Skip to main content
Log in

Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the local convergence rates of several most widely used single-vector Newton-like methods for the solution of a degenerate eigenvalue of nonlinear algebraic eigenvalue problems of the form \(T(\lambda )v=0\). This problem has not been completely understood, since the Jacobian associated with Newton’s method is singular at the desired eigenpair, and the standard convergence theory is not applicable. In fact, Newton’s method generally converges only linearly towards singular roots. In this paper, we show that the local convergence of inverse iteration, Rayleigh functional iteration and the Jacobi–Davidson method are at least quadratic for semi-simple eigenvalues. For defective eigenvalues, Newton-like methods converge only linearly in general. The results are illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for polynomial eigenvalue problems using contour integral. Japan J. Indus. Appl. Math. 27, 73–90 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans Math Softw, 39 (2013) article No. 7

  3. Betcke, T., Voss, H.: A Jacobi-Davidson type projection method for nonlinear eigenvalue problems. Future Gener. Comput. Syst. 20, 363–372 (2004)

    Article  Google Scholar 

  4. Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Alg. Appl. 436, 3839–3863 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Decker, D.W., Kelley, C.T.: Newton’s method at singular points I. SIAM J. Numer. Anal. 17, 66–70 (1980a)

  6. Decker, D.W., Kelley, C.T.: Newton’s method at singular points II. SIAM J. Numer. Anal. 17, 465–471 (1980b)

  7. Decker, D.W., Keller, H.B., Kelley, C.T.: Convergence rates for Newton’s method at singular points. SIAM J. Numer. Anal. 20, 296–314 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hale, N., Higham, N.J., Trefethen, L.N.: Computing \(A^\alpha \), \(log(A)\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46, 2505–2523 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jarlebring, E., Michiels, W.: Analyzing the convergence factor of residual inverse iteration. BIT Numer. Math. 51, 937–957 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kozlov, V., Maz’ia, V.: Differential Equations with Operator Coefficients. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  11. Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numerische Mathematik 114, 355–372 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. The Matrix Market. http://math.nist.gov/MatrixMarket/, NIST, (2007)

  15. Mehrmann, V., Schröder, C.: Nonlinear eigenvalue and frequency response problems in industrial practice. J. Math. Indus. 1 (2011), article No. 7

  16. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik 27, 121–151 (2005)

    MathSciNet  Google Scholar 

  17. Moro, J., Burke, J.V., Overton, M.L.: On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM J. Matrix Anal. Appl. 18, 793–817 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moro, J., Dopico, F.M.: First order eigenvalue perturbation theory and the newton diagram. In: Drmac, Z., Hari, V., Sopta, L., Tutek, Z., Veselic K. (eds.) Applied Mathematics and Scientific Computing, pp. 143–175. Kluwer Academic Publishers (2003)

  19. Neumaier, A.: Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 22, 914–923 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Osborne, M.R.: Inverse iteration, Newton’s method, and non-linear eigenvalue problems. The Contributions of Dr. J. H. Wilkinson to Numerical Analysis, Symposium Proceedings Series, 19, pp. 21–53, The Institute of Mathematics and its Applications, Southend-on-Sea, Essex (1978)

  21. Ruhe, A.: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674–689 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schreiber, K.: Nonlinear eigenvalue problems: Newton-type methods and nonlinear Rayleigh functionals, Ph.D thesis, Department of Mathematics, TU Berlin, (2008)

  23. Schwetlick, H., Schreiber, K.: Nonlinear Rayleigh functionals. Linear Alg. Appl. 436, 3991–4016 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Smith, B.C., Knyazev, A.V.: Sparse (1–3)d Laplacian on a rectangular grid with exact eigenpairs, MATLAB Central File Exchange, http://www.mathworks.com/matlabcentral/fileexchange/27279-laplacian-in-1d-2d-or-3d/content/laplacian.m

  25. Spence, A., Poulton, C.: Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204, 65–81 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Su, Y., Bai, Z.: Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32, 201–216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Szyld, D.B., Xue, F.: Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems. Numerische Mathematik 123, 333–362 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Szyld, D.B., Xue, F.: Several properties of invariant pairs of nonlinear algebraic eigenvalue problems. IMA J Numer Anal (2014). doi:10.1093/imanum/drt026

  29. Szyld, D.B., Xue, F.: Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. II. Accelerated algorithms. Numer Math. (2014). doi:10.1007/s00211-014-0640-2

  30. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 234–286 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the referees for their comments and suggestions, which helped improve our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xue.

Additional information

This work was supported by the U. S. National Science Foundation under grant DMS-1115520.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szyld, D.B., Xue, F. Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms. Numer. Math. 129, 353–381 (2015). https://doi.org/10.1007/s00211-014-0639-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0639-8

Mathematics Subject Classification (2000)

Navigation