Skip to main content
Log in

Fast structured LU factorization for nonsymmetric matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, an approximate LU factorization algorithm is developed for nonsymmetric matrices based on the hierarchically semiseparable matrix techniques. It utilizes a technique involving orthogonal transformations and approximations to avoid the explicit computation of the Schur complement in each factorization step. A modified compression method is further developed for the case when some diagonal blocks have small singular values. The complexity of the methods proposed in this paper is analyzed and shown to be \(O(N^2k)\), where \(N\) is the dimension of matrix and \(k\) is the maximum off-diagonal (numerical) rank. Depending on the accuracy and efficiency requirements in the approximation, this factorization can be used either as a direct solver or a preconditioner. Numerical results from applications are included to show the efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atkinson, K., Shampine, L.: Algorithm 876: Solving Fredholm integral equations of the second kind in MATLAB. ACM Trans. Math. Softw. 34(4), 21:1–21:20 (2008)

    Google Scholar 

  2. Bebendorf, M.: Hierarchical Matrices. Lecture Note in Computational Science and Engineering. Spring-Verlag, Berlin (2008)

    Google Scholar 

  3. Chan, T.F.: Rank revealing QR factorizations. Linear Algebr. Appl. 88/89, 67–82 (1987)

    Article  Google Scholar 

  4. Chan, T.F., Hansen, P.C.: Some applications of the rank-revealing QR factorization. SIAM J. Sci. Stat. Comput. 13(3), 727–741 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chandrasekaran, S., Dewilde, P., Gu, M., Pals, T., Sun, X., van der Veen, A.J., White, D.: Some fast algorithms for sequentially semiseparable representation. SIAM J. Matrix Anal. Appl. 27, 341–364 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chandrasekaran, S., Gu, M., Sun, X., Xia, J.: A superfast algorithm for Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29, 1247–1266 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chandrasekaran, S., Gu, M., Pals, T.: Fast and stable algorithms for hierarchically semi-separable representations. Department of Mathematics, University of California, Berkeley, Technical report (2004)

  8. Chandrasekaran, S., Gu, M., Pals, T.: A fast ULV decomposition solver for hierarchically semiseparable representations. SIAM J. Matrix Anal. Appl. 28, 603–622 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cheng, H., Gimbutas, Z., Martinsson, P.G., Rokhlin, V.: On the compression of low rank matrices. SIMA J. Sci. Comput. 26, 1389–1404 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Christiansen, S.: Numerical solution of an integral equation with a logarithmic kernel. BIT 11, 276–287 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

    Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  13. Gu, M., Li, X.S., Vassilevski, P.S.: Direction-preserving and Schur-monotonic semiseparable approximations of symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 31, 2650–2664 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hackbusch, W.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Part I: introduction to \({\cal H}\). Computing 62, 89–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive \({\cal H}^{2}\)-matrices. Computing 69, 1–35 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hackbusch, W., Khoromskij, B.: A sparse matrix arithmetic based on \({\cal {H}}\)-matrices. Part II: application to multi-dimensional problems. Computing 64, 21–47 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Hackbusch, W., Khoromskij, B., Sauter, S.: On \({\cal H}^{2}\)-matrices. In: Bungartz, H., Hoppe, R.H.W., Zenger, C. (eds.) Lecture on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

    Chapter  Google Scholar 

  18. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34(4), 1331–1356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, S.G., Gu, M., Wu, C.J., Xia, J.: New efficient and robust HSS Cholesky factorization of symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 33, 886–904 (2011)

    Article  MathSciNet  Google Scholar 

  21. Liberty, E., Woolfe, F., Martinsson, P.G., Rokhlin, V., Tygert, M.: Randomized algorithms for the low-rank approximation of matrices. PNAS 104(51), 20167–20172 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lyons, W.: Fast Algorithms with Applications to PDEs. PhD Thesis, University of California, Santa Barbara (2005)

  23. Martinsson, P.G.: A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix. SIAM. J. Matrix Anal. Appl. 32, 1251–1274 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Martinsson, P.G., Rokhlin, V., Tygert, M.: A randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 30, 47–68 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sheng, Z., Dewilde, P., Chandrasekaran, S.: Algorithms to solve hierarchically semi-separable systems. Oper. Theory Adv. Appl. 176, 255–294 (2007)

    Article  MathSciNet  Google Scholar 

  26. Starr, P.: On the numerical solution of one-dimensional integral and differential equations. Thesis advisor: Rokhlin, V., Research Report YALEU/DCS/RR-888. Department of Computer Science, Yale University, New Haven (1991)

  27. Xia, J.: On the complexity of some hierarchical structured matrices. SIAM J. Matrix Anal. Appl. 33, 388–410 (2011)

    Article  Google Scholar 

  28. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithm for hierarchically semiseparable matrices. Numer. Linear Algebr. Appl. 17, 953–976 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix. Anal. Appl. 31, 1382–1411 (2009)

    Article  MathSciNet  Google Scholar 

  30. Xia, J., Gu, M.: Robust approximate Choleksy factorization of rank-structured symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 31, 2899–2920 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xia, J.: Efficient structured multifrontal factorization for general sparse matrices. SIAM J. Sci. Comput. 35(2), A832–A860 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengguo Li.

Additional information

This paper is dedicated to Professor Lothar Reichel on the occasion of his 60th birthday.

The work of Gu was supported in part by NSF Award CCF-0830764 and by the DOE Office of Advanced Scientific Computing Research under contact number DE-AC02-05CH11231. The work of Cheng was supported by Natural Science Project of NUDT (No. JC120201) and NSF of Hunan Province in China (No. 13JJ2001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Gu, M. & Cheng, L. Fast structured LU factorization for nonsymmetric matrices. Numer. Math. 127, 35–55 (2014). https://doi.org/10.1007/s00211-013-0582-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0582-0

Mathematics Subject Classification

Navigation