Skip to main content
Log in

A three level finite element approximation of a pattern formation model in developmental biology

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper concerns a second-order, three level piecewise linear finite element scheme 2-SBDF (Ruuth, in J Math Biol 34:148–176, 1995) for approximating the stationary (Turing) patterns of a well-known experimental substrate-inhibition reaction-diffusion (‘Thomas’) system (Thomas, in Analysis and control of immobilized enzyme systems, pp 115–150, 1975). A numerical analysis of the semi-discrete in time approximations leads to semi-discrete a priori bounds and an optimal error estimate. The analysis highlights the technical challenges in undertaking the numerical analysis of multi-level (\({\ge } 3\)) schemes. We illustrate the effectiveness of the numerical method by repeating an important classical experiment in mathematical biology, namely, to approximate the Turing patterns of the Thomas system over a schematic mammal skin domain with fixed geometry at various scales. We also make some comments on the correct procedure for simulating Turing patterns in general reaction-diffusion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. See http://www.mathworks.com/matlabcentral/fileexchange/ for further details.

  2. The physics review paper [20] has been cited 4068 times (ISI Web of Knowledge).

References

  1. Akrivis, G., Crouzeix, M.: Linearly implicit methods for nonlinear parabolic equations. Math. Comp. 73(246), 613–635 (2003)

    Article  MathSciNet  Google Scholar 

  2. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67(222), 457–477 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Akrivis, G., Smyrlis, Y.-S.: Implicit–explicit BDF methods for the Kuramoto-Sivashinsky equation. Appl. Numer. Math. 51, 151–169 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Apostol, T.M.: Mathematical Analysis, 2nd edn. Addison-Wesley Publishing Co., Reading (1974)

  6. Arcuri, P., Murray, J.D.: Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Math. Biol. 24, 141–165 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. Mps-Siam Series on Optimization, vol. 6. SIAM, Philadelphia (2006)

  9. Ball, J.M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Q. J. Math. Oxford 2(28), 473–486 (1977)

    Article  Google Scholar 

  10. Barrett, J.W., Blowey, J.F.: An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer. Math. 72, 1–20 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bramble, J.H., Pasciak, J.E., Sammon, P.H., Thomée, V.: Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comp. 52(186), 339–367 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ceniceros, H.D.: A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Anal. 1(4), 1–14 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Chen, W.: Implicit–explicit multistep finite element methods for nonlinear convection-diffusion problems. Numer. Methods Partial Differ. Equ. 17(2), 93–104 (2001)

    Article  MATH  Google Scholar 

  14. Chen, W.: Implicit-explicit multistep finite element methods for a semiconductor device with heat conduction. J. Math. Study 35(2), 109–123 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Chen, W.: Implicit-explicit multistep finite element methods for the semiconductor device problem. J. Syst. Sci. Complex. 16(1), 101–113 (2003)

    MathSciNet  Google Scholar 

  16. Chen, W.: Implicit-explicit multistep finite element mixed finite element methods for the transient behavior of a semiconductor device. Acta Math. Sci. Ser. B Engl. Ed. 3, 386–398 (2003)

  17. Chueh, K.N., Conley, C.C., Smoller, J.A.: Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26(2), 373–392 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. In: Studies in Mathematics and its Applications, vol. 4. North-Holland, Amsterdam (1979)

  19. Crank, N., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 43, 50–67 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Modern Phy. 65(3), 851–1060 (1993)

    Article  Google Scholar 

  21. Edelstein-Keshet, L.: Mathematical Models in Biology. Classics in Applied Mathematics, vol. 46. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005)

  22. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19(1–2), 33–55 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  25. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit-explicit linear multistep methods. Appl. Numer. Math. 25, 193–205 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Garvie, M.R.: Analysis of a Reaction-Diffusion System of \(\lambda -\omega \) type. University of Durham, PhD thesis (2003)

  28. Garvie, M.R., Blowey, J.F.: A reaction-diffusion system of \(\lambda -\omega \) type. Part II: Numerical analysis. Eur. J. Appl. Math. 16(5), 621–646 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Garvie, M.R., Trenchea, C.: Finite element approximation of spatially extended predator-prey interactions with the Holling type II functional response. Numer. Math. 107, 641–667 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. In: Lecture Notes in Mathematics, vol. 840. Springer, New York (1981)

  31. Holden, A.V., Markus, M., Othmer, H.G. (eds.): Nonlinear Wave Processes in Excitable Media. Plenum, New York (1991)

    MATH  Google Scholar 

  32. Hollis, S.L., Martin, R.H., Pierre, M.: Global existence and boundedness in reaction-diffusion systems. SIAM J. Math. Anal. 18(3), 744–761 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hundsdorfer, W., Verwer, J.: Numerical solution of time-dependent advection-diffusion-reaction equations. In: Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003)

  34. Keller, E.F., Segel, L.A.: Travelling bands of bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Article  MATH  Google Scholar 

  35. Layton, W., Trenchea, C.: Stability of two IMEX methods, CNLF-AB2, for uncoupling systems of evolution equations. Appl. Numer. Math. 62(2), 112–120 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Levin, S.A., Segel, L.A.: Hypothesis for origin of plankton patchiness. Nature 259, 659 (1976)

    Article  Google Scholar 

  37. Lewis, P., Goodman, A., Miller, J.: A pseudo-random number generator for the system/360. IBM Syst. J. 8(2), 136–143 (1969)

    Article  Google Scholar 

  38. Li, D., Zhang, C., Wang, W., Zhang, Y.: Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations. Appl. Math. Model. 35, 2711–2722 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lubich, C., Ostermann, A.: Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Appl. Numer. Math. Trans. IMACS 22(1–3), 276–292 (1996)

    MathSciNet  Google Scholar 

  40. Madzvamuse, A.: Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys. 214, 239–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Maini, P.K.: Using mathematical models to help understand biological pattern formation. C. R. Biol. 327, 225–234 (2004)

    Article  Google Scholar 

  42. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Moore, P.: Finite element multistep multiderivative schemes for parabolic equations. J. Inst. Math. Appl. 21, 331–334 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  44. Murray, J.D.: On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil. Trans. R. Soc. Lond. B 295, 473–496 (1981)

    Article  Google Scholar 

  45. Murray, J.D.: On pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199 (1981)

    Article  Google Scholar 

  46. Murray, J.D.: Parameter space for turing instability in reaction diffusion mechanisms: a comparison of models. J. Theor. Biol. 98, 143–163 (1982)

    Article  Google Scholar 

  47. Murray, J.D.: Mathematical biology. Biomathematics Texts, vol. 19. Springer, Berlin (1993)

  48. Nie, Y.-Y., Thomeé, V.: A lumped mass finite-element method with quadrature for a non-linear parabolic problem. IMA J. Numer. Anal. 5, 371–396 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  49. Ochoa, F.L., Murray, J.D.: A non-linear analysis for spatial structure in a reaction-diffusion model. Bull. Math. Biol. 45(6), 917–930 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  50. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

  51. Piotrowska, M.J.: Activator-inhibitor system with delay and pattern formation. Math. Comput. Modelling 42(1–2), 123–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  52. Quarteroni, A.: Numerical models for differential problems. In: MS &A. Modeling, Simulation and Applications, vol. 2. Springer, Milan (2009)

  53. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Texts in Applied Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)

  54. Rionero, S., Vitiello, M.: Long-time behavior of the solutions of Murray–Thomas model for interacting chemicals. Math. Comput. Simul. 82, 1597–1614 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  55. Ruuth, J.R.: Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 34, 148–176 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  56. Sgura, I., Bozzini, B., Lacitignola, D.: Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math. 236, 4132–4147 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  57. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. In: Applied Mathematical Sciences, vol. 68. Springer, New York (1997)

  58. Thomas, D.: Artificial enzyme membranes, transport, memory and oscillatory phenomena. In: Thomas, D., Kernevez, J.P. (eds.) Analysis and Control of Immobilized Enzyme Systems, pp. 115–150. Springer, Berlin (1975)

    Google Scholar 

  59. Thomas, J.W.: Numerical partial differential equations: finite difference methods. In: Texts in Applied Mathematics, vol. 22. Springer, New York (1995)

  60. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  61. Varah, J.M.: Stability restrictions on second order, three level finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 17(2), 300–309 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  62. Zhang, K., Wong, J.C.-F., Zhang, R.: Second-order implicit-explicit scheme for the Gray-Scott model. J. Comput. Appl. Math. 213, 559–581 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  63. Zlámal, M.: Finite element multistep discretizations of parabolic boundary value problems. Math. Comp. 29(130), 350–359 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank James Blowey (University of Durham, UK) for some helpful comments during the preparation of this manuscript and for the comments of the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus R. Garvie.

Appendix: Pseudo random number generation

Appendix: Pseudo random number generation

In the interests of repeatability, we give details of the pseudo random number generator D_UNIFORM_01 [37] used to perturb the coefficients \(z_{rs}\) of the double Fourier series (4.4). It is not the most efficient random number generator, but it is simple enough to be easily implemented in different languages.

We take \(z_{rs}\) equal to the \(n\)th random number \(r_n\) drawn from D_UNIFORM_01, where \(n = r + 20(s - 1)\). The random numbers are calculated recursively via

$$\begin{aligned} r_n&= s_n / (2^{31}-1),\\ s_n&= 16807 *s_{n-1}*\mod (2^{31} - 1), \end{aligned}$$

for \(n=1,2,\dots \) ‘seeded’ with \(s_0\). In all our simulations we used \(s_0=4\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvie, M.R., Trenchea, C. A three level finite element approximation of a pattern formation model in developmental biology. Numer. Math. 127, 397–422 (2014). https://doi.org/10.1007/s00211-013-0591-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0591-z

Mathematics Subject Classification

Navigation