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Abstract Time-steppinghp-versions discontinuous Galerkin (DG) methods for
the numerical solution of fractional subdiffusion probkeof order—a with —1 <

a < 0 will be proposed and analyzed. Gendrgversion error estimates are de-
rived after proving the stability of the approximate sabuti Forh-version DG
approximations on appropriate graded meshesinedd, we prove that the error
is of orderO(k™@(2P}+ %) wherek is the maximum time-step size apd> 1 is
the uniform degree of the DG solution. Fop-version DG approximations, by
employing geometrically refined time-steps and linearlgréasing approxima-
tion orders, exponential rates of convergence in the nurmbsmporal degrees
of freedom are shown. Finally, some numerical tests arengive
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1 Introduction

In this work, time-stepping discontinuous Galerkin methd®GMs) for frac-
tional order diffusion equations of the form

U + BaAu= f on Q x (0,T] with ul—o = U, (1)
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subject to homogeneous Dirichlet boundary conditions eopgsed and analyzed,
whereu = u(x,t), f = f(x,t), up = Up(x) (x,t) € Q x (0, T]), U = %, and
ta

MNa+1) 2)

t
Bau(t) = 5 [ st 95 ds with @ a(t) =
is the Riemann—Liouville time fractional derivative opreof order O< —a < 1.

In (@), the spatial domaif® is assumed to be bounded and polyhedral, and for
simplicity, we chooséu = —div(Ky10u) with O being the spatial gradient of
u andKgy1 > 0 (positive constant) is the diffusivity. Thu8, (subject to homo-
geneous Dirichlet boundary conditions) is strictly pasittefinite and possesses
a complete orthonormal eigensystgigm} 4 in L2(Q). We letAy, denote the
eigenvalue corresponding i, (i.e., A@in = Am@n With @n|so = 0) where (with-
out loss of generality) we assume for convenience that\g < Ap <Az <---.

Problems of the forn{1) arise in a variety of physical, bgptal and chemical
applications[[1, 10,26, 28]. It describes anomalous stxidn and occurs, for
example, in models of fractured or porous media, where thgcfmaflux depends
on the entire history of the density gradiénmni.

A variety of low-order numerical methods for problems of the foroh (1) (with
Riemann—Liouville or Griinwald-Letnikov fractional deatives) were studied by
several authors. For explicit, implicit Euler and compantté difference (FD)
schemes, see for example([lL.12/8,9.16,30,31.33,34]. FdrADschemes on a
rectangular spatial domain; refer fo [29, 32]. In additiearjous numerical meth-
ods [3[4.5,6,15,28,27,32] have also been applied for thewfmg alternative
representation of{1) (using the Caputo derivativesju/ (t) — div(Kq10u)(t) =
f(t) wherel @ is the Riemann-Liouville time fractional integral openato

t
I*“v(t)::/ W_q(t—s)v(s)ds for —1<a<O0.
0

The two representations are equivalent under suitablergdgans on the initial
data, but the methods obtained for each representatioomnally different.

In earlier papers, McLean and | proposed and analyzed eifféow-order
time stepping DG schemes for probleln (1). Inl[14hiacewise-consta®GM
(generalized backward Euler) combined with finite eleméRiss) for the spa-
tial discretization was studied. Unconditional stabilityd optimal convergence
rates in both time and space were proved. Using a differgmtoagh, we later
studied [[20] the error analysis of tipgecewise-lineaDGM. Suboptimal rates of
convergence had been achieved, however, the numericdisrdiistrated opti-
mal rates. In continuation, by duality arguments, nodakscgnvergence results
were proved in[[21]. Moreover, we extracted the supercaamere at the nodal
points of the DG solution globally by post-processing the 8ghution through
Lagrange interpolations. In all these papers, variable 8teps were employed to
compensate the lack of regularity of the solutioof problem [1) neat = 0.

The main purpose of this paper is to study the stability amdaitcuracy of
high-ordertime-steppindi-version DG b-DG) andhp-version fip-DG) methods.
This task is not trivial since the DGM allows us to only comtitee jumps of the
approximate solutions which is enough for the-orderDGMs in [14[19,20,21].
A new analysis based on the coercivity and continuity pridggiof the operator



PBq, also based on some fractional derivative-integral idiesstis required. These
will be the keys to establish the stability and consequedésiving promising
error estimates (in thie.. (0, T )-norm) over families of nonuniform meshes.

In contrast, for O< a < 1, the model problem{1) amounts to the fractional
wave equation (super-diffusion):

U (t) +19Aut) = f(t) with uli—o = Up. 3)

Recently, Schotzau and | investigated|[22DG andhp-DG methods (in time)
for problem [B). Although we could not show the stability efrescheme because
of some technical difficulties, algebraic and exponentadvergence rates (in a
non-standard norm that can be weaker thar_throrm in some cases) ftrkDG
andhp-DG schemes were achieved, respectively.

Due to the different nature and properties of the operatdrand %4,, an-
other technique will be used in this work to show the stabdit our scheme and
also to derive generiep-version abstract error estimates in the strongg0, T)-
norm. Then proceeding along the lines[ofl[17[22, 24] andstigating two refine-
ment strategies in the case where the solutiaf () lacks regularity as = 0.
Noting that, in[17,24]hp-DGMs for parabolic and parabolic integro-differential
equations were considered where the stability and errdysemfollow relatively
straight forwardly from the different natures of the eqoas.

In theL (0, T)-norm, exponential convergence rates (in the number oftemp
ral degrees of freedom) for thgp-version DG bHip-DG) scheme based on geomet-
rically refined time-steps and on linearly increasing agpnation orders will be
achieved. Moreover, for tHeDGM of piecewise uniform degreg> 1, we prove
O(kmax{2~p+%}+%) algebraic convergence rates over non-uniform graded meshe
that concentrate the time levels near 0. So, the convergence rates is sr'ﬁe*fi£
power from being optimal fop > 2, however, just short by-§ power forp =1
which is due to the fact that the approximate solution candmgrolled from the
jumps in this case. Indeed, the numerical experimentdiiitesoptimal error rates
of orderO(kP1) for some choices ofr and p. In our test we combine the pro-
posedhp-version time-stepping method with a standard (continub&s in space
which will then define a fully discrete scheme. We choose (iaial step size and
the order of the spatial FEs so that the temporal errors arérgaing. Analyzing
the convergence of the fully discrete scheme will be comsidien future work.

Motivation of the hp-DG and future worhe nonlocal nature of8, means
that on each time subinterval, one must efficiently evalaatem of integrals over
all previous time subintervals. For example, a direct impatation of the time-
steppingh-DG method (of uniform degreg) combined with the FE discretization
in space require€'((p+ 1) N2M) operations and requireg((p-+1) N M) storage
(N is the number of time-mesh elements &nds the spatial degrees of freedom).
Thus, reducing the number of time-steps and at the same tiagaming high
accuracy is important especially whénhc R3, then the time-space problefd (1)
is four-dimensional and thus beyond the computing powerooientional ma-
chines. For analytic solutions in the time varialigrDGMs with exponential
rates of convergence allow us to achieve these requirerteeatiarge extent. For
instance, if the error from the spatial FE is of ord@th") for somer > 2, then
we can balance the exponential rates in time with the algebree in space. In
this case, the number of operations will be reducedtop + 1) M (logM)"2)



and the active operations ((p+ 1) M(logM)"2) wherev; andv, depend on.
However, if the solutionu of () is not analytic (in time) but satisfies appropriate
regularity assumptions, time-space sparse grids can loetogget similar results.
Furthermore, if in addition satisfies certain mixed spatial regularity properties,
the computational cost can be further reduced. These camggasues are subject
to ongoing investigation and hence, will be considered fariiwork.

The outline of the paper is as follows. The DGM will be intraéd in the next
section and the stability of the semi-discrete solutiorishei proved in Sectiohl3.
Followed by deriving abstract error bounds of the time-siepp DGM in Sec-
tion[4. Sectiongl5 ard 6 are devoted to establishing algelateé of convergence
of theh-DGM and exponential rates of convergence fortipeDGM, respectively.
Numerical illustrations of our results will be presentedigctior y.

2 Discontinuous Galerkin discretization

To define the time-stepping DGM for problefd (1), we introdacpartition.#

of the interval[0, T] given by the points: B=tg <t; < --- <ty =T. We setl, =
(th—1,tn) andk, =ty —th_1 for 1 < n < N. With each subintervdl, we associate

a polynomial degre@, € Ny. These degrees are then stored in the degree vector
p:=(p1,P2,---, Pn)- Next, we introduce the discontinuous finite element space

W (M ,p)={v:[0,T] = HF(Q) : V||, € Pp,, L<N<NJ, (4)

where P, denotes the space of polynomials of degreg, with coefficients
in HY(Q). For a functionv € # (. ,p), we write v = v(t;), VI = v(t]) and
V" =v2 —v? with W =N andv® =\°.

The time-stepping DG approximatidh € # (.# ,p) is now defined as fol-
lows: GivenU (t) fort € U?;%Ij,l, the discrete solutiod € P, on the next time
subintervall, is determined by requesting that

(U gt Xl tn <<U/7X>+A(@0U,X))dt:/tn (f,X)dt (5)

th-1 th-1

¥ X € Pp, with U ~ ug. HereA(-,-) : H}(Q) x H}(Q) — R is bilinear operator
associated with the differential operator= —div(Ky+10) and is given by

(o]

A(v,w) ;= (Ov,Ow) = z AmUmVm  Whereuy, = (U, @) andvim = (v, @) -
m=1

Throughout the paper, by, -) and|| - ||, we denote the inner product and the asso-
ciated norm in the spade(Q). Moreover,|| - |1 denotes the norm on the Sobolev
spaceH!(Q) and forj > 1,ull) := %—‘.

As in [22], since the operatdk possesses a complete orthonormal eigensys-
tem {Am, @n}m>1, the DG scheme[I5) can be reduced to a finite linear system
of algebraic equations on each subinteryalTo see this, leP,, be the scalar
polynomial space of degre€ p,. Now, takeX = @nw in (), we find that: for
m>1,



th th

un-twit (u,’nw+ Am%aUnm w) dt=U2twr it [ fawdt  (6)
i Jln-1 i th-1

vV w e Py, and for 1< n < N, whereUny = (U, @) € Pp, and fm = (f, @hn).

Very briefly, because of the finite dimensionality of syst& the existence
of the scalar functiotJ,, on I, follows from its uniqueness. For uniqueness, it
is enough to show thdaf, = 0 on |, for n > 1 when the right-hand side dfl(6)
is identically zero. This follows from the stability theong(Theorenil) and the
coercivity property (i) in Lemmal1.

3 Stability of DG solutions

In this section, we show the stability of the semi-discrettitsons. For conve-
nience, we introduce the following notation. Set= Uﬂ-\':llj and we letz(J)
denote the space of functions J — R such that the restriction); extends to a
continuously differentiable function on the closed intft;_1,t;], for 1 < j <N.

In the following result we gather two key properties of thactional time
derivative operatogg, that we use in our analysis.

Lemmal Let g = %% and dy = Wln/z) forany —1 < a < 0.

Then, for any wv in €1(J) (or in W%1(0,T)), we have
() Jo Bav(t)v(t)dt>caTY g VA(t)dt,
(i) | J3 Zaviwt) dt|” < du? J Zavit)v(t) dt ] Baw(t) wit) .

Proof The coercivity property (i) was proven in 12, Theorem A.{]using the
Laplace transform and the Plancherel Theorem. In a sinakdién, property (ii)
can be obtained, see for examplel[22, Lemma 3.1].

Remark 1Noting that, asx approaches 0, we recover the classical coercivity and
continuity properties. In addition, as was mentioned egror 0< a < 1, B4 =

19. In this case, the above coercivity property is no longedvalle have a weaker
version instead, see [22, Lemma 3.1 (i)]C

The stability of the DG solutiok) will be shown in the next theorem. The proof
below looks straightforward due to the new approach thatieaveen used be-
fore. The key ingredients are the above lemma and the apatepise of the iden-
tity: 419 =1. Indeed, the current approach can be adopted to show thétgtabi
of U when 0< a < 1 as this was not proven in[R2]. It is worth mentioning that
the stability result below plays a crucial role in our fordhting error analysis, see
Theoren{B. Noting that, the proofs of the stability inl[14}, #8e valid only for
h-DGMs of orderp € {0,1} (low-order).

Theorem 1 For 1 < n< N, the DG solution U offf) satisfies
th th
LRI U242 [ AU V) dt < 410 2442 [ (g A7)t
0 0

where Al is the inverse of the positive-definite operator A, aftd g= (19 f)(t).



Proof ChoosingX = U in () and usingU’(t),U (t)) = 3 4[U (t)[|%, we obtain
2 j-12 -1, ,i-1 f E
UL+ ul2 -2 ul ) +2 [ A(%UU)dt=2 ] (f,U)dt.
tj—1 tj-1
Summing ovelj = 1,--- ¢, and usingf = %40,
‘ ' j-1 -1 -1 te
3 (U P+ Ui 2 - 2!t ol >)+2/0 A(ZU,U) dt
=1

1y
- 2/”<@ag,u dt
0

Choosel = n—1 and? = n respectively, summing and then using the identity;

4

j j—1 j—1,j-1
_Zl(HUinJrIIUi IP—2 " ui)
J:

= JULJZ + U H2+ZII P12 -2u0,u9)
yield

IO 24 U2+ 2V 21 + (| U] 1||2+2 / A(%U,U)dt

4<u9,UE>+2 5 / (#ag,U) dt.
j=n-1/0
Since 4(U°,U0)| < 2\|U9H2+2HU2||2 and[|U1[2 < 2U™ 1124 2] U™,

Un 2+ Jun- l||2+4 / A(Z4U,U)dt

n t;
<4uP+4 Y [Mag Uyt @)

j=n—1-

for 1 <n<N. Now, settingJm = (U, @) andgm = (g, ) and hence, the conti-
nuity property (ii) in Lemmall implies that; for4 j <N

t ®©
0 I'n:l' 0

1/2

<4ds 5 </J%agmgmdt> (/J@aumumdt> dt
m=1 0 0

0 1 B 0 t
<2 5 /O FaGmhylondt+2 5 /\’“/o BaUmUndt
m=1 m=1

i 1
— o2 /J<%ag,A‘1g>dt+2/JA(%aU,U)dt.
JO 0



Therefore, the desired stability estimate follows afteseiting the above bound
(for j = n—1 andj = n) on the right-hand side df|(7) . This finishes the proafl

4 Error analysis

This section is devoted to deriving abstract error estisfatiethe DGM. A global
formulation of our numerical scheme will be given first. Mgrecisely, it will be
convenient to reformulate the DG scheriae (5) in terms of thiedzir form

N—1 N
Gu(U.X) = UE.X) + 3 ("X + [ 7 (W' %)+ AU, X) ) dt. - @®)
n=1 k
Integration by parts yields an alternative expressiontiertiilinear formGy:
N—-1 N
Gu(U,X) = (UNXY) = 5 WX + [ (U X) + AU ) . (9)
n=1 0

By summing up[(b) over all time-steps, the DGM can now eqeintdy be written
as: FindU € %/ (.# ,p) such that

G (U, X) = (U0, X0) + /OtN<f,X)dt VX W (M,p).  (10)

Let u be the solution of[{1) antl the DG approximation defined ifi (110).
Decomposing the errd — u into the two terms:

U—u=U-Tu+(Mu—u)=:0+n. (11)
wherellu e # (.# ,p) is thehp-version projection ofi defined by: for I< n <N,

tn
Mu(t,)—ut,) =0 and (Uu—=Tru,v)dt=0 VvePp_1, (12)

Jln-1
The bound of} follows from the next theorem.

Theorem 2 Let1 <n< N and0 < gy < pp. If u®*V], € Ly(I,;HY(Q)), then

th "2 kn) 2" D) (12
[ 1w <c () e [ Uz
n-1 n

-1

wherel, g, = % and the constant C is independent gf g, gn, and u.

Proof See [[24, Section 3] for the proof.[]

The main task now is to estimaté. To do so, we use the contribution from the
stability results, the continuity property of the opera#y, the inverse inequality,

in addition to some other technical steps. In comparisoméocase < a < 1,

the achieved bound @ in [22] is weaker (by far) than the one below. This is due
to the different properties a¥%, and.#% and also because of the technique used
here.



Theorem 3 Assume that the time-step sizes are nondecreasing. Thens<fo <
N, if the solution ue W((0,t,); H3 (Q)), we have

krrPin{l,pnfl}
0|2+ —————(sup|6(t)|?
O+ = (suple(v)?)

t.
< Ca,T (HUO —uo\|2+tnrjnr}:11xkf (/J |n/|1dt)2> ,
where| 6|, := max{||6"2|.,||6" ||}
Proof SinceGn(u,X) = (ug,X?) + [ (f,X) dt, we have

Gn(U —u,X) = (U°% —up, X%  vXe# (,p).
Hence the alternative expression Bk in (@), and the fact thah™ = 0 and
ftn (N, X’)dt =0 for all 1< n <N, by definition of the operatofT (note that
for p, = 0, we haveX’ = 0), yield
th
Gr(8,%) = (U® 10, X%) ~ Gn(,X) = (U° — 0. X?) + [ " A(Zan. Xt
Jo

for all X € # (. ,p). Since this equation has the same form[as$ (10), following
the proof of the stability in Theoref 1, we notice that foxh < N,

tn 1
|e|§+2/0 A(%46,6)dt < 4|U° — |2 + 402 jm:zi)i/c)JA(%an,n)dt. (13)

To estimate the last term, we use the equajift) = —fttj n’'(q)dgfort € 1}, then
changing the order of integrations and integrating,

th n tj tj
/0 A(%an,n)dt:—Z/ A(Zan(t),n’(q)) dgdt
j 1/tj-1

tj
/ [ Aan.0'(@)dtd
= 1 ti-1 /1 (14)

A7 n(tj-1) —#~“n(a),n'(a))dq

_I—_\

M = EM::

i‘i_

where

7= / | ewata-9am.0'@)asaq

_/Jt:/Jl/thqu s)A(n'(t),n'(q))dtdsdq



and

g [0 . A '(q))dsd
2= /tjl/o [Wa1(tj-1—5) — war1(q—9)JA(N(s),n"(g))dsdq

-1 j i i
- -Z.[_l./tt /st [@a+1(tj-1—9) — Wasa(d—9)JA(N'(t),n'(q)) dtdsdg

i—1

To boundflj andfzj, we use the Cauchy-Schwarz inequality and integrating

. tj q tj
sl< [T1enol [ @a@-s [ 100'(@)]dtdsdg
. j—l .

j—1 j—1
tj 2

< @rralig) ([ In'lact)
-1

and

. i-1 tj 1 ti
A<y [T100@1 [ [@rala-9 - een -] [ 1000 dtdsdg
i= tj_l ti1 S

. t 2 ti_q
<mbx( [ 10010t)” [ absatt -9 -ty - 9)ds
- i—1

< k) m I hat)?
< ok max( [ ')

Now, inserting the estimates mlj andﬂzj in (I4), and using the mesh assumption
ki <k; fori < j. This implies
tn Ztn n tJ 2
A(Byn,n)dt < ——— maxk? / "||2dt)
Jy Aan.mydt< T mad ([ o)
and therefore, for K n<N,

tn 4tadZ 1 g 2
2 < 0,2 ndg o / / '
6342 [ A508,6)dt < 41U ol + s e ([ 1)

But, for p, = 1, the left-hand side is sup,,_|/6(t)||%, however forp, > 2, itis
a tn 2 a tn 2 a Kn 2
>cotd [ 1I06)Pdt>Ceaty [ [16]2dt> Ceotd 5 (sup6(t)])
tho1 Jto_1 PA Mteln

by the assumption that the operafopossesses a complete orthonormal eigen-
system{Am, ¢n}pm_1, the coercivity property in Lemnid 1 (i), and the Poincare’s
(8]so = 0) and inversefq];, € IPp,) inequalities. This completes the proofl]

The main abstract error bound will be derived in the next tteo For conve-
nience, we introduce the following notation:

. _ N
19l = 19l oriaiay = max( suplo)]).
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Theorem 4 Let u be the solution off1) and U be the DG solution define@py
with U® = ug (for simplicity). Assume that k< kj for i < j. Then we have

N .
max{[[U~* — u(ta-)|l, [U" — u(ta) I}

2
||U_UH|_°°(|_2)
max\_; p2

Proof This bound follows from the decomposition of the errofin)(he triangle
inequality, Theorerl3, and the fact (by the interpolatiasperties of the operator

M), 17 La(t) = Ma¥cnen ( SURey, IN(O]) < Maxicnen 2, I0'ldt. O

N . th 2
L (.1, min{1,pn—1} < N a / /
+min (tn kn ) < Ca,r maxky ( - n ||1dt) -

n

5 h-version errors

In this section, we focus on the explicit error bounds of tHBG solutionU of
uniform degreep on each subinterva}, for 2 < n < N. Because of the singular
behavior of the solutiom of (@) neart = 0, the degree ol on the first subin-
terval I will be chosen to be one (i.ep; = 1). So,p = (1,p,---,p). However,
the numerical results suggested that this modificationtsleays needed. More
precisely, we are required to consider= 1 if the time mesh,[(16), is strongly
graded.

Following [14[19],20], we assume that the solutioof (1) satisfies:

D)l <MtoT Vi< j<pid, (15)

for some positive constankd and g; for a proof we refer the reader o 11]13].
To compensate for singular behaviourwheart = 0, we employ a family

of non-uniform meshes denoted by, where the time-steps are graded towards

t = 0. Following [14,19,20,21], for a fixed parameter 1, we assume that

TVY
tn = (nk)Y with k:T for 0<n<N. (16)

Noting that the time step sizes are nondecreasing, thigtisk; for i < j. More-
over, one can show that

kn < ykte Y for n>1 andty < 2%th_1 for n> 2. (17)

In the next theorem, we derive the error estimate fortHizG solution over
the graded mesh¥, . In theL.,(0, T)-norm, we prove a®(k™2P+3}+%) con-
vergence rate, i.e., short byg power from being optimal fop = 1 and byLT“
power forp > 2. However, the numerical results indicate optir@gkP+!)-rates
for p > 1. Indeed, these results are high-order extensions (alsmiraments) of
the ones shown il [14,19,20] fare {0,1}. In contrast, for 0< a < 1, we suc-
cessfully proved optimaD(kP*1) convergence rates in [22, Theorem 4.9], but in
a much weaker norm. Noting that, the proof here is more teahbut the general
approach is partially similar to the proof of Theorem 4.928]
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Theorem 5 Let the solution u of{f)) satisfy the regularity propertfI5). Let U ¢
W (.y,,p) be the h-DG approximation with U= up. Then fory > 1, we have

Kmin{y(o+9).2+%} for p=1,

HU _UHLOO(LZ) <Cx {kmin{y(a+‘5)-,p+1+‘5}—% for p>2

where C is a constant that depends only oraTy, o and p.
Proof Theoreni# yields

. N o min{lp-1
min{Zmin (t, ") lu- U, )

4 2 N tn
<ol ([ Iml) +ompuet [* i
0 n=2 th—1

n

Since

P g t”t—;l =1-(1-1/n)Y>1/n>1/Nfor p>2,

1 2 ST ? N a1 [T 2
WHU_U”LW(LZ) <Ck </0 n ||1dt) +Cmaxk, -/thn [1dt.

On the subintervdl, Mu € P; and satisfies:
1
Mult;) =u(ty) and /1 [u(t) — Mu(t)]dt = 0.
0

Explicitly, the derivative of the interpolation error adsithe integral representa-
tions [18, Equation (3.8)]:

/! / 2 tl u
n(t):—u(t)+k—%/0 sU(s)ds fortels. (18)

So, from the triangle inequality and (18), we notice that

t1 , ty , 2 [t / g /
Loimdes [F (@l = [ Iv©lds) de<3 [C .
0 0 ki Jo 0
Thus, using the regularity assumptidn,](15), and the mespepty, [17),

. 2 t 2 k20+a
K (/1|’7'|1dt> éckf(/ltfffldt) =C-l— <CR@) for y>1.
O O

(19)
In addition, forn > 2, we use Theorefd 2 and get

th tn
[T 't <ottt [T e et

th-1
S C kﬁp+2+atn2(0717 p)

<cC k2p+2+at§a+a—<29+2+a)/v

< CKMin{y(2o+a)2pt2+al  gor y>1 O
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6 hp-version errors

We discuss the error results of the-DGM based on geometrically refined time-
steps and linearly increasing approximation orders. Ratg [17/22], we con-
sider thenp-DGM for problems with solutions that have start-up singitikess as

t — 0, but are analytic fot > 0. More precisely, we stipulate that the solution
of (@) has the analytic regularity:

WO +tuP ) <M+t Ve (0T Vi=1,  (20)

for positive constantsr, M andd. Proving the regularity statemehf{20) remains
an open issue, which is beyond the scope of the present paper.

To resolve the singular behavior of the solution rteai0, we shall make use of
geometrically refined time-steps and linearly increasiegyrde vectors, and apply
the hptechniques that were developed [inl[17[22,24]. To desdtitz we first
partition (0, T) into (coarse) time interval§J; }K ;. The first intervaly; = (0,Ty)

is then further subdivided geometrically irte- 1 subintervalg |, hj as follows:

to=0, ty=0""1""Ty forl<n<L+1 (21)

As usual, we calb € (0,1) the geometric refinement factor, ahds the number
of refinement levels. Froni.(R1), we observe that the subiats{ln}hii satisfy

Kn=th—th-1=Atp_1 with A=(1-9)/0 for n>2 (22)

Let.#_ s be the mesh of0, T) defined in this way. The polynomial degree distri-
butionp on .7, s is defined as follows. On the first coarse interyathe degrees
are chosen to be linearly increasing:

pn = [HN] forl<n<L+1, (23)

for a slope parameter > 0. On the coarse time intervaﬂsi}iK=2 away fromt = 0,
we set the approximation degrees uniformlypta1 = (L + 1) |. The resulting
hp-version finite element space is denoted®y.#, s,p).

Our main result of this section suggests that non-smoothtieak satisfy-
ing (20) can be approximated at exponential rates conveegen thehp-version
discretizations introduced above. This will be done by pesling along the lines
of [17, Theorem 4.2] in our earlier work.

Theorem 6 Let U € %/ (.# 5,p) be the hp-DG approximation with U= .
Then there exists a slopg > 0 depending o and the constantg and d in(20)
such that for linearly increasing polynomial degree vestowith slopeu > Lo,

U = UL, (1, < Cexp(—bv.¥),
with positive constants C and b that are independent/f.= dim(# (.4 s,p)),

but depending on the problem parameters T andhe regularity parameters M,
d ando in 20), and the mesh parameteds T; and .



13

Proof From the geometric mesh assumptidns (Z1}-(22), we notae;thk =
1-9dfor1<i<L+1. Hence, using Theorelh 4 and obtain

U —ulig, L, < Cr;1max{1/(1—5),K}(EL+Ep), (24)

where
2 L {
1= ([ In'lact) -+ [* o
Jlp = Jtiog

K Ti
E2 = max(T~ T [ |n'|Fdt.
- i—1
Since the solutiom is analytic on the coarse elemefj{s2 <i <K, from Theo-
rem[2 and the approximation results for analytic functionf2B, Theorem 3.19]
yields an error estimate of the form

E,<C exp(—blL). (25)

On the first subintervdl adjacenttd = 0, MTu € P1. Hence, we follow the steps
in (I9), and then using the regularity assumpticn (20) amdgiometric mesh

properties,[(211),

20+a

ka /tlur_’/H at 2<Cka</t1tg—1dt)2:c 1 <C exp(—bgL) (26)
1\ Jo 1 =>4, g =2 .

On the subintervalsj for 2 < j < L+ 1, from the regularity property (20), we
readily conclude that

t t
| W fde < odir (g + 12 [0
i Jt

-1 j—1

< Ckd®ir(gj+ 1205 Y,

and hence, we use Theor&n 2 and the equiglity A tj_3 with tj_3 < 6“2 Ty
(from (22) and[(211)), and get

g-1-qj)

ki 2(qj+l)+a . 2
) AT (g + 1%

g 2 2 (K]
[ i<y g 67 (3

2.
cer o2 (Y F g o 12soratie-)
<Gl Pi | 5 (@ +1) :

Using interpolation arguments analogous’td [25, Lemma]3iB&an be seen
that the above inequality also holds for any non-integeuls@y parameten;
with 0 < g; < p;. Thus, we take); = c;p; with ¢j € (0,1) and proceed as in [25,
Theorem 3.36], and obtain

da\ 2 ) Adg; 2j (1—c)t™ .
I_pj,qj' <7> F(QJ+1) Scpl (( 2 ) (1+CJ)1+Cj ’
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Noting that
Adc \ %% (1—cj)Lci 1
inf ) ! =10, 4(Cmin) <1 with cpin = ————,
0<cj<1< 2 > (1+cj)ttei (i) " V1+(Ad/2)?

and consequently, choosigg= Cmin andp; = [ j] > Hoj with o > O such that
(£r.d(Cmin) ) = 329+9) we conclude that

tj L .
et [t < CECH B (6 (o) P16 207
tj_l (27)

<320+l d | < Cgexp(—baL).

where we have absorbed the tepfh , into the constant§; andbs.
Finally, by referring to[(2K) [(25)[(26) and (27) yields

U —ull?, 1, < Caexp(—bal),

where we have absorbed the teph, ; max{1/(1—&),K} in (Z4) into the con-

stantC4 andby. Finally, since.#” = dim(# (.#_s,p)) < CL? for L sufficiently
large, we obtain the desired result’]

7 Numerical results

In this section, we demonstrate the validity of the achiearedr estimates for both
the h-DG and hp-DG time-stepping schemes, for problemseofatm [1) when
Au= —uy andQ = (0,1). To compute our numerical solution, we discretize in
space using the standard FEs. So, we construct a family @drampartitions of
the domainQ into subintervals with step size and letS, C H}(Q) denote the
space of continuous, piecewise polynomial functions ofreleet r with r > 1.
The discontinuous finite element spakk (4) is now modifiedhéofally discrete
finite dimensional space

W (M,p,S) ={Un:[0,T] = S : Unli, €Ppr(S), 1<n<N} (28)

where byPy(S,) we denote the space of polynomials of degree in the time
variable with coefficients is,.

We define our fully-discrete time-stepping DG-spatial FEesue as follows:
findUy, € # (. ,p,S) such that

Gn (Un, X) = <Rhu0,x3>+/otN F,XO)dt VX eV (A,p,S)  (29)

whereGy is the global bilinear form defined as [ (8) aRg: H3(Q) — S is the
Ritz projection given byA(Ryv, x) = A(v, x) forall x € &,.

To demonstrate the validity of the algebraic and exponkatiavergence re-
sults of Theorem(s]5 anld 6 for the fully discrete version saheme choosé (the
spatial step size) and(the degree of the approximate FE solution in the spatial
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variable) so that the temporal errors are dominating. Téueta the errors, we
introduce the finer grid

GM={tj_1+nkj/m:1<j<N,0<n<m} (30)

(N is the number of time mesh subintervals). Thus, for largeesbfm, the error
measure||V|||m := maxcgm ||v(t)|| approximate the normv||_,). To compute
the spatialL,-norm, we apply a composite Gauss quadrature rule With 1)
points on each interval of the finest spatial mesh.

Example: We choose the initial datum such that the exact solution is:

u(x,t) = sin(mx) — t*2sin(27mx). (31)

It can be seen that the regularity conditions] (20) dnd (1% far 0 = o + 2.

N y=1 y=13 y=16
18 | 8.32e-04 2.78e-04 1.93e-04
27 | 4.80e-04 1.35 1.36e-04 1.76| 8.28e-05 2.08 p=1

36 | 3.27e-04 1.34| 8.28e-05 1.73| 4.59e-05 2.05
72 | 1.31e-04 1.32] 2.53e-05 1.71] 1.12e-05 2.03

N y=1 y=16 y=23 y=3
18 | 1.07e-04 1.18e-05 2.64e-06
27 | 6.18e-05 1.36| 4.87e-06 2.18| 7.43e-07 3.12 p=2

36 | 4.20e-05 1.34| 2.62e-06 2.15| 3.06e-07 3.08
72 | 1.67e-05 1.33| 6.06e-07 2.11| 4.13e-08 2.89

9 | 1.01e-04 2.00e-05 3.65e-06 2.42e-06
18 | 3.81e-05 1.41| 4.18e-06 2.26| 3.87e-07 3.23| 1.30e-07 4.22| p=3
27 | 2.19e-05 1.36| 1.72e-06 2.18| 1.10e-07 3.10] 2.79e-08 3.80
36 | 1.49e-05 1.34] 9.29e-07 2.15] 4.54e-08 3.08| 1.03e-08 3.46

Table 1 The errors|||Up — U|||10 for the h-DGM for different mesh gradings witbr = —0.7.

We observe convergence of ordéf2V(= k%) for 1< y < (p+1)/(a+2) for p=1,2
with some deterioration in the convergence ratespfer 3 andy = 3. This might be due to the
direct implementation of the discrete solution which whiléh cause some numerical instability
in computing the integrals involved the memory term esplgarenen p > 3. Indeed, forp =3
andy = 3, modifying the order of the DG solution on the first time subivall; by replacing it
with a linear DG approximation (as we assumed in the theoag beneficial.

We first test the accuracy of the h-DGM with uniform polynohdagreep (in
time) on the non-uniformly graded meshes = .#, in (16) for various choices

of y>1 and fora = —0.7. In Table[1 we computed the errors and the experi-
mental rates of convergence for various valueg.affe observe a uniform global
error bounded bZk™ntV(2+a).p+1} for y > 1 (in particular forp € {1,2}), which

is optimal fory > (p+1)/(a + 2). These numerical results illustrated more op-
timistic convergence rates (faster and optimal) compasekheoreni b, and also
demonstrated that the grading mesh paramateslightly relaxed. Recall that, for

a strongly graded mesh, the achieved convergence rate ordhg is of order

O(KMn(V2+-%).2+9}) for p = 1 andO(K™M(3Y 52 p+ %51} for p > 2, iie., short

by order—% from being optimal forp = 1 while short by orderLTa forp>2
(more pessimistic)
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L] /(D) 5-021 5=024 5=027 5=030

3 T4 | 1.586-04 2.72] 2.666-04 2.49 4.206-04 2.29 6.336-04 2.10
4 20 | 2.11e-05 2.76| 4.20e-05 2.53| 7.72e-05 2.32| 1.33e-04 2.13
5 27 | 3.76e-06 2.38| 6.65e-06 255 1.42e-05 2.34| 2.81e-05 2.15
6 35 | 1.09e-06 1.72| 1.06e-06 255/ 2.63e-06 2.35/ 5.93e-06 2.16
7 44 | 1.01e-06 0.09] 2.49e-07 2.02| 4.86e-07 2.35 1.26e-06 2.16

Table 2 The errors|||Un — u|||so @and the calculated exponemfor different choices ob with
a = —0.7. We partitioned the time interval geometrically (ded Y2dfo L + 1 subintervals.

107

s
S,

-, O T.L,(Q)
4

Errorsin L

-
°,

10°F

107 L L L L
15 2 25 3 35

L L L L L
4 45 5 55 6 65
N]JZ

Fig. 1 The errorg||Un — ul||so plotted against/.#” for different choices 08, with a = —0.7.

Next, we test the performance of the-version time-stepping of the scheme
(29). We use the geometrically refined time-step and liygadreasing polyno-
mial degrees as introduced in Sectidn 6 for the exact solutid31) witha =
—0.7. We choosd; = 1 andu = 1. We notice that the analytic regularity property
(20) holds foro = a + 2 and hence, in accordance with Theofdm 6, we expect
the error to converge exponentially (éxgby/.4) with 4 = dim(# (.4 5,p))).

We calculate the coefficieftin the exponent using the formula:

log(error A 1) /erro.A)) / (/M — /A1), (32)

where A =dim(# (.#,_s,p)) and errof.4 ) is the error inL (0, T) correspond-
ing to the geometric time mesh_{21) (wifh = T = 1) which consists of + 1
subintervals. The numerical valuestoére approximately the same (as it should
be) for different values of geometric gradingsThis is illustrated tabularly in Ta-
ble[@ where it can be seen that= 0.24, thehp-version gives ah-error smaller
thane~%7 with less than 44 degrees of freedom and 8 time subintervéys Bhis
clearly underlines the suitability dfp-version approaches for the numerical ap-
proximation of the fractional diffusion probleifn (1). We shthehp-errors against
V¥ graphically in Figur€lL. In the semi-logarithmic scale, tieves are roughly
straight lines, which indicates exponential convergeates:.
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In Figure[2, for a fixed /" = 44, we plot the errors against the parameter

for different values ofr. We observe that values éfin the neighborhood of the
interval [0.2,0.3] yields the best results.

(@)

(0,T;L.
2

©

ErrorsinL

—-©- a=-0.1

10° —+ a=-03

-~ a=-05

- a=-0.7

—* a=-0.9
T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 2 The errorg||Un — u|||eo plotted againsd for different values ofr and fixed /" = 44.
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