Skip to main content
Log in

Wideband nested cross approximation for Helmholtz problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article, the construction of nested bases approximations to discretizations of integral operators with oscillatory kernels is presented. The new method has log-linear complexity and generalizes the adaptive cross approximation method to high-frequency problems. It allows for a continuous and numerically stable transition from low to high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alpert, B.K., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput. 14, 159–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amini, S., Profit, A.: Multi-level fast multipole solution of the scattering problem. Eng. Anal. Bound. Elements 27(5), 547–654 (2003)

    Article  MATH  Google Scholar 

  3. Anderson, C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)

    Article  MATH  Google Scholar 

  4. Banjai, L., Hackbusch, W.: Hierarchical matrix techniques for low- and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28(1), 46–79 (2008). doi:10.1093/imanum/drm001

    Article  MATH  MathSciNet  Google Scholar 

  5. Barnes, J., Hut, P.: A hierarchical \(\cal O({N}\log {N})\) force calculation algorithm. Nature 324, 446–449 (1986)

    Article  Google Scholar 

  6. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bebendorf, M.: Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. In: Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63. Springer, Berlin (2008). ISBN 978-3-540-77146-3

  8. Bebendorf, M., Venn, R.: Constructing nested bases approximations from the entries of non-local operators. Numer. Math. 121(4), 609–635 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Börm, S.: \({\cal H}^{2}\)-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)

  10. Börm, S., Löhndorf, M., Melenk, J.M.: Approximation of integral operators by variable-order interpolation. Numer. Math. 99(4), 605–643 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brakhage, H., Werner, P.: Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brandt, A.: Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Commun. 65, 24–38 (1991)

    Article  MATH  Google Scholar 

  13. Buffa, A., Hiptmair, R.: A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42(2), 621–640 (2003)

    Article  MathSciNet  Google Scholar 

  14. Burton, A.J., Miller, G.F.: The application of integral equation methods to the numerical solution of boundary value problems. Proc. R. Soc. Lond. A232, 201–210 (1971)

    Article  MathSciNet  Google Scholar 

  15. Candès, E., Demanet, L., Ying, L.: A fast butterfly algorithm for the computation of Fourier integral operators. Multiscale Model. Simul. 7(4), 1727–1750 (2009). doi:10.1137/080734339

    Article  MATH  MathSciNet  Google Scholar 

  16. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica 21, 89–305 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cheng, H., Crutchfield, W.Y., Gimbutas, Z., Greengard, L.F., Ethridge, J.F., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys. 216(1), 300–325 (2006). doi:10.1016/j.jcp.2005.12.001

    Article  MATH  MathSciNet  Google Scholar 

  18. Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Engquist, B., Ying, L.: Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput. 29(4), 1710–1737 (2007, electronic)

  20. Engquist, B., Ying, L.: A fast directional algorithm for high frequency acoustic scattering in two dimensions. Commun. Math. Sci. 7(2), 327–345 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Francia, G.T.D.: Degrees of freedom of an image. J. Opt. Soc. Am. 59(7), 799–803 (1969)

    Article  Google Scholar 

  22. Giebermann, K.: Schnelle Summationsverfahren zur numerischen Lösung von Integralgleichungen für Streuprobleme im \(\mathbb{R}^3\). Ph.D. thesis, Universität Karlsruhe (1997)

  23. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal H}\)-matrices. Computing 70, 295–334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  25. Greengard, L.F., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica, vol. 6, pp. 229–269. Cambridge University Press, Cambridge (1997)

  27. Hackbusch, W.: A sparse matrix arithmetic based on \(\cal H\)-matrices. Part I: introduction to \(\cal H\)-matrices. Computing 62(2), 89–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive \({\cal H}^{2}\)-matrices. Computing 69(1), 1–35 (2002)

  29. Hackbusch, W., Khoromskij, B.N.: A sparse \(\cal H\)-matrix arithmetic: general complexity estimates. J. Comput. Appl. Math. 125(1–2), 479–501 (2000). Numerical analysis 2000, vol. VI, Ordinary differential equations and integral equations

  30. Hackbusch, W., Khoromskij, B.N.: A sparse \(\cal H\)-matrix arithmetic. Part II: application to multi-dimensional problems. Computing 64(1), 21–47 (2000)

    MATH  MathSciNet  Google Scholar 

  31. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\cal H}^{2}\)-matrices. In: Bungartz, H.J., Hoppe, R.H.W., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

  32. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Messner, M., Schanz, M., Darve, E.: Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys. 231, 1175–1196 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Michielssen, E., Boag, A.: A multilevel matrix decomposition for analyzing scattering from large structures. IEEE Trans. Antennas Propag. 44, 1086–1093 (1996)

    Article  Google Scholar 

  35. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86(2), 414–439 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rokhlin, V.: Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmon. Anal. 1(1), 82–93 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comput. 64(211), 1147–1170 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1–2), 47–57 (1998). Toeplitz matrices: structures, algorithms and applications (Cortona, 1996)

  40. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bebendorf.

Additional information

This work was supported by the DFG project BE2626/3-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebendorf, M., Kuske, C. & Venn, R. Wideband nested cross approximation for Helmholtz problems. Numer. Math. 130, 1–34 (2015). https://doi.org/10.1007/s00211-014-0656-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0656-7

Mathematics Subject Classification

Navigation