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Abstract. We sharpen the classic a priori error estimate of Babuška
for Petrov–Galerkin methods on a Banach space. In particular, we do so
by (i) introducing a new constant, called the Banach–Mazur constant,
to describe the geometry of a normed vector space; (ii) showing that,
for a nontrivial projection P , it is possible to use the Banach–Mazur
constant to improve upon the näıve estimate ‖I − P‖ ≤ 1 + ‖P‖; and
(iii) applying that improved estimate to the Petrov–Galerkin projection
operator. This generalizes and extends a 2003 result of Xu and Zikatanov
for the special case of Hilbert spaces.

1. Introduction

In a landmark 1971 paper, Babuška [1] developed a framework for the
analysis of finite element methods. This analysis encompassed not only
Galerkin methods for coercive bilinear forms (as in the pioneering work of
Céa [4]), but also Galerkin methods for non-coercive bilinear forms (such as
mixed finite element methods, cf. Brezzi and Fortin [3]) and Petrov–Galerkin
methods more generally. A key innovation in this work was the replacement
of the coercivity assumption by the so-called inf-sup condition. (See also the
essential contribution by Brezzi [2].) One of the main results of Babuška’s
paper is an a priori error estimate for Petrov–Galerkin methods satisfying
this inf-sup condition.

Remarkably, more than three decades passed before a 2003 paper, by Xu
and Zikatanov [12], pointed out that the constant in Babuška’s estimate
can be improved (by 1) when the space of trial functions is a Hilbert space.
To develop this improved estimate, Xu and Zikatanov [12] used an identity
concerning the operator norm of a projection on a Hilbert space. However,
this identity is completely idiosyncratic to Hilbert spaces, and for arbitrary
Banach spaces, Babuška’s original estimate has yet to be improved.

The present paper aims to fill this gap, sharpening the constant in
Babuška’s estimate for Petrov–Galerkin methods on a Banach space. The
degree of improvement depends on how “close” the trial space is to being
Hilbert, in a sense related to Banach–Mazur distance. In particular, for the
most pathological Banach spaces, such as non-reflexive spaces, no improve-
ment is obtained over Babuška’s estimate, while in the case of Hilbert spaces,
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we recover Xu and Zikatanov’s improved estimate. The paper is organized
as follows:

• Section 2 briefly reviews the results of Céa [4], Babuška [1], and Xu
and Zikatanov [12], as summarized above. In addition to providing
the necessary background, this also serves to fix the notation and
terminology used later in the paper.
• Section 3 introduces the Banach–Mazur constant of a normed vector

space, which quantifies how “close” this space is to being an inner
product space. We also show how this relates to the well-studied
von Neumann–Jordan constant, which serves a similar purpose.
• Section 4 contains the main technical result: an estimate for projec-

tion operators on a normed vector space, generalizing the Hilbert
space projection identity used by Xu and Zikatanov. This estimate
depends fundamentally on the Banach–Mazur constant introduced
in the previous section.
• Section 5 illustrates the preceding theory by applying it to an impor-

tant class of Banach spaces: Lp and Sobolev spaces. We compute
the Banach–Mazur constants of these spaces and discuss the related
properties of projection operators, showing that the main estimate
of Section 4 is sharp.
• Finally, Section 6 contains the main theorem: a sharpened a priori

error estimate for Petrov–Galerkin methods on a Banach space. This
is proved by applying the estimate from Section 4 to the Petrov–
Galerkin projection operator.

Acknowledgments. Many thanks to Michael Holst and John McCarthy for
valuable comments and feedback on this work in its early stages.

2. Background: analysis of Petrov–Galerkin methods

Let X be a Banach space, Y be a reflexive Banach space, and a ∈
L(X × Y,R) be a continuous bilinear form, so that

∣∣a(x, y)
∣∣ ≤M‖x‖X‖y‖Y

for some M > 0. Given f ∈ Y ∗, we consider the linear problem:

(1) Find u ∈ X such that a(u, v) = 〈f, v〉 for all v ∈ Y .

If Xh ⊂ X and Yh ⊂ Y are closed (e.g., finite-dimensional) subspaces, then
we also consider the related problem:

(2) Find uh ∈ Xh such that a(uh, vh) = 〈f, vh〉 for all vh ∈ Yh.

The approximation of (1) by (2) is called the Petrov–Galerkin method, or
simply the Galerkin method in the special case Xh = Yh ⊂ X = Y .

The most elementary a priori error estimate for the Galerkin method is
due to Céa [4], who proved that if the bilinear form satisfies the coercivity
condition a(x, x) ≥ m‖x‖2X for some m > 0, then

‖u− uh‖X ≤
M

m
inf

xh∈Xh

‖u− xh‖X .
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Note that coercivity is sufficient (although not necessary) for problems (1)
and (2) to be well-posed. Céa’s theorem does not apply to the general form of
the Petrov–Galerkin method (since coercivity is meaningless when X 6= Y ),
nor even to the Galerkin method with non-coercive bilinear forms, which
arise in mixed finite element methods.

A more general condition for (1) to be well-posed—which is both necessary
and sufficient—is given by the inf-sup condition

inf
0 6=x∈X

sup
06=y∈Y

a(x, y)

‖x‖X‖y‖Y
= m > 0, inf

06=y∈Y
sup

06=x∈X

a(x, y)

‖x‖X‖y‖Y
= m∗ > 0.

This is proved by applying Banach’s closed range and open mapping theorems
to the operator A : X → Y ∗, x 7→ a(x, ·), and to its adjoint A∗ : Y →
X∗, y 7→ a(·, y). In fact, when the inf-sup condition is satisfied, the constants
m and m∗ are equal, since

m−1 =
∥∥A−1∥∥L(Y ∗,X)

=
∥∥(A∗)−1

∥∥
L(X∗,Y )

= (m∗)−1.

Likewise, the problem (2) is well-posed if and only if

inf
06=xh∈Xh

sup
06=yh∈Yh

a(xh, yh)

‖xh‖X‖yh‖Y
= inf

06=yh∈Yh
sup

06=xh∈Xh

a(xh, yh)

‖xh‖X‖yh‖Y
= mh > 0,

which is called the discrete inf-sup condition.
Babuška [1] showed that, if the inf-sup conditions are satisfied, then the

solutions to (1) and (2) satisfy the error estimate

‖u− uh‖X ≤
(

1 +
M

mh

)
inf

xh∈Xh

‖u− xh‖X .

The proof relies on the Petrov–Galerkin projection operator on X, denoted by
Ph, which maps each u ∈ X to its Petrov–Galerkin approximation uh ∈ Xh.
Since Phxh = xh for all xh ∈ Xh, we have

‖u−uh‖X =
∥∥(I−Ph)u

∥∥
X
≤
∥∥(I−Ph)(u−xh)

∥∥
X
≤ ‖I−Ph‖L(X,X)‖u−xh‖X .

Hence, the estimate follows by observing that

‖I − Ph‖L(X,X) ≤ 1 + ‖Ph‖L(X,X) ≤ 1 +
M

mh
,

and by taking the infimum over all xh ∈ Xh.
The Babuška estimate superficially resembles that of Céa, with the glaring

exception of 1 being added to the constant. However, Xu and Zikatanov [12]
observed that, in the case where X is a Hilbert space, this additional term is
unneccessary, and one obtains the sharpened estimate

‖u− uh‖X ≤
M

mh
inf

xh∈Xh

‖u− xh‖X .

The key insight is that, in a Hilbert space, nontrivial projection operators P
satisfy ‖I − P‖L(X,X) = ‖P‖L(X,X), so applying this identity to the Petrov–

Galerkin projection yields ‖I − Ph‖L(X,X) ≤ M
mh

. (See Szyld [10] for a

discussion of this undeservedly obscure and frequently rediscovered identity.)
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3. The Banach–Mazur constant of a normed vector space

In this section, we introduce the Banach–Mazur constant of a normed
vector space X, which quantifies the degree to which X fails to be an
inner-product space. This constant will play a crucial role in the projection
estimates of Section 4 and Section 6. First, we recall the definition of
(multiplicative) Banach–Mazur distance between finite-dimensional normed
vector spaces of equal dimension.

Definition 3.1. If V and W are finite-dimensional normed vector spaces
with dimV = dimW , then the Banach–Mazur distance between V and W is

dBM (V,W ) = inf
{
‖T‖‖T−1‖ : T is a linear isomorphism V →W

}
.

Definition 3.2. If X is a normed vector space with dimX ≥ 2, then we
define the Banach–Mazur constant of X to be

CBM (X) = sup
{(
dBM (V, `22)

)2
: V ⊂ X, dimV = 2

}
,

where `22 denotes the two-dimensional `2 space (i.e., R2 equipped with the
Euclidean norm ‖·‖2).

Notation. For notational brevity, we will omit subscripts from operator norms
and from ‖·‖X , denoting each of these simply by ‖·‖, where the norm is clear
from context. The Euclidean norm will always be denoted by ‖·‖2.

There are various other such “geometric constants” for normed vector
spaces; see Kato and Takahashi [9] for a survey of recent results on several of
these constants. Generally, these constants lie between 1 and 2, equaling 1 in
the case of an inner product space, and equaling 2 for the most pathological
spaces, such as non-reflexive spaces. One of the oldest and best-known is the
von Neumann–Jordan constant, dating to the 1935 paper of Jordan and von
Neumann [7] (see also Clarkson [5]), which measures the degree to which the
norm satisfies (or fails to satisfy) the parallelogram law.

Definition 3.3. The von Neumann–Jordan constant of a normed vector
space X is

CNJ(X) = sup

{
‖x+ y‖2 + ‖x− y‖2

2
(
‖x‖2 + ‖y‖2

) : x, y ∈ X not both zero

}
.

The following result establishes the relationship between the Banach–
Mazur and von Neumann–Jordan constants.

Theorem 3.4. 1 ≤ CNJ(X) ≤ CBM (X) ≤ 2.

Proof. The inequality 1 ≤ CNJ(X) appears in Jordan and von Neumann [7].
John’s theorem on maximal ellipsoids [6] implies that dBM (V, `22) ≤

√
2 for

all V ⊂ X with dimV = 2, and thus CBM (X) ≤ 2. To prove the remaining
inequality, CNJ(X) ≤ CBM (X), it suffices to show that

‖x+ y‖2 + ‖x− y‖2 ≤ 2CBM (X)
(
‖x‖2 + ‖y‖2

)
,
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for all x, y ∈ X. This is obvious if x and y are linearly dependent, since in
that case, they satisfy the parallelogram law exactly. Otherwise, take the
two-dimensional subspace V = span{x, y}. For any isomorphism T : V → `22,

‖x+ y‖2 + ‖x− y‖2 ≤ ‖T−1‖2
(
‖Tx+ Ty‖22 + ‖Tx− Ty‖22

)
= 2‖T−1‖2

(
‖Tx‖22 + ‖Ty‖22

)
≤ 2‖T‖2‖T−1‖2

(
‖x‖2 + ‖y‖2

)
,

where the parallelogram law for `22 is applied in the second line. Finally,
taking the infimum over all T yields

‖x+ y‖2 + ‖x− y‖2 ≤ 2
(
dBM (V, `22)

)2(‖x‖2 + ‖y‖2
)

≤ 2CBM (X)
(
‖x‖2 + ‖y‖2

)
,

which completes the proof. �

Theorem 3.5. CBM (X) = 1 if and only if X is an inner product space.

Proof. If X is an inner product space, then any two-dimensional subspace
is unitarily isomorphic to `22, so CBM (X) = 1. Conversely, if CBM (X) = 1,
then Theorem 3.4 implies CNJ(X) = 1, so by the Jordan–von Neumann
theorem [7], X is an inner product space. �

Remark 3.6. The constants CBM (X) and CNJ (X) agree in the most extreme
cases. For Hilbert spaces, we have seen that CBM (X) = CNJ(X) = 1. At
the opposite extreme, the most pathological spaces—including non-reflexive
spaces, such as L1 and L∞—have CNJ(X) = 2, and hence CBM (X) = 2 by
Theorem 3.4 (see also Clarkson [5]). More specifically, a theorem of Kato
and Takahashi [8] states that, if CNJ(X) < 2, then X is super-reflexive.
Consequently, if X fails to be super-reflexive (in particular, if it is non-
reflexive), then CNJ(X) = CBM (X) = 2.

4. A projection estimate for normed vector spaces

Having introduced the Banach–Mazur constant, we are now equipped to
prove the main technical result: an estimate for projection operators on
normed vector spaces. This generalizes the Hilbert space projection identity
used by Xu and Zikatanov [12].

Theorem 4.1. Let P be a nontrivial projection operator (i.e., 0 6= P =
P 2 6= I) on a normed vector space X. Then ‖I − P‖ ≤ C‖P‖, where
C = min

{
1 + ‖P‖−1, CBM (X)

}
.

Proof. The inequality ‖I − P‖ ≤
(
1 + ‖P‖−1

)
‖P‖ = 1 + ‖P‖ is elementary,

so it suffices to show
∥∥(I − P )x

∥∥ ≤ CBM (X)‖P‖‖x‖ for all x ∈ X.
If (I − P )x = 0, then this inequality is trivial. On the other hand, if

Px = 0, then (I − P )x = x. Moreover, ‖P‖ ≥ 1 since P is a nontrivial
projection, while CBM (X) ≥ 1 by Theorem 3.4. Hence, in this case we have∥∥(I − P )x

∥∥ = ‖x‖ ≤ CBM (X)‖P‖‖x‖.
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We may now assume that we are in the remaining case, where neither
Px nor (I − P )x vanishes, so V = span

{
Px, (I − P )x

}
is a two-dimensional

subspace of X. If T : V → `22 is a linear isomorphism, then there exist
unit vectors u, v ∈ `22 and scalars a, b ∈ R such that Px = aT−1u and
(I−P )x = bT−1v. Thus, we may write x = Px+(I−P )x = aT−1u+ bT−1v.

Now, take y = bT−1u+aT−1v, so that Py = bT−1u and (I−P )y = aT−1v.
It follows that ∥∥(I − P )x

∥∥ = ‖bT−1v‖
≤ |b|‖T−1‖
≤ ‖T‖‖T−1‖‖bT−1u‖
= ‖T‖‖T−1‖‖Py‖
≤ ‖T‖‖T−1‖‖P‖‖y‖.

Next, since `22 is an inner product space, we have

‖au+ bv‖2 = (a2 + 2abu · v + b2)1/2 = ‖bu+ av‖2.

Therefore,

‖y‖ = ‖bT−1u+ aT−1v‖
≤ ‖T−1‖‖bu+ av‖2
= ‖T−1‖‖au+ bv‖2
≤ ‖T‖‖T−1‖‖aT−1u+ bT−1v‖
= ‖T‖‖T−1‖‖x‖.

Altogether, we have now shown that∥∥(I − P )x
∥∥ ≤ ‖T‖‖T−1‖‖P‖(‖T‖‖T−1‖‖x‖) =

(
‖T‖‖T−1‖

)2‖P‖‖x‖.
Finally, taking the infimum over all isomorphisms T yields∥∥(I − P )x

∥∥ ≤ (dBM (V, `22)
)2‖P‖‖x‖ ≤ CBM (X)‖P‖‖x‖,

which completes the proof. �

Corollary 4.2. If X is an inner product space, then ‖I − P‖ = ‖P‖.

Proof. Since X is an inner product space, Theorem 3.5 implies CBM (X) = 1,
so Theorem 4.1 gives ‖I − P‖ ≤ ‖P‖. The reverse inequality follows by
symmetry of the projections P and I − P . �

Remark 4.3. Theorem 4.1 is strictly sharper than the obvious estimate
‖I − P‖ ≤ 1 + ‖P‖ whenever CBM (X) < 1 + ‖P‖−1. In particular, since
1 < 1 + ‖P‖−1 ≤ 2, this result is always sharper when CBM (X) = 1 (i.e., for
Hilbert spaces) and never sharper for the opposite extreme, CBM (X) = 2
(e.g., for non-reflexive spaces). Intermediate cases 1 < CBM (X) < 2 depend
on the particular projection operator P .
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5. Application to Lp and Sobolev spaces

In this section, we apply the foregoing theory to Lp and Sobolev spaces,
which are the most important and commonly-encountered Banach spaces in
finite element analysis.

The simplest possible example is X = `2p, the two-dimensional `p space (i.e.,

R2 equipped with the p-norm), where 1 ≤ p ≤ ∞. In this case, it is known

that dBM (`2p, `
2
2) = 2|1/p−1/2| (cf. Wojtaszczyk [11, Proposition II.E.8]), so

the Banach–Mazur constant is CBM (X) =
(
dBM (`2p, `

2
2)
)2

= 2|2/p−1|. If
1 ≤ p ≤ 2, consider the pair of projections

P (x0, x1) = (x0 + x1, 0), (I − P )(x0, x1) = (−x1, x1).

It can be seen that the operator norms are attained at

‖P‖ =

∥∥P (1, 1)
∥∥
p∥∥(1, 1)

∥∥
p

=

∥∥(2, 0)
∥∥
p∥∥(1, 1)
∥∥
p

=
2

21/p
= 21−1/p

and

‖I − P‖ =

∥∥(I − P )(0, 1)
∥∥
p∥∥(0, 1)

∥∥
p

=

∥∥(−1, 1)
∥∥
p∥∥(0, 1)

∥∥
p

=
21/p

1
= 21/p.

Hence, ‖I − P‖ = 22/p−1‖P‖ = CBM (X)‖P‖; the same can be shown for
2 ≤ p ≤ ∞, simply by switching P and I − P . Therefore, Theorem 4.1 is
sharp for X = `2p.

More generally, consider X = Lp(µ) for some measure µ. In this case,

it is known that dBM (V, `22) ≤ 2|1/p−1/2| for any two-dimensional subspace
V (cf. Wojtaszczyk [11, Corollary III.E.9]). Hence, taking V isometrically
isomorphic to `2p—for instance, the span of two unit-norm functions with

disjoint support—implies CBM (X) = 2|2/p−1|, as above. In particular, we
obtain the “best” case, CBM (X) = 1, only for p = 2; the “worst” case,
CBM (X) = 2, only for p = 1,∞; and the strict inequality 1 < CBM (X) < 2
for 1 < p <∞.

Remark 5.1. In fact, here we have CBM (X) = CNJ(X), since Clarkson [5]

proved that CNJ(X) = 2|2/p−1| for Lp spaces.

Finally, consider the Sobolev space X = W 1
p (U) for U ⊂ Rn. If Ut(n+1)

denotes the disjoint union of n + 1 copies of U , then we can isometrically
embed X ↪→ Lp(U

t(n+1)) by taking u 7→ u⊕ ∂1u⊕ · · ·⊕ ∂nu. Thus, any two-
dimensional subspace of X is isometrically isomorphic to a two-dimensional
subspace of Lp(U

t(n+1)), and we can again realize `2p ⊂ X by taking the span
of two unit-norm functions with disjoint support. Hence, it follows from the
previous discussion that, once again, CBM (X) = 2|2/p−1|. More generally,
this argument holds for X = W k

p (U), k ∈ N, since the map u 7→
⊕
|α|≤k ∂αu,

where α denotes a multi-index, embeds X isometrically into the space of Lp
functions on sufficiently many disjoint copies of U .
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6. The sharpened Petrov–Galerkin estimate

We now finally apply Theorem 4.1 to the Petrov–Galerkin projection Ph,
using the formalism reviewed in Section 2.

Theorem 6.1. Let u ∈ X and uh ∈ Xh be the solutions to (1) and (2),
respectively. As before, let M,mh > 0 denote the continuity and discrete
inf-sup constants for the bilinear form a(·, ·). Then we have the error estimate

‖u− uh‖ ≤ C
M

mh
inf

xh∈Xh

‖u− xh‖,

where C = min
{

1 + mh
M , CBM (X)

}
.

Proof. As in Babuška’s argument (summarized in Section 2), we have

‖u− uh‖ ≤ ‖I − Ph‖ inf
xh∈Xh

‖u− xh‖,

where Ph is the Petrov–Galerkin projection on X. Applying Theorem 4.1
yields ‖I − Ph‖ ≤ C‖Ph‖ ≤ C M

mh
, which completes the proof. �

Corollary 6.2 (Xu and Zikatanov [12]). If X is a Hilbert space, then

‖u− uh‖ ≤
M

mh
inf

xh∈Xh

‖u− xh‖.

Proof. By Theorem 3.5, we have C = CBM (X) = 1, so the result follows
immediately from Theorem 6.1. �
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