16, 275–297 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. Sci. 15, 1533–1552 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998) (electronic)

    Google Scholar 

  18. Crouzeix, M., Falk, R.: Non conforming finite elements for the Stokes problem. Math. Comput. 52, 437–456 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. Rouge 7, 33–75 (1973)

    MathSciNet  Google Scholar 

  20. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193, 2565–2580 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. (2002)

  22. Droniou, J., Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105, 35–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Droniou J., Eymard R., Gallouët T., Herbin R. A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. (M3AS) 20:265–295 (2010)

    Google Scholar 

  24. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general non-conforming meshes, SUSHI: a scheme using stabilisation and hybrid interfaces (2009). doi:10.1093/imanum/drn084. Published on line June 1009

  25. Fortin, M., Soulie, M.: A non-conforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Eng. 19, 505–520 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Gatica, G.N., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. In: Springer Series in Computational Mathematics, Vol. 5. Springer, Berlin (1986)

  29. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74, 53–84 (2005)

    Article  MATH  Google Scholar 

  30. Girault, V., Yotov, I., Vassilev, D.: A mortar multiscale finite element method for Stokes–Darcy flows (In preparation)

  31. Grisvard, P.: Elliptic Problems in Nonsmooth domains. Pitman, London (1985)

    MATH  Google Scholar 

  32. Hyman, J., Shashkov, M.: The approximation of boundary conditions for mimetic finite difference methods. Comput. Math. Appl. 36, 79–99 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hyman, J., Shashkov, M.: Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion. Progr. Electromagn. Res. 32, 89–121 (2001)

    Article  Google Scholar 

  34. Hyman, J., Shashkov, M., Steinberg, S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132, 130–148 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kuznetsov, Y.: Efficient iterative solvers for elliptic finite element problems on non-matching grids. Russian J. Numer. Anal. Math. Model. 10, 187–211 (1995)

    MATH  Google Scholar 

  36. Lasaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Math. Res. Center, Univ. of Wisconsin-Madison, Vol. 33, pp. 89–123. Academic Press, New York (1974).

  37. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Google Scholar 

  38. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. 1. Springer, New York (1972)

    Book  Google Scholar 

  39. Lipnikov, K., Shashkov, M., Svyatskiy, D.: The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys. 211, 473–491 (2005)

    Article  MathSciNet  Google Scholar 

  40. Lipnikov, K., Shashkov, M., Yotov, I.: Local flux mimetic finite difference methods. Numerische Mathematik 112, 115–152 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lomtev, I., Karniadakis, G.: A discontinuous galerkin method for the Navier–Stokes equations. Int. J. Numer. Meth. Fluids 29, 587–603 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mardal, K.A., Tai, X.-C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002) (electronic)

    Google Scholar 

  43. Margolin, L., Shashkov, M., Smolarkiewicz, P.: A discrete operator calculus for finite difference approximations. Comput. Meth. Appl. Mech. Eng. 187, 365–383 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mu, M., Xu, J.: A two-grid method of a mixed stokes-darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–516 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  47. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Russell, T., Wheeler, M., Yotov, I.: Superconvergence for control-volume mixed finite element methods on rectangular grids. SIAM J. Numer. Anal. 45, 223–235 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Rusten, T., Winther, R.: A preconditioned iterative methods for saddle point problems. SIAM J. Matrix Anal. Appl. 13, 887–904 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  51. Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. l, 93–101 (1971)

  52. Shashkov, M., Steinberg, S.: Support-operator finite difference algorithms for general elliptic problems. J. Comput. Phys. 118, 131–151 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  53. Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput. 13, 419–452 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  54. Vassilev, D., Yotov, D.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31, 3661–3684 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  55. Warburton, T., Karniadakis, G.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 1–32 (1999)

    Article  MathSciNet  Google Scholar 

  56. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  57. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26, 437–455 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danail Vassilev.

Additional information

K. Lipnikov was partially supported by the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics.

I. Yotov was partially supported by the DOE Grant DE-FG02-04ER25618 and the NSF Grant DMS 1115856.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipnikov, K., Vassilev, D. & Yotov, I. Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids. Numer. Math. 126, 321–360 (2014). https://doi.org/10.1007/s00211-013-0563-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0563-3

Mathematics Subject Classification

Navigation