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Abstract. We present numerical upscaling techniques for a class
of linear second-order self-adjoint elliptic partial differential op-
erators (or their high-resolution finite element discretization). As
prototypes for the application of our theory we consider benchmark
multi-scale eigenvalue problems in reservoir modeling and material
science. We compute a low-dimensional generalized (possibly mesh
free) finite element space that preserves the lowermost eigenvalues
in a superconvergent way. The approximate eigenpairs are then
obtained by solving the corresponding low-dimensional algebraic
eigenvalue problem. The rigorous error bounds are based on two-
scale decompositions of H1

0(Ω) by means of a certain Clément-type
quasi-interpolation operator.

1. Introduction

This paper presents and analyzes a novel numerical upscaling tech-
nique for computing eigenpairs of self-adjoint linear elliptic second or-
der differential operators with arbitrary positive bounded coefficients.
The precise setting of the paper is as follows. Let Ω ⊂ Rd be a bounded
polyhedral Lipschitz domain and let A ∈ L∞(Ω,Rd×d

sym) be a matrix-
valued coefficient with uniform spectral bounds 0 < α ≤ β <∞,

(1.1) σ(A(x)) ⊂ [α, β]

for almost all x ∈ Ω. We want to approximate the eigenvalues of the
prototypical operator − div(A∇•). The corresponding eigenproblem
in variational formulation reads: find pairs consisting of an eigenvalue
λ ∈ R and associated non-trivial eigenfunction u ∈ V := H1

0 (Ω) such
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that

(1.2) a(u, v) :=

∫
Ω

(A∇u) · ∇v dx = λ

∫
Ω

uv dx =: λ(u, v)L2(Ω)

for all v ∈ V . We are mainly interested in the lowermost eigenvalues of
(1.2) or, more precisely, in the lowermost eigenvalues of the discretized
problem: find λh ∈ R and associated non-trivial eigenfunctions uh ∈
Vh ⊂ V such that

(1.2.h) a(uh, v) = λh(uh, v)L2(Ω) for all v ∈ Vh.
Here and throughout the paper, the discrete space Vh ⊂ V shall be a
conforming finite element space of dimension Nh based on some regular
finite element mesh Th of width h.

Popular approaches for the computation of these eigenvalues include
Lanczos/Arnoldi-type iterations (as implemented, e.g., in [LSY98]) or
the QR-algorithm applied directly to the Nh-dimensional finite element
matrices. If a certain structure of the discretization can be exploited
(e.g., a hierarchy of finite element meshes and/or spaces) some pre-
conditioned outer iteration for the eigenvalue approximation may be
performed and linear problems are solved (approximately) in every it-
eration step [Hac79], [KN03b], [KN03a]; see also [Ney03] and [BBS08]
and references therein.

Our aim is to avoid the application of any eigenvalue solver to the
fine scale discretization (1.2.h) directly. We introduce a second, coarser
discretization scale H > h instead. On the corresponding coarse mesh
TH , we compute a generalized finite element space Vc of dimension
NH � Nh. The solutions (λH , uc) ∈ R× Vc of

(1.2.H) a(uc, v) = λH(uc, v)L2(Ω) for all v ∈ Vc,

then yield accurate approximations of the first NH eigenpairs of (1.2.h)
and, hence, of the first NH eigenpairs of (1.2) (provided that Vh is
properly chosen).

The computation of the coarse space Vc involves the (approximate)
solution of NH linear equations on the fine scale (one per coarse node).
We emphasize that these linear problems are completely independent
of each other. They can be computed in parallel without any commu-
nication.

The error λH −λh between corresponding eigenvalues of (1.2.H) and
(1.2.h), i.e., the error committed by the upscaling from the fine dis-
cretization scale h to the coarse discretization scale H, is expressed in
terms of H. Without any assumptions on the smoothness of the eigen-
functions of (1.2) or (1.2.h), we prove that these errors are at least of
order H4. Note that a standard first-order conforming finite element
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computation on the coarse scale yields accuracy H2 under full H2(Ω)
regularity, see e.g. [Lar00]. Since our estimates are both, of high order
(at least H4) and independent of the underlying regularity, the accu-
racy of our approximation may actually suffice to fall below the error
λh−λ of the fine scale discretization which is of order Ch2s where both
the constant C and the exponent s ∈ [0, 1] depend on the regularity
of the data (convexity of Ω, differentiability and variability of A) in a
crucial way.

The idea of employing a two-level techniques for the acceleration of
eigensolvers is not new. The two-grid method of [XZ01] allows certain
post-processing (solution of linear problems on the fine scale). For stan-
dard first-order conforming finite element coarse spaces, this technique
decreases the eigenvalue error from H2 to H4 (up to fine scale errors as
above) if the corresponding eigenfunctions are H2-regular. The regular-
ity assumption is essential and not justified on non-convex domains or
for heterogeneous and highly variable coefficients. However, the post-
processing technique applies as well to the generalized finite element
coarse space Vc and yields eigenvalue errors of order H6 without any
regularity assumptions.

In cases with singular eigenfunctions (due to re-entrant corners in
the domain or isolated jumps of the coefficient), one might as well use
modern mesh-adaptive algorithms driven by some a posteriori error es-
timator as proposed and analyzed, e.g., in [Lar00], [Ney02], [DPR03],
[CG11], [GMZ09], [GG09], [MM11], [CG12], [BGO13]. We are not
competing with these efficient algorithms. However, adaptive mesh re-
finement has its limitations. For instance, if the diffusion coefficient
A is highly variable on microscopic scales, the mesh width has to be
sufficiently small to resolve these variations [PS12]. For problems in
geophysics or material sciences with characteristic geometric features
on microscopic length scales, this so-called resolution condition is often
so restrictive that the initial mesh must be chosen very fine and fur-
ther refinement exceeds computer capacity. Our method is especially
designed for such situations which require coarsening rather than re-
finement.

A particular application of our methodology is the computation
ground states of Bose- Einstein condensates as solutions of the Gross-
Pitaevskii equation. Here, certain resolution (small h) is required in
order to ensure unique solvability of the discrete non-linear eigenvalue
problem. It is already exposed in [HMP14b] that our upscaling ap-
proach leads to a significant speed-up in computational time because
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the expensive iterative solver for the non-linear eigenproblem needs to
be applied solely on a space of very low dimension.

The main tools in this paper are localizable orthogonal decomposi-
tions of H1

0(Ω) (or its subspace Vh) into coarse and fine parts. These
decompositions are presented in Section 3. The two-level method for
the approximation of eigenvalues is presented in Section 4. Section 5
contains its error analysis. The efficient local approximation of the
coarse space, the generalization to non-nested grids, a post-processing
technique, and further complexity issues are discussed in Section 6.
Finally, Section 7 demonstrates the performance of the method in nu-
merical experiments.

In the remaining part of this paper, we will frequently make use of the
notation b1 . b2 which abbreviates b1 ≤ Cb2, with some multiplicative
constant C > 0 which only depends on the domain Ω and the parameter
γ (cf. (2.1) below) that measures the quality of some underlying finite
element mesh. We emphasize that the C does not depend on the mesh
sizes H, h, the eigenvalues, or the coefficient A. Furthermore, b1 ≈ b2

abbreviates b1 . b2 . b1.

2. Finite Element Spaces and Quasi-Interpolation

This section presents some preliminaries on finite element meshes,
spaces, and interpolation.

2.1. Finite element mesh. We consider two discretization scalesH >
h > 0. Let TH (resp. Th) denote corresponding regular (in the sense
of [Cia87]) finite element meshes of Ω into closed simplices with mesh-
size functions 0 < H ∈ L∞(Ω) defined by H|T = diamT =: HT for all
T ∈ TH (resp. 0 < h ∈ L∞(Ω) defined by h|t = diam t =: ht for all
t ∈ Th). The mesh sizes may vary in space but we will not exploit the
possible mesh adaptivity in this paper.

The error bounds, typically, depend on the maximal mesh sizes
‖H‖L∞(Ω). If no confusion seems likely, we will use H also to de-
note the maximal mesh size instead of writing ‖H‖L∞(Ω). For the sake
of simplicity we assume that Th is derived from TH by some regular,
possibly non-uniform, mesh refinement. However, this condition is not
essential and Section 6.2 will discuss possible generalizations.

As usual, the error analysis depends on the constant γ > 0 which
represents the shape regularity of the finite element mesh TH ;

(2.1) γ := max
T∈TH

γT with γT :=
diamT

diamBT

for T ∈ TH ,

where BT denotes the largest ball contained in T .
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2.2. Finite element spaces. The first-order conforming finite ele-
ment space corresponding to TH is given by
(2.2)
VH := {v ∈ V | ∀T ∈ TH , v|T is a polynomial of total degree ≤ 1}.

Let NH denote the set of interior vertices of TH . For every vertex
z ∈ NH , let φz ∈ VH denote the corresponding nodal basis function
(tent/hat function) determined by nodal values

φz(z) = 1 and φz(y) = 0 for all y 6= z ∈ NH .

These nodal basis functions form a basis of VH . The dimension of VH
equals the number of interior vertices,

NH := dimVH = |NH |.

Let Vh ⊃ VH denote some conforming finite element space corre-
sponding to the fine mesh Th. It can be the space of continuous piece-
wise affine functions on the fine mesh or any other (generalized) finite
element space that contains VH , e.g., the space of continuous p-th or-
der piecewise polynomials as in [Sau10]. By Nh := dimVh we denote
the dimension of Vh. For standard choices of Vh, this dimension is
proportional to the number of interior vertices in the fine mesh Th.

2.3. Quasi-interpolation. The key tool in our construction will be
the bounded linear surjective Clément-type (quasi-)interpolation op-
erator IH : H1

0(Ω) → VH presented and analyzed in [CV99]. Given
v ∈ H1

0(Ω), IHv :=
∑

z∈NH
(IHv)(z)φz defines a (weighted) Clément

interpolant with nodal values

(2.3) (IHv)(z) :=
(v, φz)L2(Ω)

(1, φz)L2(Ω)

for z ∈ NH . The nodal values are weighted averages of the function
over nodal patches ωz := suppφz. Recall the (local) approximation
and stability properties of the interpolation operator IH [CV99]: There
exists a generic constant CIH such that for all v ∈ H1

0(Ω) and for all
T ∈ TH it holds

(2.4) H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH‖∇v‖L2(ωT ),

where ωT := ∪{K ∈ TH | T ∩K 6= ∅}. The constant CIH depends on
the shape regularity parameter γ of the finite element mesh TH (see
(2.1) above) but not on HT .

Note that there exists a constant Col > 0 that only depends on γ
such that the number of elements covered by ωT is uniformly bounded
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(w.r.t. T ) by Col,

(2.5) max
T∈TH

|{K ∈ TH | K ⊂ ωT}| ≤ Col.

Both constant, CIH and Col, may be hidden in the notation “.” intro-
duced at the end of the Introduction on page 4.

3. Two-scale Decompositions

Two-scale decompositions of functions u ∈ Vh into some macro-
scopic/coarse part uc plus some microscopic/fine part uf with a certain
orthogonality relation are at the very heart of this paper. The macro-
scopic or coarse part will be an element of a low-dimensional (classical
or generalized) finite element space based on some coarse finite element
mesh. The microscopic or fine part may oscillate on fine scales that
cannot be represented on the coarse mesh.

We stress that all subsequent results are valid even if h = 0, i.e., if
Vh is replaced with V = H1

0 (Ω). Actually, the structure of Vh being
the space of continuous piecewise polynomials is never exploited. As
far as the theory is concerned, Vh could be any space (finite or infinite
dimensional) that satisfies VH ( Vh ⊆ H1

0 (Ω).
The initial coarse space VH may as well be generalized. This will be

discussed in Section 6.2.

3.1. L2-orthogonal two-scale decomposition. We define the fine
scale space

Vf := kernel
(
IH |Vh

)
⊂ Vh,

which will take over the role of the microscopic/fine part in all subse-
quent decompositions.

Our particular choice of a quasi-interpolation operator gives rise to
the following orthogonal decomposition. Remember that (•, •)L2(Ω) :=∫

Ω
• • dx abbreviates the canonical scalar product in L2(Ω) and let

‖ • ‖ :=
√

(•, •)L2(Ω) abbreviate the corresponding norm of L2(Ω).

Lemma 3.1 (L2-orthogonal two-scale decomposition). Any function
u ∈ Vh can be decomposed uniquely into the sum of uH := IH |−1

VH
(IHu) ∈

VH and uf := u− uH ∈ Vf with

(3.1) (uH , uf)L2(Ω) = 0.

The orthogonality implies stability in the sense of

‖uH‖2 + ‖uf‖2 = ‖u‖2.
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Proof of Lemma 3.1. It is easily verified that the restriction of IH on
the finite element space VH is invertible. This yields the decomposition.

For the proof of orthogonality, let vH =
∑

z∈NH
vH(z)φz ∈ VH and

vf ∈ Vf be arbitrary. Since IHvf = 0, we have that (φz, vf)L2(Ω) =
(IHvf)(z)

∫
Ω
φz dx = 0 for all z ∈ NH . This yields

(vH , vf)L2(Ω) =
∑
z∈NH

vH(z)(φz, vf)L2(Ω) = 0

and shows that VH and Vf are orthogonal subspaces of Vh. �

We may rewrite Lemma 3.1 as

(3.2) Vh = VH ⊕ Vf and (VH , Vf)L2(Ω) = 0.

Remark 3.1 (L2-projection onto the finite element space). Note that
the operator IH is well-defined as a mapping from L2(Ω) onto VH . In
particular, it is stable in the sense that for any v ∈ L2(Ω), it holds
that ‖IHv‖ . ‖v‖. From the arguments of Lemma 3.1 one easily

verifies that the L2-orthogonal projection ΠL2

VH
: L2(Ω)→ VH onto the

finite element space VH may be characterized via the modified Clément
interpolation (2.3),

ΠL2

VH
= IH |−1

VH
IH .

Furthermore, it holds Vf = kernel
(
ΠL2

VH
|Vh
)
, i.e., Vf might as well be

characterized via ΠL2

VH
. This does not change the method. For theoret-

ical purposes, we prefer to work with IH because it is a local operator.

3.2. a-orthogonal two-scale decomposition. The orthogonalization
of the decomposition (3.2) with respect to the scalar product a(•, •) :=∫

Ω
(A∇•) · ∇ • dx yields the definition of a generalized finite element

space Vc, that is the a-orthogonal complement of Vf in Vh. Given v ∈ Vh,
define the a-orthogonal fine scale projection operator Pfv ∈ Vf by

a(Pfv, w) = a(v, w) for all w ∈ Vf .

We define the energy norm ||| • ||| :=
√
a(•, •) (the norm induced by

the scalar product a).

Lemma 3.2 (a-orthogonal two-scale decomposition). Any function
u ∈ Vh can be decomposed uniquely into u = uc + uf , where

uc := (1− Pf)u ∈ (1− Pf)VH =: Vc

and
uf := Pfu ∈ Vf = kernel(IH |Vh).

The decomposition is orthogonal

(3.3) a(uc, uf) = 0,
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and, hence, stable in the sense of

(3.4) |||uc|||2 + |||uf |||2 = |||u|||2.

In other words,

(3.5) Vh = Vc ⊕ Vf and a(Vc, Vf) = 0.

We shall emphasize at this point that the decompositions in Lemma 3.1
and Lemma 3.2 are different in general. In particular, the fine scale
part vf may not be the same.

The orthogonalization procedure (with respect to a(•, •)) does not
preserve the L2-orthogonality. However, the key observation of this
section is that the resulting decomposition (3.5) is almost orthogonal
in L2(Ω).

Theorem 3.3 (L2-quasi-orthogonality of the a-orthogonal decompo-
sition). The decomposition Vh = Vc ⊕ Vf from Lemma 3.2 is L2-quasi-
orthogonal in the sense that for all vc ∈ Vc and all vf ∈ Vf , it holds

(3.6) (vc, vf)L2(Ω) . H2‖∇vc‖‖∇vf‖ ≤ α−1H2|||vc||||||vf |||.

The decomposition is stable in the sense that

(3.7) ‖vc‖2 + ‖H−1vf‖2 . α−1|||vc + vf |||2.

Proof. Given any vc ∈ Vc and vf ∈ Vf , Lemma 3.1 implies that

(IHvc, vf)L2(Ω) = 0.

Since IHvf = 0, the Cauchy-Schwarz inequality, (2.4), and (2.5) yield

(vc, vf)L2(Ω) = (vc − IHvc, vf − IHvf)L2(Ω) . H2‖∇vc‖‖∇vf‖.(3.8)

This is the quasi-orthogonality. The same arguments show that

(H−1vf , H
−1vf)L2(Ω) =

(
H−1(vf − IHvf), H

−1(vf − IHvf)
)
L2(Ω)

.
∑
T∈TH

‖∇vf‖2
L2(ωT )

. α−1|||vf |||2.

This, Friedrichs’ inequality

‖vc‖ ≤ π−1 diam Ω‖∇vc‖,

and (3.4) readily prove the stability estimate. �
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4. Upscaled Approximation of Eigenvalues and
Eigenfunctions

This section presents a new scheme for the approximation of eigen-
values and eigenfunctions of (1.2.h) or (1.2). Section 4.1 recalls the
variational formulation and some characteristic properties of the prob-
lem. The new upscaled approximation is then introduced in Section 4.2.

4.1. Variational formulation and fine scale discretization. For
problem (1.2), there exists a countable number of eigenvalues λ(`) (` ∈
N) and corresponding eigenfunctions u(`) ∈ V . Recall their characteri-
zation as solutions of the variational problem

(4.1) a(u(`), v) = λ(`)(u(`), v)L2(Ω) for all v ∈ V.

Since A is symmetric, all eigenvalues are real and positive. They can
be sorted ascending

0 < λ(1) ≤ λ(2) ≤ λ(3) ≤ . . . .

Depending on the actual domain Ω and the coefficient A, there may be
multiple eigenvalues. A multiple eigenvalue is repeated several times
according to its multiplicity in the enumeration above. Let u(`) (` ∈ N)
be normalized to one in L2(Ω), i.e., ‖u(`)‖ = 1. It is well known that
the eigenfunctions enjoy (or, in the case of multiple eigenvalues, may
be chosen such that they fulfill) the orthogonality contraints

(4.2) a(u(`), u(m)) = (u(`), u(m))L2(Ω) = 0 if ` 6= m.

The Rayleigh-Ritz discretization of (4.1) with respect to the fine scale

finite element space Vh reads: find λ
(`)
h ∈ R and non-trivial u

(`)
h ∈ Vh

such that

(4.3) a(u
(`)
h , v) = λ

(`)
h (u

(`)
h , v)L2(Ω) for all v ∈ Vh.

Since Vh is a finite-dimensional subspace of V , we can order the discrete
eigenvalues similar as the original ones

0 < λ
(1)
h ≤ λ

(2)
h ≤ λ

(3)
h ≤ · · · ≤ λ

(Nh)
h .

Again, multiple eigenvalues are repeated according to their multiplic-

ity. Let u
(`)
h (` = 1, 2, . . . , Nh) be normalized to one in L2(Ω), i.e.,

‖u(`)
h ‖ = 1. The discrete eigenfunctions satisfy (or, in the case of multi-

ple eigenvalues, can be chosen such that they satisfy) the orthogonality
contraints

(4.4) a(u
(`)
h , u

(m)
h ) = (u

(`)
h , u

(m)
h )L2(Ω) = 0 if ` 6= m.
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We do not intend to solve the fine scale eigenproblem (4.3). We aim to

approximate its eigenpairs (λ
(`)
h , u

(`)
h ) with the help of the coarse space

Vc defined in Lemma 3.2.

4.2. Coarse scale discretization. Recall the definition of the coarse
space

Vc := (1− Pf)VH
from Lemma 3.2. This means that Vc is the image of VH under the
projection operator 1 − Pf , where Pf is the a-orthogonal projection
onto the space

Vf := {v ∈ Vh | IHv = 0}.
Since the intersection of VH and Vf is the trivial subspace (cf. Lemma 3.1),
it holds

dimVc = dimVH = NH .

Moreover, the images of the nodal basis functions φz (z ∈ NH) under
(1− Pf) yield a basis of Vc,

(4.5) Vc = span{(1− Pf)φz | z ∈ NH}.
In order to actually compute those basis functions, we need to ap-

proximate NH solutions ψz = Pfφz ∈ Vf of

(4.6) a(ψz, v) = a(φz, v) for all v ∈ Vf .

These problems are linear. The only difference to a standard Poisson
problem is that there are some linear constraints hidden in the space
Vf , that is, the quasi-interpolation of trial and test functions vanishes.
In practice, these constraints are realized using Lagrange multipliers.

The linear problems (4.6) may be solved in parallel. Moreover, Sec-
tion 6.1 below will show that these linear problems may be restricted to
local subdomains of diameter ≈ | log(H)|H centered around the coarse
vertex z, so that the complexity of solving all corrector problems ex-
ceeds to the cost of solving one linear Poisson problem on the fine mesh
only by a factor that depends algebraically on | log(H)|.

The Rayleigh-Ritz discretization of (4.3) (and (4.1)) with respect

to the generalized finite element space Vc reads: find λ
(`)
H ∈ R and

non-trivial u
(`)
c ∈ Vc such that

(4.7) a(u(`)
c , v) = λ

(`)
H (u(`)

c , v)L2(Ω) for all v ∈ Vc.

The assembly of the corresponding finite element stiffness and mass
matrices requires only the evaluation of the corrector functions ψz =
Pfφz ∈ Vf computed previously. In genereal, these matrices are not
sparse. However, either the dimension of the coarse problem NH � Nh

is so small that the lack of sparsity is not an issue or the matrices may
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be approximated by sparse matrices with negligible loss of accuracy
(see Section 6.1 below).

The discrete eigenvalues are ordered (multiple eigenvalues are re-
peated according to their multiplicity)

0 < λ
(1)
H ≤ λ

(2)
H ≤ λ

(3)
H ≤ · · · ≤ λ

(NH)
H .

Let also u
(`)
c (` = 1, 2, . . . , NH) be normalized to one in L2(Ω), i.e.,

(u
(`)
c , u

(`)
c )L2(Ω) = 1. The discrete eigenfunctions satisfy (or, in the

case of multiple eigenvalues, can be chosen such that they satisfy) the
orthogonality contraints

(4.8) a(u(`)
c , u(m)

c ) = (u(`)
c , u(m)

c )L2(Ω) = 0 if ` 6= m.

5. Error analysis

In the subsequent paragraphs we will present error bounds for the
approximate eigenvalues and eigenfunctions based on the variational
techniques from [SF73] (which are based on [BdBSW66] on their part);
see also [Bof10].

5.1. Two-scale decomposition revisited. The eigenfunctions allow
a different (with respect to Section 3) characterization of a macroscopic
function, that is, any function spanned by eigenfunctions related to the
` lowermost eigenvalues. Define

(5.1) E` := span{u(1)
h , . . . , u

(`)
h }.

We will have a closer look at the quasi-orthogonality result of Lemma 3.2
given some macroscopic function u ∈ E`.

Lemma 5.1 (L2-quasi-orthogonality of the a-orthogonal decomposi-
tion of macroscopic functions). Let ` ∈ N and let u = uc + uf ∈ E`
with ‖u‖ = 1, where uc ∈ Vc (resp. uf ∈ Vf) denotes the coarse scale
part (resp. fine scale part) of u according to the a-orthogonal decom-
position in Lemma 3.2. Then it holds

|||uc||| ≤
√
λ

(`)
h ,(5.2)

|||uf ||| . `

(
λ

(`)
h

)3/2

α
H2, and(5.3)

|(uc, uf)L2(Ω)| . `

(
λ

(`)
h

α

)2

H4.(5.4)
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Proof. Let δj ≤ 1, j = 1, 2, . . . , `, be the coefficients in the represen-

tation of u by eigenfunctions, that is, u =
∑`

j=1 δju
(j)
h . Then (5.2)

follows from the fact that (1 − Pf) is a projection and the obvious

bound |||u|||2 ≤ λ
(`)
h .

For the proof of (5.3), we employ some algebraic manipulations and
equation (4.3),

(5.5) |||uf |||2 = a(u, uf) =
∑̀
j=1

δja(u
(j)
h , uf) =

∑̀
j=1

δjλ
(j)
h (u

(j)
h , uf)L2(Ω).

Lemma 3.1, the Cauchy-Schwarz inequality, (2.4), and (2.5) yield

(5.6) (u
(j)
h , uf)L2(Ω) . α−1H2|||u(j)

h ||||||uf |||

(cf. (3.8)). The combination of (5.5)-(5.6), |||u(j)
h |||2 = λ

(j)
h ≤ λ

(`)
h and

δj ≤ 1 yields the upper bound of |||uf |||.
The inequality (5.4) follows readily from Theorem 3.3 and the bounds

(5.2)–(5.3). �

Remark 5.1 (Improved L2-quasi-orthogonality under regularity). Con-
sider the full space space Vh = V . Then, in certain cases, e.g., if Ω is
convex and the coefficient A is constant, we have that any macroscopic
function u ∈ E` is in H2(Ω) and ‖∇2u‖ . λ(`)/α‖u‖. Such an instance
of regularity gives rise to an additional power of Hλ(`)/α in the esti-
mates (5.3) and (5.4) in Lemma 5.1. This is due to the approximation
property

(5.7) ‖v − IHv‖ . H2‖v‖H2(Ω)

for v ∈ V ∩ H2(Ω), and the possible modification

(u(j), uf)L2(Ω) = (u(j) − IHu(j), uf − IHuf)L2(Ω) .
H3λ(j)

α2
|||uf |||

of (5.6).

5.2. Estimates for approximate eigenvalues. We first introduce
the Rayleigh quotient, which is defined for non-trivial v ∈ Vh by

R(v) :=
a(v, v)

(v, v)
.

Recall that the `th eigenvalue of (4.3) is characterized via the minmax-
principle (which goes back to Poincaré [Poi90])

(5.8) λ
(`)
h = min

S∈S`(Vh)
max
v∈S\{0}

R(v),
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where S`(V ) denotes the set of `-dimensional subspaces of Vh. This
principle applies equally well to the coarse problem (4.7), i.e.,

(5.9) λ
(`)
H = min

S∈S`(Vc)
max
v∈S\{0}

R(v)

characterizes the `th discrete eigenvalue (` ≤ NH). The conformity
Vc ⊂ Vh(⊆ V ) yields monotonicity

(5.10) (λ(`) ≤ ) λ
(`)
h ≤ λ

(`)
H for all ` = 1, 2, . . . , NH .

The following theorem gives an estimate in the opposite direction.

Theorem 5.2 (Bound for the eigenvalue error). Let H be sufficiently

small so that H . `−1/4
√

α

λ
(`)
h

. Then it holds that

(5.11)
λ

(`)
H − λ

(`)
h

λ
(`)
h

. `

(
λ

(`)
h

α

)2

H4 for all ` = 1, 2, . . . , NH .

Proof. Recall the definition of E` in (5.1) and define

σ
(`)
H := max

u∈E`:(u,u)L2(Ω)=1
|(uf , uf)L2(Ω) + 2(uc, uf)L2(Ω)|,

where uc ∈ Vc (resp. uf ∈ Vf) denotes the coarse scale part (resp. fine
scale part) of u ∈ E` according to the a-orthogonal decomposition in
Lemma 3.2. The L2-norm of uf satisfies the estimate

‖uf‖2 = (u, uf)L2(Ω) − (uc, uf)L2(Ω)

= (u− IHu, uf − IHuf)L2(Ω) − (uc, uf)L2(Ω)

. `

(
λ

(`)
h

α

)2

H4 + |(uc, uf)L2(Ω)|,

which follows from Lemma 3.1, (2.4), and (2.5). Hence, Lemma 5.1
shows that

σ
(`)
H . `

(
λ

(`)
h

α

)2

H4.

If H is chosen small enough so that σ
(`)
H ≤ 1

2
(i.e., H . `−1/4

√
α
λ(`) ),

then Lemma 6.1 in [SF73] shows that

λ
(`)
H ≤ (1− σ(`)

H )−1λ
(`)
h ≤ (1 + 2σ

(`)
H )λ

(`)
h .

Inserting our estimate for σ
(`)
H readily yields the assertion. �
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The triangle inequality allows to control the approximation error
with respect to the continuous eigenvalues (4.1) by

λ
(`)
H − λ

(`) . λ
(`)
h − λ

(`) + `

(
λ

(`)
h

)3

α2
H4.

The first term λ
(`)
h −λ(`) depends on the choice of the space Vh and the

regularity of corresponding eigenfunctions in the usual way.

Remark 5.2 (Improved eigenvalue error bound for smooth eigenfunc-
tion). With regard to Remark 5.1, the error bound in Theorem 5.2 may
be improved in the ideal case V = Vh provided that the first ` eigen-
functions are regular in the sense of ‖∇2u(j)‖ . λ(j)/α. The improved
bound reads

(5.12)
λ

(`)
H − λ(`)

λ(`)
. `

(
λ(`)

α

)3

H5 for all ` = 1, 2, . . . , NH .

This improved bound applies also to the case where Vh is a finite ele-
ment space if h is sufficiently small.

The improved bound might still be pessimistic in the sense that
the error in the `th eigenvalue/vector depends on the regularity of all
previous eigenfunctions. The recent theory [KO06] shows that this is
not necessarily true. Moreover, there might be smoothness also in the
single summands of the two-scale decomposition which is not exploited.

5.3. Estimates for approximate eigenfunctions. We turn to the
error in the approximate eigenfunctions. Again, we follow the receipt
provided in [SF73].

Theorem 5.3 (Bound for the eigenfunction error). Let λ
(`)
h be an eigen-

value of multiplicity r, i.e., λ
(`)
h = · · · = λ

(`+r−1)
h with correspond-

ing eigenspace spanned by the orthonormal basis {u(`+j)
h }r−1

j=0. Let the

pairs
(
λ

(`)
H , u

(`)
c

)
, . . . ,

(
λ

(`+r−1)
H , u

(`+r−1)
c

)
be the Rayleigh-Ritz approxi-

mations solving equation (4.7) with ‖u(`+j)
c ‖ = 1 for j = 0, 1, . . . , r− 1.

If ` + r − 1 ≤ NH and if H . `−1/3(1 + ρ)−1/3

√
α/λ

(`)
h is sufficiently

small, then there exist an orthonormal basis of span({u(`+j)
h }r−1

j=0), let

us denote the basis functions ũ
(`+j)
h , such that for all j = 0, 1, . . . , r−1,

|||ũ(`+j)
h − u(`+j)

c ||| .
√
`

(λ
(`)
h )3/2

α
H2 + `(1 + ρ)

(λ
(`)
h )2

α3/2
H3,(5.13)

‖ũ(`+j)
h − u(`+j)

c ‖ . `(1 + ρ)

(
λ

(`)
h

α

)3/2

H3,(5.14)
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where ρ := maxj 6∈{`,`+1,...,`+r−1}
λ

(`)
h

|λ(`)
h −λ

(j)
H |

.

Proof. The analysis presented in [SF73, Lemma 6.4 and Theorem 6.2]

shows that, for any j = 0, 1, . . . , r − 1, there is a function ũ
(`+j)
c ∈

span({u(`+i)
c }r−1

i=0 ) such that

‖u(`+j)
h − ũ(`+j)

c ‖ ≤ (1 + ρ)‖Pfu
(`+j)
h ‖.

According to the a-orthogonal decomposition in Lemma 3.2, Pfu
(`+j)
h

is the fine scale part of u
(`+j)
h . Hence, the interpolation error estimate

(2.4) and Lemma 5.1 yield

r−1∑
j=1

‖u(`+j)
h − ũ(`+j)

c ‖2 . (1 + ρ)2`2

(
λ

(`)
h

α

)3

H6.

If the right-hand side is small enough, i.e., if the multiplicative constant

hidden in H . `−1/3(1 + ρ)−1/3

√
α/λ

(`)
h is sufficiently small, the linear

transformation of the orthonormal basis
{
u

(`+j)
c

}r−1

j=0
which defines the

set of functions
{
ũ

(`+j)
c

}r−1

j=0
may be replaced with an orthogonal trans-

formation, without any harm to the estimate. In this regime, the ap-
plication of the inverse orthogonal transformation to the errors proves
the L2 bound (5.14).

For the proof of (5.13), observe that for any v ∈ span({u(`+i)
h }r−1

i=0 )
with ‖v‖ = 1 it holds

|||v − u(`)
c |||2 = λ

(`)
h − 2λ

(`)
h (v, u(`)

c )L2(Ω) + λ
(`)
H

= λ
(`)
h (2− 2(v, u(`)

c )L2(Ω)) + λ
(`)
H − λ

(`)
h

= λ
(`)
h ‖v − u

(`)
c ‖2 + λ

(`)
H − λ

(`)
h .(5.15)

The assertion then follows by combining equation (5.15) with v =

ũ
(`+j)
h , (5.14), and Theorem 5.2.

�

6. Practical Aspects

This section discusses the efficient approximation of the corrector
functions Pfφz from (4.6) by localization, the generalization to non-
nested meshes, some post-processing technique, and the overall com-
plexity of our method.
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6.1. Localization of fine scale computations. The construction of
the coarse space Vc is based on the fine scale equations (4.6) which
are formulated on the whole domain Ω. This makes them expensive to
compute. However, in [MP14] it was shown that Pfφz decays exponen-
tially fast outside of the support of the coarse basis function φz. We
specify this feature as follows. Let k ∈ N. We define nodal patches ωz,k
of k coarse grid layers centered around the node z ∈ NH by

(6.1)
ωz,1 := suppφz = ∪{T ∈ TH | z ∈ T} ,
ωz,k := ∪{T ∈ TH | T ∩ ωz,k−1 6= ∅} for k ≥ 2.

The result in the decay of Pfφz in [MP14] can be expressed as follows.
For all vertices z ∈ NH and for all k ∈ N, it holds

(6.2) ‖A1/2∇Pfφz‖L2(Ω\ωz,k) . e−(α/β)1/2k|||Pfφz|||.

For moderate contrast β/α, this motivates the truncation of the com-
putations of the basis functions to local patches ωz,k. We approximate
ψz = Pfφz ∈ Vf from (4.6) with ψz,k ∈ Vf(ωz,k) := {v ∈ Vf | v|Ω\ωx,k

=
0} such that

(6.3) a(ψz,k, v) = a(φz, v) for all v ∈ Vf(ωz,k).

We emphasize that

Vf(ωz,k) = {v ∈ Vh | v|Ω\ωx,k
= 0, ∀y ∈ NH ∩ ωz,k : (v, φy)L2(Ω) = 0},

i.e., in a practical computation with lagrangian multipliers only one
linear constraint per coarse vertex in the patch ωx,k needs to be con-
sidered.

The localized computations yield a modified coarse space V k
c with a

local basis

(6.4) V k
c = span{φz − ψz,k | z ∈ NH}.

The number of non-zero entries of the corresponding finite element stiff-
ness and mass matrix is proportional to kdNH (note that we expect N2

H

non-zero entries without the truncation). Due to the exponential de-
cay, the very weak condition k ≈ | logH| implies that the perturbation
of the ideal method due to this truncation is of higher order and the
estimates in Theorems 5.2 and 5.3 remain valid. We refer to [MP14] for
details and proofs. The modified localization procedures from [HP13]
and [HMP14a] with improved accuracy and stability properties might
as well be applied.
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6.2. Non-nested meshes and general coarsening. In Section 2.1,
we have assumed that Th is derived from TH by some regular refinement,
i.e., that the finite element meshes Th and TH are nested. This condition
may be impracticable in relevant applications, e.g., in cases where the
coefficient encodes microscopic geometric features such as jumps that
require accurate resolution and the reasonable resolution can only be
achieved by highly unstructured meshes (cf. Figure 3 in Section 7.3
below).

A closer look to the previous error analysis shows that the nestedness
of the underlying meshes is never used explicitly but enters only implic-
itly via the nestedness of corresponding spaces VH ⊂ Vh. It turns out
that all results generalize to the case where the standard finite element
space VH on the coarse level is replaced with some general (possibly

mesh free) coarse space ṼH ⊂ Vh with a local basis {φ̃j}j∈J ; J being
some finite index set. Precise necessary conditions for the theory read:

(a) Local support and finite overlap. For all j ∈ J , diam(supp φ̃j) .
H and there is a finite number Col independent of H such that
no point x ∈ Ω belongs to the support of more than Col basis
functions.

(b) Non-negativity, continuity and boundedness. For all j ∈ J , φ̃j :

Ω→ [0, 1] is continuous and ‖∇φ̃j‖L∞(Ω) . H−1.
(c) Partition of unity up to a boundary strip. For all x ∈ Ω, it holds

that dist(x, ∂Ω) . H or
∑

j∈J
˜phij(x) = 1.

Under the conditions (a)–(c), the operator IH , defined by IHv :=∑
j∈J

(v,φ̃j)L2(Ω)

(1,φ̃j)L2(Ω)

φ̃j for v ∈ V , satisfies the required stability and ap-

proximation properties. Their proofs may easily be extracted from
[CV99], where a slightly modified operator is considered. For details
regarding the generalization of the decompositions and error bounds of
this paper to some general coarse space characterized by (a)–(c), we
refer to [HMP14a], where everything (including the exponential decay
of the coarse basis and its localization) has been worked out for a linear
boundary value problem.

The conditions (a)–(c) are natural conditions for general coarse spaces
used in domain decomposition methods and algebraic multigrid meth-
ods; see [TW05, Ch. 3.10] for an overview and [Sar02] for a particular
construction without any coarse mesh. A very simple mesh-based con-
struction which remains very close to the standard finite element space
VH can be found in [SVZ11, Section 2.2] and works as follows. Given
some regular fine mesh Th, consider an arbitrary regular quasi-uniform
coarse mesh TH with H > h. Let Vh (resp. VH) be the corresponding
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finite element space of continuous Th-piecewise (resp. TH-piecewise)
affine functions and let Inodal

h : VH ⊂ C0(Ω) → Vh denote the nodal
interpolation operator with respect to the fine mesh. The nodal inter-
polation of standard nodal basis functions of the coarse mesh defines a
nested initial coarse space

(6.5) ṼH := span
{
Inodal
h φz | z ∈ NH

}
⊂ Vh

and Vc := (1−Pf)ṼH is the corresponding coarse space of our method.
The desired properties (a)–(c) of ṼH are proven in [SVZ11, Lemma 2.1].
Section 7.3 shows numerical results based on this construction.

6.3. Postprocessing. As already mentioned in the introduction, the
two-grid method of [XZ01] allows a certain post-processing (solution
of linear problems on the fine scale) of coarse eigenpairs. So far, this
method was mainly used to post-process approximate eigenpairs of
standard finite element approximations on a coarse mesh, i.e., approx-
imations with respect to the space VH . However, the framework pre-
sented in [XZ01] is more general and readily applies to the modified

coarse space Vc. Given some approximate eigenpair (λ
(`)
H , u

(`)
c ) ∈ R×Vc

with ‖u(`)
c ‖ = 1 that solves (4.7), the post-processed approximate eigen-

function u
(`)
c,post ∈ Vh is characterized uniquely by

(6.6) a(u
(`)
c,post, v) = λ

(`)
H (u(`)

c , v)L2(Ω)

for all v ∈ Vh. The corresponding post-processed eigenvalue is

(6.7) λ
(`)
H,post :=

a(u
(`)
c,post, u

(`)
c,post)

(u
(`)
c,post, u

(`)
c,post)L2(Ω)

.

The error analysis of [XZ01] relies solely on the nestedness Vc ⊂ Vh
and, in essence, yields the error estimates∣∣∣λ(`)

H,post − λ
(`)
h

∣∣∣ ≤ |||u(`)
h − u

(`)
c,post|||2

.
(
λ

(`)
H − λ

(`)
h

)2

+
(
λ

(`)
h

)2

‖u(`)
h − u

(`)
c ‖2.

The first estimate follows from (5.15) which remains valid for u
(`)
c and

λ
(`)
H replaced with u

(`)
c,post and λ

(`)
H,post. The second estimate follows from

the construction and standard inequalities (cf. [XZ01, Eq. (4.3)]).

Hence, with u
(`)
h suitably chosen, Theorem 5.2 and 5.3 imply that the

error of the post-processed eigenvalues (resp. post-processed eigenfunc-
tions) is at least of order H6 (resp. H4). As for all our previous results,
the rates do not depend on any regularity of the eigenfunctions. In the
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third numerical experiment of Section 7 we will also show results for
this post-processing technique.

6.4. Complexity. Finally, we shall comment on the overall complex-
ity of our approach. Consider quasi-uniform meshes of size H and h
and corresponding conforming first-order finite element spaces VH and
Vh. We want to approximate the eigenvalues related to Vh.

In order to set up the coarse space Vc, we need to solve NH lin-
ear problems with approximately kdNh/NH degrees of freedom each;
the parameter k being the truncation parameter as above. Since al-
most linear complexity is possible (using, e.g., multilevel precondition-
ing techniques), the cost for solving one of these problems up to a given
accuracy is proportional to the number of degrees of freedom Nh/NH

up to possible logarithmic factors. This yields an overall complexity
of kdNh log(Nh) (resp. NHNh log(Nh) if kd ≥ NH) for setting up the
coarse problem. Note that this effort can be reduced drastically either
by considering the independence of the linear problems in terms of par-
allelism or by exploiting a possible periodicity in the problem and the
mesh. In the latter case, only very few of the problems have to be
computed because all the other ones are equivalent up to translation
or rotation of coordinates.

On top of the assembling, an NH-dimensional eigenvalue problem is
to be solved. The complexity of this depends only on NH , the number
of eigenvalues of interest, and the truncation parameter k but not on
the critically large parameter Nh.

The cost of the post-processing presented in Section 6.3 is propor-
tional to one fine solve for each eigenpair of interest, i.e., proportional
to Nh up to some logarithmic factor.

7. Numerical Experiments

Three numerical experiments shall illustrate our theoretical results.
While the first two experiments consider nested coarse and fine meshes,
the third experiments uses the generalized coarsening strategy of Sec-
tion 6.2. In all experiments, we focus on the case without localiza-
tion. The localization (as discussed in Section 6.1) has been studied
extensively for the linear problem in [MP14, HP13, HM14, HMP14a]
and for semi-linear problems in [HMP14c]. In the present context of
eigenvalue approximation, we are interested in observing the enormous
convergence rate which is 4 or higher for the eigenvalues. In order
to achieve this rate also with truncation, patches have to be large (at
least 4 layers of elements) which pays off only asymptotically when H
is small enough.
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Figure 1. Initial uniform triangulation of the L-shape
domain (5 degrees of freedom).

7.1. Constant coefficient on L-shaped domain. Let Ω := (−1, 1)2\
[0, 1]2 be the L-shaped domain. Consider the constant scalar coeffi-
cient A1 = 1 and uniform coarse meshes with mesh widths

√
2H =

2−1, . . . , 2−4 of Ω as depicted in Figure 1.
The reference mesh Th has maximal mesh width h = 2−7/

√
2. We

consider some P1 conforming finite element approximation of the eigen-
values on the reference mesh Th and compare these discrete eigenvalues

λ
(`)
h with coarse scale approximations depending on the coarse mesh size
H.

Table 1 shows results for the case without truncation, i.e., all linear
problems have been solved on the whole of Ω. For fixed `, the rate of

convergence of the eigenvalue error λ
(`)
H − λ

(`)
h in terms of H observed

in Table 1 is between 6 and 7 which is even better than predicted in
Theorem 5.2 and in Remark 5.1.

7.2. Rough coefficient with multiscale features. Let Ω := (0, 1)2

be the unit square. The scalar coefficient A2 (see Figure 2) is piece-
wise constant with respect to the uniform Cartesian grid of width
2−6. Its values are taken from the data of the SPE10 benchmark, see
http://www.spe.org/web/csp/. The coefficient is highly varying and
strongly heterogeneous. The contrast for A2 is large, β(A2)/α(A1) ≈
4·106. Consider uniform coarse meshes of size

√
2H = 2−1, 2−2, . . . , 2−4

of Ω (cf. Figure 2). Note that none of these meshes resolves the rough
coefficient A2 appropriately. Hence, (local) regularity cannot be ex-
ploited on coarse meshes.

Again, the reference mesh Th has width h = 2−7/
√

2 and we compare

the discrete eigenvalues λ
(`)
h (with respect to some P1 conforming finite

element approximation of the eigenvalues on the reference mesh Th)
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` λ
(`)
h e(`)(1/2

√
2) e(`)(1/4

√
2) e(`)(1/8

√
2) e(`)(1/16

√
2)

1 9.6436568 0.004161918 0.000041786 0.000000696 0.000000014
2 15.1989733 0.009683715 0.000083718 0.000000888 0.000000011
3 19.7421815 0.024238729 0.000199984 0.000001930 0.000000022
4 29.5280022 0.084950011 0.000679046 0.000006309 0.000000074
5 31.9266947 0.120246865 0.001032557 0.000011298 0.000000169
6 41.4911125 - 0.002220585 0.000019622 0.000000264
7 44.9620831 - 0.002837949 0.000022540 0.000000257
8 49.3631818 - 0.003535358 0.000027368 0.000000295
9 49.3655616 - 0.004143842 0.000031434 0.000000343

10 56.7367306 - 0.006494922 0.000052862 0.000000606
11 65.4137240 - 0.013504833 0.000094150 0.000000995
12 71.0950435 - 0.013314963 0.000095197 0.000001077
13 71.6015951 - 0.011792861 0.000084001 0.000000851
14 79.0044010 - 0.021302527 0.000155038 0.000001526
15 89.3721008 - 0.038951872 0.000233603 0.000002613
16 92.3686575 - 0.042125029 0.000253278 0.000002442
17 97.4392146 - 0.033015921 0.000254700 0.000002435
18 98.7544790 - 0.039634464 0.000264156 0.000002482
19 98.7545515 - 0.046865242 0.000268012 0.000002500
20 101.6764284 - 0.045797998 0.000311683 0.000003071

Table 1. Errors e(`)(H) =:
λ

(`)
H −λ

(`)
h

λ
(`)
h

for ` = 1, . . . , 20,

constant coefficient A1, and various choices of the coarse
mesh size H.

with coarse scale approximations depending on the coarse mesh size
H. Table 2 shows the errors and allows us to estimate the average
rate around 4 which matches our expectation from the theory. We
emphasize that the large contrast does not seem to affect the accuracy

of our method in approximating the eigenvalues λ
(`)
h . However, the

accuracy of λ
(`)
h may be affected by the high contrast and the lack of

regularity caused by the coefficient.

7.3. Particle composite modeled by an unstructured mesh. Let
Ω := (0, 1)2 be the unit square. In this experiment, the scalar coefficient
A3 models heat conductivity in some model composite material with
randomly dispersed circular inclusions as depicted in Figure 3. The
coefficient A3 takes the value 100 in the gray shaded inclusions and the
value 1 elsewhere. In order to resolve the discontinuities, we simply
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Figure 2. Scalar coefficient A2 used in the second nu-
merical experiment and initial uniform triangulation of
the unit square (1 degree of freedom).

Figure 3. Left: Scalar coefficient A3 used in the third
numerical experiment. A3 takes the value 100 in the
gray shaded inclusions and the value 1 elsewhere. Right:
Unstructered fine mesh Th aligned with jumps of the co-
efficient A3.

align the fine mesh Th with the boundaries of the inclusions (see Fig-
ure 3). The mesh size of Th satisfies 2−9 . h . 2−7. Note that this fine
mesh Th is solely based on geometric resolution and shape regularity.
The grading towards the inclusions is not adapted to the characteristic
behavior of the eigenfunctions. However, this mesh might be the actual
output of some commercial mesh generator or modeling tool. Sufficient
resolution could be achieved with fewer degrees of freedom, however,
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` λ
(`)
h e(`)(1/2

√
2) e(`)(1/4

√
2) e(`)(1/8

√
2) e(`)(1/16

√
2)

1 21.4144522 5.472755371 0.237181706 0.010328293 0.000781683
2 40.9134676 - 0.649080539 0.032761482 0.002447049
3 44.1561133 - 1.687388874 0.097540102 0.004131422
4 60.8278691 - 1.648439518 0.028076168 0.002079812
5 65.6962136 - 2.071005692 0.247424446 0.006569640
6 70.1273082 - 4.265936007 0.232458016 0.016551520
7 82.2960238 - 3.632888104 0.355050163 0.013987920
8 92.8677605 - 6.850048057 0.377881216 0.049841235
9 99.6061234 - 10.305084010 0.469770376 0.026027378

10 109.1543283 - - 0.476741452 0.005606426
11 129.3741945 - - 0.505888044 0.062382302
12 138.2164330 - - 0.554736550 0.039487317
13 141.5464639 - - 0.540480876 0.043935515
14 145.7469718 - - 0.765411709 0.034249528
15 152.6283573 - - 0.712383825 0.024716759
16 155.2965039 - - 0.761104705 0.026228034
17 158.2610708 - - 0.749058367 0.091826207
18 164.1452194 - - 0.840736127 0.118353184
19 171.1756923 - - 0.946719951 0.111314058
20 179.3917590 - - 0.928617606 0.119627862

Table 2. Errors e(`)(H) =:
λ

(`)
H −λ

(`)
h

λ
(`)
h

for ` = 1, . . . , 20,

rough coefficient A2, and various choices of the coarse
mesh size H.

this would require more sophisticated discretization spaces; we refer to
[CGH10, Pet14, PC13] for possible choices and further references.

As in the previous experiment, we consider uniform coarse meshes
of size

√
2H = 2−1, 2−2, . . . , 2−4 of Ω (cf. Figure 2). Note that these

meshes neither resolves the coefficient A3 appropriately nor can be
refined to Th in a nested way. For the construction of the upscaling
approximation we employ the generalized coarse space defined in (6.5)

in Section 6.2. We compare the discrete eigenvalues λ
(`)
h (with respect

to some P1 conforming finite element approximation of the eigenvalues
on the reference mesh Th) with coarse scale approximations depending
on the coarse discretization parameter H. Table 3 shows the results
which clearly support our claim that the nestedness of coarse and fine
meshes is not essential and that upscaling far beyond the characteristic
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length scales of the problem (i.e., the radii of the inclusions and their
distances) is possible.

For this problem, we have also computed the post-processed approx-
imations according to Section 6.3. Table 4 shows the error for the
eigenvalues which are more accurate by several orders of magnitude.
The experimental rates are roughly between 5 and 6 in Table 3 without
post-processing and around 9 to 10 after post-processing in Table 4.

` λ
(`)
h e(`)(1/2

√
2) e(`)(1/4

√
2) e(`)(1/8

√
2) e(`)(1/16

√
2)

1 25.6109462 0.025518831 0.000572341 0.000017083 0.000000700
2 58.9623566 - 0.005235813 0.000090490 0.000002710
3 67.5344854 - 0.006997582 0.000154850 0.000006488
4 98.2808694 - 0.023497502 0.000358178 0.000011675
5 121.2290664 - 0.052366141 0.000563438 0.000016994
6 125.2014779 - 0.066627585 0.000747688 0.000019934
7 156.0597873 - 0.145676350 0.001579177 0.000034329
8 168.2376096 - 0.095360287 0.001320185 0.000043781
9 197.4467434 - 0.343991317 0.002888471 0.000049479

10 209.4657306 - - 0.003223901 0.000056318
11 222.4472476 - - 0.003431462 0.000080284
12 245.5656759 - - 0.005906282 0.000102243
13 253.7074603 - - 0.006215809 0.000121646
14 288.0756442 - - 0.013859535 0.000180899
15 298.8903269 - - 0.010587124 0.000138404
16 311.4410556 - - 0.012159268 0.000161510
17 324.6865434 - - 0.012143676 0.000176624
18 336.7931865 - - 0.016554437 0.000233067
19 379.5697606 - - 0.023254268 0.000325324
20 386.9938901 - - 0.028772395 0.000383532

Table 3. Errors e(`)(H) =:
λ

(`)
H −λ

(`)
h

λ
(`)
h

for ` = 1, . . . , 20,

coefficient A3, and various choices of the coarse mesh size
H.
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