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Abstract We study the use of the hybridizable discontinuous Galerkin(HDG)
method for numerically solving fractional diffusion equations of order−α with
−1<α < 0. For exact time-marching, we derive optimal algebraic error estimates
assuming that the exact solution is sufficiently regular. Thus, if for each timet ∈
[0,T] the approximations are taken to be piecewise polynomials ofdegreek≥ 0 on
the spatial domainΩ , the approximations tou in theL∞

(
0,T;L2(Ω )

)
-norm and to

∇u in theL∞
(
0,T;L2(Ω )

)
-norm are proven to converge with the ratehk+1, where

h is the maximum diameter of the elements of the mesh. Moreover, for k≥ 1 and
quasi-uniform meshes, we obtain a superconvergence resultwhich allows us to
compute, in an elementwise manner, a new approximation foru converging with
a rate of

√
log(Th−2/(α+1)) hk+2.

Keywords Anomalous diffusion, sub-diffusion, discontinuous Galerkin methods,
hybridization, convergence analysis, superconvergence

1 Introduction

In this paper, we propose and analyze a numerical method using exact integra-
tion in time and the so-called HDG method for the spatial discretization of the
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following anomalous, slow diffusion (sub-diffusion) model problem:

ut −Bα ∆u= f in Ω × (0,T], (1a)

u= g on ∂ Ω × (0,T], (1b)

u|t=0 = u0 on Ω , (1c)

whereΩ is a convex polyhedral domain ofRd, whered = 1,2,3. Here,Bα is the
Riemann–Liouville fractional derivative in time defined, for −1< α < 0, by

Bαv(t) :=
∂
∂ t

∫ t

0
ωα+1(t −s)v(s)ds with ωα+1(t) :=

tα

Γ (α +1)
(2)

whereΓ denotes the usual gamma function. One may show thatBαv → v as
α → 0. So, in the limiting caseα = 0, the problem (1) becomes nothing but an
initial-boundary value probem for the classical heat equation.

Problems of the form (1) arise in a variety of physical, biological and chem-
ical applications [17,22,28,29,37,41,44]. They describeslow or anomalous sub-
diffusion and occur, for example, in models of fractured or porous media, where
the particle flux depends on the entire history of the densitygradient,∇u. It is thus
important to devise, efficient methods for numerically solving them.

Let us briefly review the development of numerical methods for the fractional
sub-diffusion problem (1). Several authors have proposed avariety of numerical
methods for this problem. For finite difference (FD) methodswith convergence
rates of orderO(h2) in space, whereh is the maximum meshsize, see, for ex-
ample, [4,5,19,20,31,46,47,50,51]. In [11], FD schemes were considered which
are first-order accurate in time butO(h4)-accurate in space providedu is suffi-
ciently smooth including att = 0. In [30], the second author studied a FD method
in time combined with spatial piecewise linear finite elements scheme. In [26,
32,34], a piecewise-constant and a piecewise-linear, discontinuous Galerkin (DG)
and a postprocessed DG time-stepping methods combined withpiecewise-linear
finite elements for the spatial discretization were analyzed. Full convergence re-
sults were provided for variable time steps employed to compensate the lack of
regularity of the exact solution neart = 0. A FD method and convolution quadra-
ture had been studied in [10,39]. Another type of scheme involving Laplace trans-
formation combined with a quadrature along a contour in the complex plane, pro-
vides spectral accuracy for the time discretization, but appears to offer little scope
for handling nonlinear versions of (1), see [21,27].

Furthermore, various numerical methods have been applied for the following
alternative representation of the fractional sub-diffusion equation (1a):

∫ t

0
ω−α(t −s)ut(s)ds−∆u(t) = f(t) in Ω × (0,T],

see [12,13,16,38,49] and the references therein. The two representations are equiv-
alent under reasonable assumptions on the initial data, see[48], but the methods
obtained for each representation are formally different.

Here, we continue the above-described effort and propose and analyze a method
using exact integration in time and the HDG method for the space discretization
for problem (1). The choice of the HDG methods for the problemunder consider-
ation can be easily justified. Indeed, the HDG methods are a relatively new class
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of DG methods introduced in [6] in the framework of steady-sate diffusion which
share with the classical (hybridized version of the) mixed finite element methods
their remarkable convergence properties, [7,8,9], as wellas the way in which they
can be efficiently implemented, [18]. They provide approximations that are more
accurate than the ones given by any other DG method for second-order elliptic
problems [36].

Here we prove that, for each timet ∈ [0,T], the error of the HDG approxima-
tion to the solutionu of (1) in theL∞

(
0,T;L2(Ω )

)
-norm and to the fluxq :=−∇u

in the L∞
(
0,T;L2(Ω )

)
-norm converge with orderhk+1 wherek is the polyno-

mial degree; see Theorem 2. We also show that a suitably defined projectionof
the error inu superconvergeswith order hk+2 wheneverk ≥ 1. This allows us
to obtain, by a simple elementwise postprocessing, anotherapproximation tou
converging in theL∞

(
0,T;L2(Ω )

)
-norm with a rate of

√
log(T/h2/(α+1))hk+2

for quasi-uniform meshes and wheneverk ≥ 1; see Theorem 3. We thus obtain a
much better approximation at a cost which is negligible in comparison with that
of obtaining the approximate solution. These convergence results extend those ob-
tained in [3] for the heat equation, that is for the caseα = 0, and hold uniformly
for any−1< α ≤ 0. Our error analysis extends the approach used in [3] for the
heat equation. We make the full use of several important properties of the frac-
tional derivative operatorBα ; see Lemma 1. In particular, especial care has to be
used in the proof of the uniformity-in-time of the above-mentioned superconver-
gence property, as new, delicate regularity estimates are required by the use of a
fractional duality argument.

Outline of the paper. In the next section, we define the HDG method. In Sec-
tion 4, we prove the main convergence result, Theorem 2. Particularly relevant
to this a priori error analysis is the derivation of several important properties of
the fractional order operatorBα , which we gather in Lemma 1. In Section 5, we
prove the superconvergence result, Theorem 3. Finally, in Section 6, we comment
on the extension of this work to other methods fitting the general formulation of
the HDG methods; see [8].

2 The HDG method

We begin this section by discretizing the domainΩ by a triangulationTh (made
of simplexesK) which we take to be conforming for the sake of simplicity. We
denote by∂Th the set of all the boundaries∂K of the elementsK of Th. We
denote byEh the union of facesF of the simplexesK of the triangulationTh.

Next, we introduce the discontinuous finite element spaces:

Wh = {w∈ L2(Ω ) : w|K ∈ Pk(K) ∀ K ∈ Th}, (3a)

Vh = {v ∈ L2(Ω ) := [L2(Ω )]d: v|K ∈ Pk(K) ∀ K ∈ Th}, (3b)

Mh = {µ ∈ L2(Eh) : µ |F ∈ Pk(F) ∀ F ∈ Eh}, (3c)

wherePk(K) := [Pk(K)]d (the space of vector-valued functions whose entries
lie on Pk(K)). Here,Pk(D) is the space of polynomials of total degree≤ k on
any spatial domainD.
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To describe our HDG scheme, we rewrite (1a) as a first order system as fol-
lows:q+∇u= 0, ut +∇ ·Bαq = f in Ω × (0,T]. So, the exact solution satisfies:

(q,φ)− (u,∇ ·φ)+ 〈u,φ ·n〉= 0 ∀φ ∈ ΠK∈Th
H(div,K), (4a)

(ut ,χ)− (Bαq,∇χ)+ 〈Bαq ·n,χ〉= ( f ,χ) ∀χ ∈ ΠK∈Th
H1(K) . (4b)

for t ∈ (0,T], where (v,w) := ∑K∈Th
(v,w)K and 〈v,w〉 := ∑K∈Th

〈v,w〉∂K . We
write, for any domainD in R

d, (u,v)D :=
∫

D uv dx, and〈u,v〉∂D :=
∫

∂D u,v dγ .
For vector-valued functionsv and w, the notation is similarly defined with the
integrand being the dot productv ·w.

The HDG method provides a scalar approximationuh(t)∈Wh to u(t), a vector-
valued approximationqh(t) ∈ Vh to the flux q(t), and a scalar approximation
ûh(t) ∈ Mh to the trace ofu(t) on element boundaries for each timet ∈ [0,T],
which are determined by requiring that the equations

(qh, r)− (uh,∇ · r)+ 〈ûh, r ·n〉= 0, (5a)

(∂tuh,w)− (Bαqh,∇w)+ 〈Bα q̂h ·n,w〉= ( f ,w), (5b)

〈ûh,µ〉∂ Ω = 〈g,µ〉∂ Ω , (5c)

〈Bα q̂h ·n,µ〉−〈Bα q̂h ·n,µ〉∂ Ω = 0, (5d)

uh|t=0 = ΠWu0, (5e)

hold for all r ∈Vh, w ∈ Wh, and µ ∈ Mh. Here, ∂tuh is nothing but the partial
derivative ofuh with respect to time. We use the notation(v,w)Th

:=∑K∈Th
(v,w)K

and〈v,w〉∂Th
:= ∑K∈Th

〈v,w〉∂K , and take the numerical trace for the flux as

q̂h = qh+ τ
(
uh− ûh

)
n on∂Th, (5f)

for some nonnegative stabilization functionτ defined on∂Th; we assume that,
for each elementK ∈ Th, τ|∂K is constant on each of its faces. How to choose
this stabilization function in order to achieve optimal convergence properties is
dicussed later. Note that the first two equations are inspired in the weak form
satisfied by the exact solution, (4). The operatorΠW is the one introduced in [7]
and will be defined later.

Let us briefly describe the feature of the HDG method which renders it effi-
ciently implementable. Note that the form of the numerical trace given by (5d)
allows us to express(uh,qh, q̂h) elementwise in terms of̂uh, f andu0 by using
equations (5a), (5b), (5f) and (5e). Then,ûh is determined by as the solution of the
transmission condition (5d), which enforces the single-valuedness of the normal
component of the numerical traceBα q̂h, and the boundary condition (5c). Thus,
the only globally-coupled degrees of freedom are those of the numerical tracêuh.

Let us end this subsection by noting that the existence and uniqueness of the
approximation provided by the HDG method just introduced follows from the cor-
responding results for linear systems of fractional differential equations. In partic-
ular, see [17] in page 139 the result for the Cauchy-problem for the linear system
(3.1.29).
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3 Properties of the operatorBα

We begin the analysis by collecting several crucial properties of the operatorBα .
They involve the adjoint operatorsB∗

α andI ∗
−α of Bα andI−α , respectively,

whereI−α is the Riemann–Liouville fractional integral;

I−αv(t) =
∫ t

0
ω−α(t −s)v(s)ds for −1< α < 0.

As we pointed out in the Introduction, these properties are essential for the analysis
because they allow us to extend the approach used for the error analysis of the
HDG method applied to the heat equation considered in [3].

For convenience, we introduce the following notation. Starting from the defi-
nition of the adjoint operatorsB∗

α andI ∗
−α ,

∫ T

0
v(t)Bαw(t)dt =

∫ T

0
B

∗
αv(t)w(t)dt, (6a)

∫ T

0
v(t)I−αw(t)dt =

∫ T

0
I

∗
−αv(t)w(t)dt, (6b)

one can show that forα ∈ (−1,0) andt ∈ (0,T], see [34, Lemma 3.1], that

B
∗
αv(t) =− ∂

∂ t

∫ T

t
ω1+α(s− t)v(s)ds for anyv∈ C

1(0,T), (7a)

I
∗
−αv(t) =

∫ T

t
ω−α(s− t)v(s)ds for anyv∈ C

0(0,T) . (7b)

Moreover, since

B
∗
αI

∗
−αv(t) =− ∂

∂ t

∫ T

t
ω1+α(s− t)

∫ T

s
ω−α(q−s)v(q)dqds

=− ∂
∂ t

∫ T

t
v(q)

∫ q

t
ω1+α(s− t)ω−α(q−s)dsdq,

and since
∫ q
t ω1+α(s− t)ω−α(q−s)ds= 1, it is easy to see thatI ∗

−α is theright-
inverseof B∗

α , that is,
B

∗
αI

∗
−αv= v. (8)

We gather in the following result several key properties we use in our analysis.
They are expressed by using a notation we introduce next. First, we set

|v|2β ,t̃ :=
∫ t̃

0
vBβ vdt if β ∈ (−1,0] and |v|2β ,t̃ :=

∫ t̃

0
vIβ vdt if β ∈ [0,1).

and use the standard notation of the seminorm| · | because, as we are going to
see, the two right-hand sides are actually nonnegative. Theterm

∫ t̃
0 v(t)Iβ v(t)dt

is nonnegative ifv∈ L2(0, t̃). The term
∫ t̃

0 v(t)Bβ v(t)dt is nonnegative whenv is
in C 1(0, t̃), or, alternatively, whenv andBαv areC 0(0, t̃); see [26, Equation 6].
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Finally, for a given functionv defined on[0, t̃]×Th, we set

‖v‖2
β ,t̃ :=

{∫ t̃
0(Bβ v,v)dt if β ∈ (−1,0],∫ t̃
0(Iβ v,v)dt if β ∈ [0,1).

For functions defined on[0, t̃]×∂Th, we replace‖ · ‖ and(·, ·) with ||| · ||| and〈·, ·〉,
respectively. Note that, we drop outt̃ from the above definitions wheñt = T.

Lemma 1 Let cα = cos(απ/2)
πα

|α |−α

(1−α)1−α and dα = 1/cos(απ/2) . Then, for any

v, w∈ C 1(0,T) and anyα ∈ (−1,0), we have

(i) |v|2α ≥ cαTα ∫ T
0 v2(t)dt,

(ii)
∫ T

0 v(t)w(t)dt ≤ dα |v|α |w|−α ,

(iii)
∫ T

0 v(t)Bαw(t)dt ≤ dα |v|α |w|α ,
(iv)

∫ T
0 I−αv(t)w(t)dt ≤ dα |v|−α |w|−α , for any v, w∈ C 0(0,T)

(v) limt↓0 ω−1
α+2(t)

∫ t
0 v(s)Bαv(s)ds= v2(0).

Proof The coercivity property (i) was proven in [24, Theorem A.1] by using the
Laplace transform and Plancherel Theorem. Using a similar technique and the
fact thatI ∗

−α is the right-inverse ofB∗
α , see (8), property (ii) can also be obtained,

see [35, Lemma 3.1]. Properties (iii) and (iv) easily followfrom property (ii) and
again from the fact thatI ∗

−α is the right-inverse ofB∗
α .

It remains to prove property (v). We have, for small enought > 0, that

ω−1
α+2(t)

∫ t

0
v(s)Bαv(s)ds= ω−1

α+2(t)
∫ t

0
ωα+1(s)v(s)ω−1

α+1(s)Bαv(s)ds

=
[
ω−1

α+2(t)
∫ t

0
ωα+1(s)ds

]
v(t∗)ω−1

α+1(t
∗)Bαv(t∗) = v(t∗)ω−1

α+1(t
∗)Bαv(t∗),

for somet∗ ∈ (0, t). From the definition ofBα , (2), we have that

Bαv(t∗) = ωα+1(t
∗)v(0)+

∫ t∗

0
ωα+1(s)v

′(t∗−s)ds.

Since
∫ t∗

0 ωα+1(s)|v′(t∗−s)|ds< ∞, the desired result follows. ⊓⊔

4 Error estimates

In this section, we carry out the first part of our a priori error analysis of the HDG
method. To be able to do this, we carefully use several crucial properties of the
operatorsBα andI−α introduced in the previous section.

4.1 ProjectionsGivenq∈H1(Th) :=∏K∈Th
H1(K) andu∈H1(Th) :=∏K∈Th

H1(K),
the projectionsΠVq ∈ Vh andΠWu∈Wh are on each simplexK ∈ Th as the solu-
tions of the following equations:

(ΠVq,v)K = (q,v)K for all v ∈ Pk−1(K), (9a)

(ΠWu,w)K = (u,w)K for all w∈ Pk−1(K), (9b)

〈ΠVq ·n+ τΠWu,µ〉F = 〈q ·n+ τu,µ〉F for all µ ∈ Pk(F), (9c)
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for all facesF of the simplexK. This is the projection introduced in [7] to study
HDG methods for the steady-state diffusion problem. Its approximation properties
are described in the following result. For convenience, we introduce the following
notation:eq := ΠVq−q andeu := ΠWu−u.

We use‖·‖D to denote theL2(D)-norm. The norm on any other Sobolev space
X is denoted by‖ · ‖X. We also denote‖ · ‖X(0,T ;Y(D)) by ‖ · ‖X(Y(D)) and omitD
wheneverD = Ω .

Theorem 1 ([7]) Supposeτ|∂K is nonnegative andτmax
K := maxτ|∂K > 0. Then

the system(9) is uniquely solvable forΠVq and ΠWu. Furthermore, there is a
constant C independent of K andτ such that

‖eq ‖K ≤Chk+1
K

(
|q|Hk+1(K)+ τ∗K |u|Hk+1(K)

)
,

‖eu‖K ≤Chk+1
K

(
|u|Hk+1(K)+ |∇ ·q|Hk(K)/τmax

K

)
.

Hereτ∗K := maxτ|∂K\F∗ , where F∗ is a face of K at whichτ|∂K is maximum.

Note that the approximation error of the projection is of order k+ 1 pro-
vided that the stabilization function is such that bothτ∗K and 1/τmax

K are uniformly
bounded and the exact solution is sufficiently regular. For example, we can take
τ to be a positive constant. Another possible choice is to takeit zero on all but
one face of the simplexK, so thatτ∗K = 0, and then take it equal to 1/hK on the
remaining face, so that 1/τmax

K = hK .

4.2 The equations of the projection of the errorsSetting

(ε q
h ,ε

u
h ,ε

û
h ,ε

q̂
h) := (ΠVq−qh,ΠWu−uh,PMu− ûh,PMq− q̂h), (10)

where PM denotes theL2-orthogonal projection ontoMh, and PM denotes the
vector-valued projection each of whose components are equal to PM. The pro-
jection of the errors satisfy the following equations:

Lemma 2 We have

(ε q
h , r)− (εu

h,∇ · r)Th
+ 〈ε û

h , r ·n〉= (eq, r), (11a)

(∂tεu
h ,w)− (Bα ε q

h ,∇w)Th
+ 〈Bαε q̂

h ·n,w〉= (eut ,w), (11b)

〈ε û
h ,µ〉∂ Ω = 0, (11c)

〈Bαε q̂
h ·n,µ〉−〈Bαε q̂

h ·n,µ〉∂ Ω = 0, (11d)

εu
h |t=0 = 0, (11e)

for all r ∈ Vh, w∈Wh, andµ ∈ Mh, where

ε q̂
h ·n := ε q

h ·n+ τ(εu
h − ε û

h) on ∂Th. (11f)
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Proof From (4), we know that the exact solution{q,u} satisfies the equations

(q, r)− (u,∇ · r)+ 〈u, r ·n〉= 0 for all r ∈ Vh,

(ut ,w)− (Bαq,∇w)+ 〈Bαq ·n,w〉= ( f ,w) for all w∈Wh .

By using the orthogonality properties of the projectionsΠV , ΠW, andPM, we can
rewrite these equations as follows:

(ΠVq, r)− (ΠWu,∇ · r)+ 〈PMu, r ·n〉= (eq, r),
(ΠWut ,w)− (BαΠVq,∇w)+ 〈Bα(ΠVq ·n+ τ(ΠWu−PMu)),w〉= ( f +eut ,w),

for all r ∈ Vh andw∈Wh. Indeed, the fact thatPM is theL2-projection intoMh was
used in the third term of the left-hand side of the first equation, and the orthogo-
nality property (9c) was used in the third term of the left-hand side of the second
equation. To deal with that term, we also used the fact that

〈τ(PMu−u),µ〉= 0 for all µ ∈ Mh, (12)

given that, for each elementK ∈Th, τ is constant on each faceeof K. Subtracting
the equations (5a) and (5b) from the above ones, respectively, we obtain equations
(11a) and (11b), respectively.

The equation (11c) follows directly from the equation (5c) and (1c).
To prove (11d), we note that, by definition ofε q̂

h, (10), we have

〈Bα ε q̂
h ·n,µ〉−〈Bαε q̂

h ·n,µ〉∂ Ω
= [〈Bαq ·n,µ〉−〈Bαq ·n,µ〉∂ Ω ]− [〈Bαq̂h ·n,µ〉−〈Bα q̂h ·n,µ〉∂ Ω ],

sincePM is the L2-projection intoMh. The first term of the right-hand side is
equal to zero becauseBαq is in H(div,Ω ) and the second because the normal
component ofBα q̂h is single valued by the equation (5d). Hence, the identity
(11d) holds.

Next, let us prove (11e). By the equation (5e) defining the HDGmethod,
uh|t=0 = ΠWu0, and soεu

h |t=0 = ΠWu0 − uh|t=0 = ΠWu0 −ΠWu0 = 0. It remains
to prove the identity (11f). We have

ε q̂
h ·n = PM(q ·n)− (qh ·n+ τ (uh− ûh)) by (10) and (5f),

= (ΠVq ·n+ τ (ΠWu−PMu))− (qh ·n+ τ (uh− ûh)) by (9c),

= ε q
h ·n+ τ(εu

h − ε û
h) by (10).

This completes the proof.⊓⊔

4.3 A first error bound

Lemma 3 For any T≥ 0, we have

(
‖εu

h(T)‖2+‖ε q
h ‖2

α +2|||
√

τ(εu
h − ε û

h) |||
2
α

)1/2
≤ ‖eut‖L1(L2)+dα max

t∈(0,T)
‖eq‖α ,t .
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Proof Taking r = Bαε q
h in (11a),w= εu

h in (11b),µ = −Bα ε q̂
h ·n in (11c) and

µ =−ε û
h in (11d), and adding the resulting four equations, we get

1
2

d
dt
‖εu

h‖2+(Bαε q
h ,ε

q
h )+Ψh = (eq,Bα ε q

h )+(eut ,ε
u
h),

where by the definition ofε q̂
h, (11f),

Ψh :=− (εu
h ,∇ ·Bαε q

h )+ 〈ε û
h ,Bαε q

h ·n〉− (Bαε q
h ,∇εu

h)Th
+ 〈Bαε q̂

h ·n,εu
h − ε û

h〉
=−〈εu

h ,Bα ε q
h ·n〉+〈ε û

h ,Bα ε q
h ·n〉+〈Bα ε q̂

h ·n,εu
h − ε û

h〉
= 〈(Bαε q̂

h−Bαε q
h ) ·n,εu

h − ε û
h〉= 〈Bα(

√
τ(εu

h − ε û
h)),

√
τ(εu

h − ε û
h)〉 .

Integrating over the time interval(0,T), and using the fact thatεu
h(0) = 0 by (11e),

‖εu
h(T)‖2+2‖ε q

h ‖2
α +2|||

√
τ(εu

h − ε û
h) |||

2
α = 2

∫ T

0
(eq,Bα ε q

h )+2
∫ T

0
(eut ,ε

u
h) .

Since 2
∫ T

0 (eq,Bα ε q
h ) ≤ 2dα‖eq‖α‖ε q

h ‖α ≤ d2
α‖eq‖2

α + ‖ε q
h ‖2

α , by the property
(iii) of Lemma 1, and since

∫ T
0 (eut ,εu

h)≤
∫ T

0 ‖eut‖‖εu
h‖,

‖εu
h(T)‖2+‖ε q

h ‖2
α +2|||

√
τ(εu

h − ε û
h) |||2α ≤ d2

α‖eq‖2
α +2

∫ T

0
‖eut‖‖εu

h‖ for T > 0.

The result now easily follows from Lemma 4 below withA(t) :=d2
α‖eq‖2

α ,t , B(t) :=

‖eut (t)‖ and withE2(t) := ‖εu
h(t)‖2+‖ε q

h ‖2
α ,t +2|||√τ(εu

h − ε û
h) |||

2
α ,t . ⊓⊔

Lemma 4 (An integral inequality) Suppose that, for any t≥ 0, we have that
E2(t) ≤ A(t)+2

∫ t
0 B(s)E(s)ds, for some nonnegative functions A and B. Then,

for any T> 0, E(T)≤ maxt∈(0,T)A1/2(t)+
∫ T
0 B(s)ds.

Proof SettingX(t)=maxt∈[0,T ]A(t)+2
∫ t

0 B(s)E(s)ds, we see that, fort ∈ (0,T),
d
dt X(t) = 2B(t)E(t) ≤ 2B(t)

√
X(t), and so d

dt

√
X(t) ≤ B(t). This implies that√

X(t)≤
√

X(0)+
∫ t

0 B(s)ds, and the result follows. ⊓⊔

4.4 A second error boundWe derive next an estimate ofε q
h in theL∞(0,T;L2(Ω ))−norm.

Lemma 5 Let S2
h := 〈τ(εu

h − ε û
h),(ε

u
h − ε û

h)〉. For any T> 0, we have

(
‖ε q

h (T)‖2+S2
h(T)+2‖∂tεu

h‖2
−α
)1/2 ≤

(
‖ε q

h (0)‖2+S2
h(0)

)1/2

+dα max
t∈(0,T)

‖eut‖−α ,t +‖eqt‖L1(L2).
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Proof.By the adjoint property (6) and the identity property (8),

2
∫ T

0
(Bαε q

h ,I
∗
−α∂tε q

h ) = 2
∫ T

0
(ε q

h ,B
∗
αI

∗
−α∂tε q

h )

= 2
∫ T

0
(ε q

h ,∂tε q
h ) = ‖ε q

h (T)‖2−‖ε q
h (0)‖2.

Now, applying the operatorI ∗
−α∂t to the first equation of the errors, (11a), and

takingr := Bα ε q
h , we obtain

(I ∗
−α∂tε q

h ,Bαε q
h )− (I ∗

−α∂tεu
h ,∇ ·Bαε q

h )

+ 〈I ∗
−α∂tε û

h ,Bα ε q
h ·n〉= (I ∗

−αeqt ,Bαε q
h ).

Integrating in time from 0 toT and using the identity of the previous step, we get

1
2
‖ε q

h (T)‖2−
∫ T

0
(I ∗

−α∂tεu
h ,∇ ·Bαε q

h )+

∫ T

0
〈I ∗

−α∂tε û
h ,Bαε q

h ·n〉

=
1
2
‖ε q

h (0)‖2+

∫ T

0
(I ∗

−αeqt ,Bα ε q
h ).

Now, takingw := I ∗
−α∂tεu

h in equation (11b), and integrating from 0 toT,

∫ T

0
[(∂tεu

h ,I
∗
−α∂tεu

h)− (Bαε q
h ,∇I

∗
−α∂tεu

h)

+ 〈Bαε q̂
h ·n,I ∗

−α∂tεu
h〉] =

∫ T

0
(eut ,I

∗
−α∂tεu

h).

Adding this equation to the one obtained in the last step and,rearranging terms,

‖ε q
h (T)‖2+2

∫ T

0
(∂tεu

h −eut ,I
∗
−α∂tεu

h)+2Φh

= ‖ε q
h (0)‖2+2

∫ T

0
(I ∗

−αeqt ,Bα ε q
h )

= ‖ε q
h (0)‖2+2

∫ T

0
(eqt ,ε

q
h ), by the properties (6) and (8),
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where

Φh :=−
∫ T

0
(I ∗

−α∂tεu
h ,∇ ·Bαε q

h )Th
+

∫ T

0
〈I ∗

−α∂tε û
h ,Bα ε q

h ·n〉

−
∫ T

0
(Bαε q

h ,∇I
∗
−α∂tεu

h)Th
+

∫ T

0
〈Bα ε q̂

h ·n,I ∗
−α∂tεu

h〉

=

∫ T

0
[−〈I ∗

−α∂tεu
h ,Bαε q

h ·n〉+〈I ∗
−α∂tε û

h ,Bα ε q
h ·n〉+〈Bαε q̂

h ·n,I ∗
−α∂tεu

h〉]

=
∫ T

0
[〈Bα(ε q̂

h− ε q
h ) ·n,I ∗

−α∂t(εu
h − ε û

h)〉+ 〈Bαε q̂
h ·n,I ∗

−α∂tε û
h〉]

=
∫ T

0
〈Bα(ε q̂

h− ε q
h ) ·n,I ∗

−α∂t(εu
h − ε û

h)〉 by equations (11c) and (11d),

=

∫ T

0
〈(ε q̂

h− ε q
h ) ·n,B∗

αI
∗
−α ∂t(εu

h − ε û
h)〉 by the adjoint property (6),

=

∫ T

0
〈τ(εu

h − ε û
h),∂t(εu

h − ε û
h)〉=

1
2

S2
h(T)−

1
2

S2
h(0)

by the identity property (8) and the error equation (11f). Therefore, for anyT > 0,

‖ε q
h (T)‖2+S2

h(T)+2‖∂tεu
h‖2

−α = ‖ε q
h (0)‖2+S2

h(0)+2
∫ T

0
[(eqt ,ε

q
h )+(eut ,I

∗
−α∂tεu

h)] .

But, by property (iv) of Lemma 1,

2
∫ T

0
(eut ,I

∗
−α∂tεu

h)≤d2
α‖eut‖2

−α +‖∂tεu
h‖2

−α ,

and since
∫ T

0 (eqt ,ε
q
h )≤

∫ T
0 ‖eqt‖‖ε q

h ‖, we have, that, for anyT > 0,

‖ε q
h (T)‖2+S2

h(T)+2‖∂tεu
h‖2

−α ≤‖ε q
h (0)‖2+S2

h(0)+d2
α‖eut‖2

−α +2
∫ T

0
‖eqt‖‖ε q

h ‖.

Finally, the desired inequality follows from Lemma 4 withB(t) := ‖eqt (t)‖ and

A(t) := ‖ε q
h (0)‖2+S2

h(0)+d2
α max

t∈(0,T)
‖eut‖2

−α ,t ,

E2(t) := ‖ε q
h (t)‖2+S2

h(t)+2‖∂tεu
h‖2

−α ,t . �

We still need to estimate the term‖ε q
h (0)‖2+S2

h(0) in Lemma 5.

Lemma 6 We have that‖ε q
h (0)‖2 +S2

h(0) ≤
d2

α
cα Γ (α+2)‖eq(0)‖2, provided eut ∈

C 0(0,ε;L2(Ω )) and eq ∈ C 1(0,ε;L2(Ω )) for some positiveε.

Proof SettingΘh(t) := ‖ε q
h (t)‖2+S2

h(t), we get, by the coercivity property (i) of
Lemma 1, that

(
cαtα

∫ t

0
Θh
)1/2 ≤

(
‖ε q

h ‖2
α ,t + |||

√
τ(εu

h − ε û
h) |||

2
α ,t

)1/2 ≤
∫ t

0
‖eut‖+dα max

t∗∈(0,t)
‖eq‖α ,t∗
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by Lemma 3. Then

Θ 1/2
h (0) = lim

t↓0
t−(1+α)/2(tα

∫ t

0
Θh(s)ds

)1/2 ≤ c−1/2
α (T1+dα T2),

whereT1 := limt↓0 t−(1+α)/2∫ t
0 ‖eut‖= 0, by the assumption oneut ,

T2 := lim
t↓0

t−(1+α)/2 max
t∗∈(0,t)

‖eq‖α ,t∗ =
1

Γ 1/2(α +2)
‖eq(0)‖,

by property (v) of Lemma 1. This completes the proof.⊓⊔

4.5 The error estimatesWe are now ready to obtain our HDG error estimates.
By Lemmas 3, 5, and 6, we get

‖(u−uh)(T)‖≤‖eu(T)‖+ ||| [eq,eu] |||1,α and ‖(q−qh)(T)‖≤‖eq(T)‖+ ||| [eq,eu] |||2,α ,

where

||| [q,u]|||1,α := ‖ut‖L1(L2)+dα max
t∈(0,T)

‖q‖α ,t ,

||| [q,u]|||2,α :=
dα

c1/2
α Γ 1/2(α +2)

‖q(0)‖+‖qt‖L1(L2)+dα max
t∈(0,T)

‖ut‖−α ,t .

Note that whenα = 0, we recover the error estimates for the HDG methods for
the heat equation of [3, Theorem 2.1] since in this cased0 = 1, c0 = 1 andΓ (2) =
1. If we now use the approximation properties of the projectionsΠV andΠW of
Theorem 1, we obtain our optimal HDG error estimates.

Theorem 2 Assume that u∈C 1(0,T;Hk+1(Ω )) andq∈C 1(0,T;Hk+1(Ω )). As-
sume also thatτ∗K and1/τmax

K are bounded byC. Then we have that

‖(u−uh)(T)‖ ≤ C1hk+1 and ‖(q−qh)(T)‖ ≤ C2hk+1.

The constant Ci , i = 1,2, only depends on C,α, ‖u‖
C 1(Hk+1), and on‖q‖

C 1(Hk+1).

Note that, provided that the exact solution is smooth, the above error estimates
are uniform forα ∈ [α∗,0] providedα∗ >−1. This is not true forα∗ =−1 since
the coefficientsdα and 1/cα behave like 1/(α + 1) asα goes to−1. Note also
that these results hold even when the domainΩ is not convex.

5 Superconvergence and post-processing

In this section, we carry out the second part of our a priori error analysis. We
prove superconvergence results which will allow us to compute a new, better ap-
proximation tou by means of an element-by-element postprocessing. We beginby
describing such approximation. Then, we show how to get our superconvergence
result by a duality argument.
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Following [14,42,43,3], for each fixedt ∈ [0,T], we define the postprocessed
HDG approximationu⋆h ∈ Pk+1(K) to u for each simplexK ∈ Th, as follows:

(u⋆h(t),1)K = (uh(t),1)K (13a)

(∇u⋆h(t),∇w)K =− (qh(t),∇w)K for all w∈ Pk+1(K). (13b)

It is not difficult to obtain the following result:

‖u(t)−u⋆h(t)‖K ≤Chk+2
K |u(t)|Hk+2(K)+‖P0εu

h(t)‖K +Ch‖ε q
h (t)‖K. (14)

HereP0 is theL2(Ω )-projection into the space of functions which are constant on
each elementK ∈ Th.

5.1 A first estimate of ‖P0εu
h(T)‖ by duality argument We see that if the

term‖P0εu
h‖ is of orderO(hk+2), we would have that the postprocessed approx-

imation u⋆h would converge faster than the original approximationuh. To obtain
such an estimate, the traditional duality approach consists in, since we can write

‖P0εu
h(T)‖ = supΘ∈C∞

0 (Ω )
(P0εu

h(T),Θ)

‖Θ‖ , estimating the expression(P0εu
h(T),Θ ) by

using the solution of the dual problem

Φ +∇Ψ = 0 onΩ × (0,T), (15a)

Ψt −∇ ·B∗
α Φ = 0 onΩ × (0,T), (15b)

Ψ = 0 on∂ Ω × (0,T), (15c)

Ψ(T) =Θ on Ω . (15d)

In the next result, we give an expression for the quantity(P0εu
h(T),Θ ) in terms

of the errorsBα ε q
h , εu

h and the solution of the dual problem. In it, Ih is any interpo-
lation operator fromL2(Ω ) into Wh∩H1

0(Ω ), PW is theL2-projection intoWh and
Π BDM is the well-known projection associated to the lowest-order Brezzi-Douglas-
Marini (BDM) space, see [2].

Lemma 7 Assume that k≥ 1. Then, for any T> 0, (P0εu
h(T),Θ ) equals

∫ T

0
[(ε q

h ,B
∗
α(−Π BDM∇Ψ +∇IhΨ))+(eq,B

∗
α(Π

BDM∇Ψ −∇PWΨ))

+(∂tεu
h −eut ,P0Ψ − IhΨ)].

Proof SinceΨ(T) =Θ by (15d) andεu
h(0) = 0 by (11e), we have

(P0εu
h(T),Θ ) =

∫ T

0
[(∂tP0εu

h ,Ψ)+(P0εu
h ,Ψt)]

=
∫ T

0
[(∂tεu

h ,P0Ψ)+(εu
h,P0∇ ·B∗

αΦ)]

by the definition of theL2-projectionP0 and by (15b).
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Let us work on the last term of the right-hand side. By the commutativity
propertyP0∇·= ∇ ·Π BDM, we have(εu

h ,P0∇ ·B∗
α Φ) = (εu

h ,∇ ·B∗
αΠ BDMΦ). Since

k≥ 1, we can taker := B∗
αΠ BDMΦ in the first error equation (11a), to get

(εu
h ,P0∇ ·B∗

αΦ)=(εu
h ,∇ ·B∗

αΠ BDMΦ),

=(ε q
h ,B

∗
αΠ BDMΦ)+〈ε û

h ,B
∗
αΠ BDMΦ ·n〉− (eq,B

∗
α Π BDMΦ)

=(ε q
h ,B

∗
αΠ BDMΦ)− (eq,B

∗
α Π BDMΦ),

since〈ε û
h ,B

∗
αΠ BDMΦ ·n〉=〈ε û

h ,B
∗
α Π BDMΦ ·n〉∂ Ω = 0 becauseB∗

αΠ BDMΦ ∈H(div,Ω )

andε û
h = 0 on∂ Ω by (11c) .

Integrating in time from 0 toT and using the adjoint property (6), we get

∫ T

0
(ε q

h ,B
∗
α(Π

BDMΦ)) =

∫ T

0
(ε q

h ,B
∗
α(−Π BDM∇Ψ +∇IhΨ))−

∫ T

0
(Bα ε q

h ,∇IhΨ).

But, by the error equation (11b) withw := IhΨ ,

(Bα ε q
h ,∇IhΨ) = (∂tεu

h −eut , IhΨ)−〈Bαε q̂
h ·n, IhΨ〉= (∂tεu

h −eut , IhΨ)

since〈Bαε q̂
h ·n, IhΨ〉= 〈Bαε q̂

h ·n, IhΨ〉∂ Ω = 0 because the normal component of

Bα ε q̂
h is single valued by (11d) and IhΨ = 0 on ∂ Ω by the boundary condition

(15c).
Then, putting together all the above intermediate steps,(P0εu

h(T),Θ ) equals

∫ T

0
[(ε q

h ,B
∗
α(∇IhΨ −Π BDM∇Ψ))−(eq,B

∗
α Π BDMΦ)+(∂tεu

h ,P0Ψ − IhΨ)+(eut , IhΨ)].

Therefore, the desired result now follows after noting that

∫ T

0
(eq,B

∗
αΠ BDMΦ) =

∫ T

0
(eq,B

∗
α(Π BDM∇Ψ −∇PWΨ)),

and that(eut , IhΨ) = (eut , IhΨ −P0Ψ), by (15a), the definition ofPWΨ and the
orthogonality property of the projectionΠV , (9a); and by the definition ofP0Ψ
and the orthogonality property of the projectionΠW, (9b). ⊓⊔

Now, as a direct consequence of the previous lemma and by property (ii) of
Lemma 1, we have that

∣∣(P0εu
h(T),Θ )

∣∣≤‖ε q
h ‖L∞(L2) ‖B∗

α(Π
BDM∇Ψ −∇IhΨ)‖L1(L2)

+‖eq‖L∞(L2) ‖B∗
α(Π

BDM∇Ψ −∇PWΨ)‖L1(L2(Th))

+(‖∂tεu
h‖−α +‖eut‖−α)‖IhΨ −P0Ψ‖α .

This implies the following estimate of‖P0εu
h(T)‖;

‖P0εu
h(T)‖ ≤ H1(Θ )(‖ε q

h ‖L∞(L2)+‖eq‖L∞(L2))+H2(Θ )(‖∂tεu
h‖−α +‖eut‖−α) ,

(16)
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where

H1(Θ ) := sup
Θ∈C ∞

0 (Ω)

max{
‖B∗

α(Π BDM∇Ψ−∇IhΨ)‖L1(L2)

‖Θ‖ ,
‖B∗

α(Π BDM∇Ψ−∇PWΨ )‖L1(L2(Th))

‖Θ‖ },

H2(Θ ) := sup
Θ∈C ∞

0 (Ω)

‖P0Ψ − IhΨ‖α
‖Θ‖ .

The quantityH1(Θ ) can be bounded by

Ch sup
Θ∈C ∞

0 (Ω )

‖B∗
αΨ‖L1(H2)

‖Θ‖ ≤Ch sup
Θ∈C ∞

0 (Ω )

‖B∗
α ∆Ψ‖L1(L2)

‖Θ‖ =Ch sup
Θ∈C ∞

0 (Ω )

‖Ψt‖L1(L2)

‖Θ‖ ,

where, to get the inequality, we used the well-known elliptic regularity property

‖v‖H2(Ω ) ≤C‖∆v‖ for anyv∈ H1
0(Ω )∩H2(Ω ), (17)

which holds for convex polyhedral domains.
The quantityH2(Θ ) can be bounded by

Ch sup
Θ∈C ∞

0 (Ω )

1
‖Θ‖

(∫ T

0
‖∇Ψ‖‖B∗

α ∇Ψ‖
)1/2

.

Our next task is to obtain estimates of
∫ T

0 ‖Ψt‖ and
∫ T

0 ‖∇Ψ‖‖B∗
α ∇Ψ‖.

5.2 A priori estimates for the dual solutionThe estimates we need are gath-
ered in the following result.

Lemma 8 For anyΘ ∈ H1
0(Ω ) and anyδ ∈ (0,T), we have that

∫ T

0
‖Ψt‖ ≤

C
α +1

(√
ℓ(δ )‖Θ‖+δ (α+1)/2‖∇Θ‖

)
,

∫ T

0
‖∇Ψ‖‖B∗

α ∇Ψ‖ ≤C‖Θ‖
(
ℓ(δ )‖Θ‖+ δ (α+1)/2

α +1
‖∇Θ‖

)
,

whereℓ(δ ) = log(T/δ ). The constant C is independent ofΨ ,T andα.

Proof First, we define the auxiliary functionv: for each timet ∈ [0,T],

∆v(t) := RΨ(t) in Ω and v(t)|∂ Ω = 0,

whereR is the time-reversal operator for the interval[0,T], that is,Rψ(t) =
ψ(T − t). For the moment, we assume the following properties of the functionv:

t(1−α)/2‖∆vt(t)‖+‖∇(∆v(t))‖ ≤C min{t−(α+1)/2‖Θ‖, ‖∇Θ‖}, (18)

t−α‖vt(t)‖+‖∆v(t)‖≤C‖Θ‖, (19)
∫ T

0
t‖∆vt‖2dt ≤ C

(1+α)2‖Θ‖2 . (20)
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Using the relation∆v(t) = RΨ(t) and the above inequalities, we obtain

(T − t)(1−α)/2‖Ψt(t)‖+‖∇Ψ(t)‖ ≤C min{(T − t)−(α+1)/2‖Θ‖,‖∇Θ‖},
‖B∗

αΨ(t)‖ ≤C(T − t)α ‖Θ‖
∫ T

0
(T − t)‖Ψt‖2 dt ≤ C

(1+α)2‖Θ‖2.

This implies

‖B∗
α ∇Ψ‖2 =−(B∗

α ∆Ψ ,B∗
αΨ) = (Ψt ,B

∗
αΨ)≤ ‖Ψt‖‖B∗

αΨ‖ ≤C(T − t)α−1‖Θ‖2,

and so‖∇Ψ‖‖B∗
α ∇Ψ‖≤C min{(T−t)−1‖Θ‖2,(T−t)(α−1)/2‖Θ‖‖∇Θ‖}. Hence

∫ T

0
‖Ψt‖ ≤

∫ T−δ

0
‖Ψt‖+

∫ T

T−δ
‖Ψt‖

≤
√

log(T/δ )
(∫ T−δ

0
(T − t)‖Ψt‖2

)1/2

+C
∫ T

T−δ
(T − t)(α−1)/2‖∇Θ‖

≤C
√

log(T/δ )
‖Θ‖
α +1

+C
δ (α+1)/2

α +1
‖∇Θ‖,

and
∫ T

0
‖∇Ψ‖‖B∗

α ∇Ψ‖ ≤
∫ T−δ

0
‖∇Ψ‖‖B∗

α ∇Ψ‖+
∫ T

T−δ
‖∇Ψ‖‖B∗

α ∇Ψ‖

≤ C
∫ T−δ

0
(T − t)−1‖Θ‖2+C

∫ T

T−δ
(T − t)(α−1)/2‖Θ‖‖∇Θ‖

≤C log(T/δ )‖Θ‖2+C
δ (α+1)/2

α +1
‖Θ‖‖∇Θ‖ .

Therefore, the remaining task is to show the inequalities (18), (19), and (20). Using
the fact thatR∂t =−∂tR and thatRB∗

α = BαR, we see that

vt −Bα∆v(t) = 0 in Ω × (0,T), v= 0 on∂ Ω × (0,T), and v(0) = ∆−1Θ .

Thus, by [23, Theorems 4.1 and 4.2], (18) and (19) immediately follow. To prove
inequality (20), we use the identity

∫ T

0
t‖∆vt‖2dt = t(∆vt(t),∆v(t))

∣∣∣∣
T

0
− 1

2
‖∆v(t)‖2

∣∣∣∣
T

0
−
∫ T

0
t(∆vtt ,∆v)dt,

and the inequalities (18) and (19), to get
∫ T

0
t‖∆vt‖2dt ≤C‖Θ‖2+

∫ T

0
|t(∆vtt ,∆v)|dt.

It remains to estimate the second term of the right-hand side. To do that, we first
note that, since the operator−∆ (with homogeneous Dirichlet boundary condi-
tions) has a complete orthonormal eigensystem{λm,φm}∞

m=1 (φm ∈ H1
0(Ω ) and
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0< λ1 ≤ λ2 ≤ λ3 ≤ ·· · ), one may show that the solutionv is given by the Duhamel
formula

v(t) =
∞

∑
m=1

Eµ(−λmtµ)(v(0),φm)φm with µ = α +1,

whereEµ(t) := ∑∞
p=0

tp

Γ (µ p+1) , is the Mittag-Leffler function; see [25]. Thus,

t(∆ vtt ,∆v) =
∞

∑
m=1

Gm,µ (t)(∆v(0),φm)
2 =

∞

∑
m=1

Gm,µ (t)(Θ ,φm)
2,

whereGm,µ(t) := t Eµ(−λmtµ) d2

dt2
(Eµ(−λmtµ)) . Since, by the proof of Theorems

4.1 and 4.2 in [23], we have that|Gm,µ(t)| ≤C min{λmtµ−1,λ−2
m t−2µ−1}, we get

∫ T

0
|Gm,α (t)|dt ≤Cλm

∫ λ−1/µ
m

0
tµ−1dt+Cλ−2

m

∫ T

λ−1/µ
m

t−2µ−1dt ≤ C
(α +1)2 ,

and therefore,

∫ T

0
|t(∆vtt ,∆v)|dt ≤

∞

∑
m=1

∫ T

0
|Gm,µ (t)|dt(Θ ,φm)

2 ≤ C
(α +1)2‖Θ‖2 .

This completes the proof. ⊓⊔

5.3 Compensating for the lack of regularity ofΘ Note that the a priori esti-
mates of Lemma 8 do use theH1

0(Ω )−seminorm ofΘ whereas the bounds of the
quantitiesHi(Θ ) can only use itsL2(Ω )−norm. To remedy this lack of regularity,
we take advantage of the fact thatP0εu

h(T) lies in a finite dimensional space.
Let Th′ be a triangulation ofΩ obtained by refining each of the simplexes

of the triangulationTh, and letWc
h′ be the space ofcontinuousfunctions which

are polynomials of degreek on each element ofTh′ . Finally let Ph′ be theL2-
projection fromWh to Wc

h′ . Then, we have the following result.

Lemma 9 ([3, Appendix A.3]) For any triangulationTh of Ω , we can always
find a refinementTh′ for which we have

‖∇Ph′θ‖ ≤
Ck,d

ρ
‖θ‖ ∀ θ ∈Wh, and ‖ε‖ ≤ 2 sup

θ∈Wh

(ε,Ph′θ )
‖θ‖ ∀ ε ∈Wh.

Here the constant Ck,d depends solely on the polynomial degree k and the dimen-
sion d of the spacial domainΩ , andρ := minK∈Th

ρK whereρK denotes the radius
of the largest ball included in the simplex K.

Roughly speaking, the second inequality gives us an alternative manner to
estimate theL2(Ω )-norm of ε := P0εu

h(T). Indeed, it allows us to takeΘ of the
form P′

hθ only. The first inequality takes care of the lack of smoothness ofΘ but at
the price of the appearance of the factorρ in the denominator. We can now modify
the a priori inequalities of Lemma 8 as follows.
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Lemma 10 Let (Φ ,Ψ) be the solution of the dual problem withΘ := Ph′θ where
θ ∈Wh andPh′ satisfies Lemma 9. Then
∫ T

0
‖Ψt‖ ≤

C
α +1

√
logκ ‖θ‖ and

∫ T

0
‖∇Ψ‖‖B∗

α ∇Ψ‖ ≤ C
α +1

logκ ‖θ‖2,

where,κ > 1 is the solution ofκα+1 logκ =C2
k,d Tα+1/ρ2. Hereρ := minK∈Th

ρK

andρK denotes the radius of the largest ball included in the simplex K.

Proof We prove the first estimate; the proof of the second is almost identical.
From the first inequality of Lemma 8 withΘ := Ph′θ , the fact that Ph′ is anL2-
projection, and the first inequality of Lemma 9, we obtain
∫ T

0
‖Ψt‖ ≤

C
α +1

(√
log(T/δ )+δ (α+1)/2Ck,d

ρ
)
‖θ‖= 2C

α +1

√
log(κ)‖θ‖,

if we takeδ := T/κ and use the definition ofκ. This completes the proof. ⊓⊔
5.4 The estimate of the postprocessed approximationWe can now insert

the estimates of the previous corollary in the first estimateof ‖P0εu
h(T)‖, (16), to

obtain the superconvergence estimate we sought. Note that,sinceΩ is convex, we
can use the elliptic regularity inequality (17).

Theorem 3 Assume that u∈C 1(0,T;Hk+2(Ω )) andq∈C 1(0,T;Hk+1(Ω )). As-
sume also thatτ∗K and1/τmax

K are bounded byC. Then, for k≥ 1, we have that

‖(u−u∗h)(T)‖ ≤ C3

√
logκ hk+2 .

where the constant C3, only depends on C,α, ‖u‖
C 1(Hk+2), and on‖q‖

C 1(Hk+1).

Let us relateκ to T and the maximum diameter of the simplexes of the mesh,
h. For logκ > 1,

κα+1 < κα+1 logκ =C2
k,d Tα+1/ρ2 ≤CC2

k,d Tα+1/h2,

when the mesh is quasi-uniform. We then easily see that logκ <C log(Th−2/(α+1))

for logκ > 1. Therefore,
√

logκ ≤ max{1,C
√

log(Th−2/(α+1))} .
Proof From the first estimate of‖P0εu

h(T)‖, (16), we have that

‖P0εu
h(T)‖ ≤ H1(Θ )(‖ε q

h ‖L∞(L2)+‖eq‖L∞(L2))+H2(Θ )(‖∂tεu
h‖−α +‖eut‖−α)

≤Ch

√
logκ

α +1

(
‖ε q

h ‖L∞(L2)+‖eq‖L∞(L2)+‖∂tεu
h‖−α +‖eut‖−α

)
‖θ‖,

by the estimates of the dual solution of the previous lemma. Using these estimates
in (14), we obtain

‖u−u⋆h‖ ≤Chk+2 |u|Hk+2(Th)
+ Ch

√
logκ

α +1

(
‖ε q

h ‖L∞(L2)+‖eq‖L∞(L2)

+‖∂tεu
h‖−α +‖eut‖−α

)
+Ch‖ε q

h ‖L∞(L2).

The result now follows by using the error estimates of Theorem 2. ⊓⊔
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6 Summary and concluding remarks

We have carried out the a priori error analysis of a semi-discrete HDG method for
the spatial discretization to problem (1). Assuming that the exact solution is suffi-
ciently regular, we proved optimal error estimates of the approximations tou in the
L∞
(
0,T;L2(Ω )

)
-norm and to−∇u in the L∞

(
0,T;L2(Ω )

)
-norm over a regular

triangular meshes. Moreover, for quasi-uniform meshes, bya simple elementwise
postprocessing, we obtained a faster approximation foru with a superconvergence
rate. All the results obtained in this paper can be extended almost word-by-word
to other superconvergent HDG methods as well as to the mixed methods that fit
the general formulation of the HDG methods; see [8].

The devising of time-space fully discrete DG methods able todeal in an effi-
cient manner with the memory term constitutes the subject ofongoing research.
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