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Abstract Time-steppinghp-versions discontinuous Galerkin (DG) methods for
the numerical solution of fractional subdiffusion problems of order−α with −1<
α < 0 will be proposed and analyzed. Generichp-version error estimates are de-
rived after proving the stability of the approximate solution. Forh-version DG
approximations on appropriate graded meshes neart = 0, we prove that the error
is of orderO(kmax{2,p}+ α

2 ), wherek is the maximum time-step size andp ≥ 1 is
the uniform degree of the DG solution. Forhp-version DG approximations, by
employing geometrically refined time-steps and linearly increasing approxima-
tion orders, exponential rates of convergence in the numberof temporal degrees
of freedom are shown. Finally, some numerical tests are given.

Keywords Anomalous diffusion,hp methods, variable time steps, error analysis

1 Introduction

In this work, time-stepping discontinuous Galerkin methods (DGMs) for frac-
tional order diffusion equations of the form

u′+BαAu= f on Ω × (0,T] with u|t=0 = u0, (1)
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subject to homogeneous Dirichlet boundary conditions are proposed and analyzed,
whereu= u(x, t), f = f (x, t), u0 = u0(x) ((x, t) ∈ Ω × (0,T]), u′ = ∂u

∂ t , and

Bαv(t) =
∂
∂ t

∫ t

0
ωα+1(t −s)v(s)ds with ωα+1(t) =

tα

Γ (α +1)
(2)

is the Riemann–Liouville time fractional derivative operator of order 0<−α < 1.
In (1), the spatial domainΩ is assumed to be bounded and polyhedral, and for

simplicity, we chooseAu= −div(Kα+1∇u) with ∇ being the spatial gradient of
u andKα+1 > 0 (positive constant) is the diffusivity. Thus,A (subject to homo-
geneous Dirichlet boundary conditions) is strictly positive-definite and possesses
a complete orthonormal eigensystem{φm}∞

m=1 in L2(Ω ). We let λm denote the
eigenvalue corresponding toφm (i.e.,Aφm = λmφm with φm|∂ Ω = 0) where (with-
out loss of generality) we assume for convenience that 0< λ1 ≤ λ2 ≤ λ3 ≤ ·· · .

Problems of the form (1) arise in a variety of physical, biological and chemical
applications [7,10,26,28]. It describes anomalous subdiffusion and occurs, for
example, in models of fractured or porous media, where the particle flux depends
on the entire history of the density gradient∇u.

A variety of low-ordernumerical methods for problems of the form (1) (with
Riemann–Liouville or Grünwald–Letnikov fractional derivatives) were studied by
several authors. For explicit, implicit Euler and compact finite difference (FD)
schemes, see for example [1,2,8,9,16,30,31,33,34]. For ADI FD schemes on a
rectangular spatial domain; refer to [29,32]. In addition,various numerical meth-
ods [3,4,5,6,15,23,27,32] have also been applied for the following alternative
representation of (1) (using the Caputo derivatives):I−αu′(t)−div(Kα+1∇u)(t) =
f̃ (t) whereI−α is the Riemann–Liouville time fractional integral operator;

I−α v(t) :=
∫ t

0
ω−α(t −s)v(s)ds for −1< α < 0.

The two representations are equivalent under suitable assumptions on the initial
data, but the methods obtained for each representation are formally different.

In earlier papers, McLean and I proposed and analyzed different low-order
time stepping DG schemes for problem (1). In [14], apiecewise-constantDGM
(generalized backward Euler) combined with finite elements(FEs) for the spa-
tial discretization was studied. Unconditional stabilityand optimal convergence
rates in both time and space were proved. Using a different approach, we later
studied [20] the error analysis of thepiecewise-linearDGM. Suboptimal rates of
convergence had been achieved, however, the numerical results illustrated opti-
mal rates. In continuation, by duality arguments, nodal superconvergence results
were proved in [21]. Moreover, we extracted the superconvergence at the nodal
points of the DG solution globally by post-processing the DGsolution through
Lagrange interpolations. In all these papers, variable time steps were employed to
compensate the lack of regularity of the solutionu of problem (1) neart = 0.

The main purpose of this paper is to study the stability and the accuracy of
high-ordertime-steppingh-version DG (h-DG) andhp-version (hp-DG) methods.
This task is not trivial since the DGM allows us to only control the jumps of the
approximate solutions which is enough for thelow-orderDGMs in [14,19,20,21].
A new analysis based on the coercivity and continuity properties of the operator
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Bα , also based on some fractional derivative-integral identities is required. These
will be the keys to establish the stability and consequentlyderiving promising
error estimates (in theL∞(0,T)-norm) over families of nonuniform meshes.

In contrast, for 0< α < 1, the model problem (1) amounts to the fractional
wave equation (super-diffusion):

u′(t)+ IαAu(t) = f (t) with u|t=0 = u0 . (3)

Recently, Schötzau and I investigated [22]h-DG andhp-DG methods (in time)
for problem (3). Although we could not show the stability of our scheme because
of some technical difficulties, algebraic and exponential convergence rates (in a
non-standard norm that can be weaker than theL2-norm in some cases) forh-DG
andhp-DG schemes were achieved, respectively.

Due to the different nature and properties of the operatorsIα andBα , an-
other technique will be used in this work to show the stability of our scheme and
also to derive generichp-version abstract error estimates in the strongerL∞(0,T)-
norm. Then proceeding along the lines of [17,22,24] and investigating two refine-
ment strategies in the case where the solutionu of (1) lacks regularity ast = 0.
Noting that, in [17,24],hp-DGMs for parabolic and parabolic integro-differential
equations were considered where the stability and error analyses follow relatively
straight forwardly from the different natures of the equations.

In theL∞(0,T)-norm, exponential convergence rates (in the number of tempo-
ral degrees of freedom) for thehp-version DG (hp-DG) scheme based on geomet-
rically refined time-steps and on linearly increasing approximation orders will be
achieved. Moreover, for theh-DGM of piecewise uniform degreep≥ 1, we prove
O(kmax{2,p+ 1

2}+ α
2 ) algebraic convergence rates over non-uniform graded meshes

that concentrate the time levels neart = 0. So, the convergence rates is short1−α
2

power from being optimal forp≥ 2, however, just short by−α
2 power forp= 1

which is due to the fact that the approximate solution can be controlled from the
jumps in this case. Indeed, the numerical experiments illustrate optimal error rates
of orderO(kp+1) for some choices ofα and p. In our test we combine the pro-
posedhp-version time-stepping method with a standard (continuous) FEs in space
which will then define a fully discrete scheme. We choose the spatial step size and
the order of the spatial FEs so that the temporal errors are dominating. Analyzing
the convergence of the fully discrete scheme will be considered in future work.

Motivation of the hp-DG and future work.The nonlocal nature ofBα means
that on each time subinterval, one must efficiently evaluatea sum of integrals over
all previous time subintervals. For example, a direct implementation of the time-
steppingh-DG method (of uniform degreep) combined with the FE discretization
in space requiresO((p+1)N2 M) operations and requiresO((p+1)N M) storage
(N is the number of time-mesh elements andM is the spatial degrees of freedom).
Thus, reducing the number of time-steps and at the same time maintaining high
accuracy is important especially whenΩ ⊂ R

3, then the time-space problem (1)
is four-dimensional and thus beyond the computing power of conventional ma-
chines. For analytic solutions in the time variable,hp-DGMs with exponential
rates of convergence allow us to achieve these requirementsto a large extent. For
instance, if the error from the spatial FE is of orderO(hr) for somer ≥ 2, then
we can balance the exponential rates in time with the algebraic one in space. In
this case, the number of operations will be reduced toO((p+ 1)M (logM)ν2)
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and the active operations toO((p+1)M(logM)ν2) whereν1 andν2 depend onr.
However, if the solutionu of (1) is not analytic (in time) but satisfies appropriate
regularity assumptions, time-space sparse grids can be used to get similar results.
Furthermore, if in additionu satisfies certain mixed spatial regularity properties,
the computational cost can be further reduced. These computing issues are subject
to ongoing investigation and hence, will be considered in future work.

The outline of the paper is as follows. The DGM will be introduced in the next
section and the stability of the semi-discrete solutions will be proved in Section 3.
Followed by deriving abstract error bounds of the time-stepping DGM in Sec-
tion 4. Sections 5 and 6 are devoted to establishing algebraic rate of convergence
of theh-DGM and exponential rates of convergence for thehp-DGM, respectively.
Numerical illustrations of our results will be presented inSection 7.

2 Discontinuous Galerkin discretization

To define the time-stepping DGM for problem (1), we introducea partitionM

of the interval[0,T] given by the points: 0= t0 < t1 < · · ·< tN = T. We setIn =
(tn−1, tn) andkn = tn− tn−1 for 1≤ n≤ N. With each subintervalIn we associate
a polynomial degreepn ∈ N0. These degrees are then stored in the degree vector
p := (p1, p2, · · · , pN). Next, we introduce the discontinuous finite element space

W (M ,p) =
{

v : [0,T]→ H1
0(Ω ) : v|In ∈ Ppn, 1≤ n≤ N

}

, (4)

wherePpn denotes the space of polynomials of degree≤ pn with coefficients
in H1

0(Ω ). For a functionv ∈ W (M ,p), we write vn
− = v(t−n ), vn

+ = v(t+n ) and
[v]n = vn

+−vn
− with vN

+ = vN
− andv0

− = v0 .
The time-stepping DG approximationU ∈ W (M ,p) is now defined as fol-

lows: GivenU(t) for t ∈ ∪n−1
j=1I j−1, the discrete solutionU ∈ Ppn on the next time

subinterval In is determined by requesting that

〈Un−1
+ −Un−1

− ,Xn−1
+ 〉+

∫ tn

tn−1

(

〈U ′,X〉+A(BαU,X)
)

dt =
∫ tn

tn−1

〈 f ,X〉dt (5)

∀ X ∈ Ppn with U0
− ≈ u0. HereA(·, ·) : H1

0(Ω )×H1
0(Ω )→R is bilinear operator

associated with the differential operatorA :=−div(Kα+1∇) and is given by

A(v,w) := 〈∇v,∇w〉=
∞

∑
m=1

λmumvm whereum = 〈u,φm〉 andvm = 〈v,φm〉 .

Throughout the paper, by〈·, ·〉 and‖ · ‖, we denote the inner product and the asso-
ciated norm in the spaceL2(Ω ). Moreover,‖·‖1 denotes the norm on the Sobolev

spaceH1(Ω ) and for j ≥ 1, u( j) := ∂ ju
∂ t j .

As in [22], since the operatorA possesses a complete orthonormal eigensys-
tem {λm,φm}m≥1, the DG scheme (5) can be reduced to a finite linear system
of algebraic equations on each subintervalIn. To see this, letPpn be the scalar
polynomial space of degree≤ pn. Now, takeX = φmw in (5), we find that: for
m≥ 1,
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Un−1
m,+ wn−1

+ +
∫ tn

tn−1

(

U ′
mw+λmBαUm w

)

dt =Un−1
m,− wn−1

+ +
∫ tn

tn−1

fmwdt (6)

∀ w∈ Ppn and for 1≤ n≤ N, whereUm = 〈U,φm〉 ∈ Ppn and fm= 〈 f ,φm〉.
Very briefly, because of the finite dimensionality of system (6), the existence

of the scalar functionUm on In follows from its uniqueness. For uniqueness, it
is enough to show thatUm ≡ 0 on In for n ≥ 1 when the right-hand side of (6)
is identically zero. This follows from the stability theorem (Theorem 1) and the
coercivity property (i) in Lemma 1.

3 Stability of DG solutions

In this section, we show the stability of the semi-discrete solutions. For conve-
nience, we introduce the following notation. SetJ :=

⋃N
j=1 I j and we letC 1(J)

denote the space of functionsv : J → R such that the restrictionv|I j extends to a
continuously differentiable function on the closed interval [t j−1, t j ], for 1≤ j ≤ N.

In the following result we gather two key properties of the fractional time
derivative operatorBα that we use in our analysis.

Lemma 1 Let cα = cos(απ/2)
πα

|α |−α

(1−α)1−α and dα = 1
cos(απ/2) for any−1 < α < 0.

Then, for any v, w in C 1(J) (or in W1,1(0,T)), we have

(i)
∫ T

0 Bαv(t)v(t)dt ≥ cαTα ∫ T
0 v2(t)dt,

(ii)
∣

∣

∣

∫ T
0 Bαv(t)w(t)dt

∣

∣

∣

2
≤ dα

2∫ T
0 Bαv(t)v(t)dt

∫ T
0 Bαw(t)w(t)dt .

Proof The coercivity property (i) was proven in [12, Theorem A.1] by using the
Laplace transform and the Plancherel Theorem. In a similar fashion, property (ii)
can be obtained, see for example [22, Lemma 3.1].�

Remark 1Noting that, asα approaches 0, we recover the classical coercivity and
continuity properties. In addition, as was mentioned earlier, for 0< α < 1, Bα =
Iα . In this case, the above coercivity property is no longer valid. We have a weaker
version instead, see [22, Lemma 3.1 (i)].�

The stability of the DG solutionU will be shown in the next theorem. The proof
below looks straightforward due to the new approach that hasnot been used be-
fore. The key ingredients are the above lemma and the appropriate use of the iden-
tity: Bα I−α = I . Indeed, the current approach can be adopted to show the stability
of U when 0< α < 1 as this was not proven in [22]. It is worth mentioning that
the stability result below plays a crucial role in our forthcoming error analysis, see
Theorem 3. Noting that, the proofs of the stability in [14,19] are valid only for
h-DGMs of orderp∈ {0,1} (low-order).

Theorem 1 For 1≤ n≤ N, the DG solution U of(5) satisfies

‖Un
−‖2+‖Un−1

+ ‖2+2
∫ tn

0
A(BαU,U)dt ≤ 4‖U0

−‖2+4d2
α

∫ tn

0
|〈g,A−1 f 〉|dt

where A−1 is the inverse of the positive-definite operator A, and g(t) :=(I−α f )(t) .
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Proof ChoosingX =U in (5) and using〈U ′(t),U(t)〉= 1
2

d
dt‖U(t)‖2, we obtain

‖U j
−‖2+‖U j−1

+ ‖2−2〈U j−1
− ,U j−1

+ 〉+2
∫ t j

t j−1

A(BαU,U)dt = 2
∫ t j

t j−1

〈 f ,U〉dt.

Summing overj = 1, · · · , ℓ, and usingf = Bαg,

ℓ

∑
j=1

(

‖U j
−‖2+‖U j−1

+ ‖2−2〈U j−1
− ,U j−1

+ 〉
)

+2
∫ tℓ

0
A(BαU,U)dt

= 2
∫ tℓ

0
〈Bαg,U〉dt.

Chooseℓ= n−1 andℓ= n respectively, summing and then using the identity;

ℓ

∑
j=1

(

‖U j
−‖2+‖U j−1

+ ‖2−2〈U j−1
− ,U j−1

+ 〉
)

= ‖U ℓ
−‖2+‖U0

+‖2+
ℓ−1

∑
j=1

‖[U ] j‖2−2〈U0
−,U

0
+〉

yield

‖Un−1
− ‖2+‖Un

−‖2+2‖U0
+‖2+‖[U ]n−1‖2+2

n

∑
j=n−1

∫ t j

0
A(BαU,U)dt

≤ 4〈U0
−,U

0
+〉+2

n

∑
j=n−1

∫ t j

0
〈Bαg,U〉dt.

Since 4|〈U0
−,U

0
+〉| ≤ 2‖U0

−‖2+2‖U0
+‖2 and‖Un−1

+ ‖2 ≤ 2‖Un−1
− ‖2+2‖[U ]n−1‖2,

‖Un
−‖2+‖Un−1

+ ‖2+4
n

∑
j=n−1

∫ t j

0
A(BαU,U)dt

≤ 4‖U0
−‖2+4

n

∑
j=n−1

∫ t j

0
〈Bαg,U〉dt, (7)

for 1≤ n≤ N. Now, settingUm= 〈U,φm〉 andgm = 〈g,φm〉, and hence, the conti-
nuity property (ii) in Lemma 1 implies that; for 1≤ j ≤ N,

4
∫ t j

0
〈Bαg,U〉dt = 4

∞

∑
m=1

∫ t j

0
BαgmUmdt

≤ 4dα
∞

∑
m=1

(

∫ t j

0
Bαgmgmdt

)1/2(∫ t j

0
BαUmUmdt

)1/2

dt

≤ 2d2
α

∞

∑
m=1

∫ t j

0
Bαgmλ−1

m gmdt+2
∞

∑
m=1

λm

∫ t j

0
BαUmUmdt

= 2d2
α

∫ t j

0
〈Bαg,A−1g〉dt+2

∫ t j

0
A(BαU,U)dt .
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Therefore, the desired stability estimate follows after inserting the above bound
(for j = n−1 and j = n) on the right-hand side of (7) . This finishes the proof.�

4 Error analysis

This section is devoted to deriving abstract error estimates for the DGM. A global
formulation of our numerical scheme will be given first. Moreprecisely, it will be
convenient to reformulate the DG scheme (5) in terms of the bilinear form

GN(U,X) = 〈U0
+,X

0
+〉+

N−1

∑
n=1

〈[U ]n,Xn
+〉+

∫ tN

0

(

〈U ′,X〉+A(BαU,X)
)

dt. (8)

Integration by parts yields an alternative expression for the bilinear formGN:

GN(U,X) = 〈UN
− ,X

N
− 〉−

N−1

∑
n=1

〈Un
−, [X]n〉+

∫ tN

0

(

−〈U,X′〉+A(BαU,X)
)

dt. (9)

By summing up (5) over all time-steps, the DGM can now equivalently be written
as: FindU ∈ W (M ,p) such that

GN(U,X) = 〈U0
−,X

0
+〉+

∫ tN

0
〈 f ,X〉dt ∀X ∈ W (M ,p). (10)

Let u be the solution of (1) andU the DG approximation defined in (10).
Decomposing the errorU −u into the two terms:

U −u= (U −Πu)+(Πu−u) =: θ +η . (11)

whereΠu∈W (M ,p) is thehp-version projection ofu defined by: for 1≤ n≤N,

Πu(t−n )−u(tn) = 0 and
∫ tn

tn−1

〈u−Πu,v〉dt = 0 ∀v∈ Ppn−1, (12)

The bound ofη follows from the next theorem.

Theorem 2 Let1≤ n≤ N and0≤ qn ≤ pn. If u(qn+1)|In ∈ L2(In;H1(Ω )), then

∫ tn

tn−1

‖(Πu−u)′‖2
1dt ≤C p2

n

(

kn

2

)2qn

Γpn,qn

∫ tn

tn−1

‖u(qn+1)‖2
1 dt

whereΓpn,qn =
Γ (pn−qn+1)
Γ (pn+qn+1) and the constant C is independent of kn, pn, qn, and u.

Proof See [24, Section 3] for the proof.�

The main task now is to estimateθ . To do so, we use the contribution from the
stability results, the continuity property of the operatorBα , the inverse inequality,
in addition to some other technical steps. In comparison to the case 0< α < 1,
the achieved bound ofθ in [22] is weaker (by far) than the one below. This is due
to the different properties ofBα andI α and also because of the technique used
here.
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Theorem 3 Assume that the time-step sizes are nondecreasing. Then, for 1≤ n≤
N, if the solution u∈W1,1((0, tn);H1

0(Ω )), we have

|θ |2n+
kmin{1,pn−1}

n

p2
n

(

sup
t∈In

‖θ (t)‖2
)

≤Cα ,T

(

‖U0
−−u0‖2+ tn

n
max
j=1

kα
j

(

∫ t j

t j−1

‖η ′‖1dt
)2
)

,

where|θ |n := max{‖θ n−1
+ ‖,‖θ n

−‖}.

Proof SinceGn(u,X) = 〈u0,X0
+〉+

∫ tn
0 〈 f ,X〉dt, we have

Gn(U −u,X) = 〈U0
−−u0,X

0
+〉 ∀X ∈ W (M ,p).

Hence, the alternative expression forGN in (9), and the fact thatηn = 0 and
∫ tn
tn−1

〈η,X′〉dt = 0 for all 1≤ n ≤ N, by definition of the operatorΠ (note that
for pn = 0, we haveX′ ≡ 0), yield

Gn(θ ,X) = 〈U0
−−u0,X

0
+〉−Gn(η,X) = 〈U0

−−u0,X
0
+〉+

∫ tn

0
A(Bα η,X)dt

for all X ∈ W (M ,p). Since this equation has the same form as (10), following
the proof of the stability in Theorem 1, we notice that for 1≤ n≤ N,

|θ |2n+2
∫ tn

0
A(Bα θ ,θ )dt≤4‖U0

−−u0‖2+4d2
α

n
max
j=n−1

∫ t j

0
A(Bαη,η)dt . (13)

To estimate the last term, we use the equalityη(t) =−
∫ t j
t η ′(q)dq for t ∈ I j , then

changing the order of integrations and integrating,

∫ tn

0
A(Bαη,η)dt =−

n

∑
j=1

∫ t j

t j−1

∫ t j

t
A(Bαη(t),η ′(q))dqdt

=−
n

∑
j=1

∫ t j

t j−1

∫ q

t j−1

A(Bαη(t),η ′(q))dt dq

=
n

∑
j=1

∫ t j

t j−1

A(I −α η(t j−1)−I
−αη(q),η ′(q))dq

=
n

∑
j=1

I
j

1 +
n

∑
j=1

I
j

2

(14)

where

I
j

1 :=−
∫ t j

t j−1

∫ q

t j−1

ωα+1(q−s)A(η(s),η ′(q))dsdq

=

∫ t j

t j−1

∫ q

t j−1

∫ t j

s
ωα+1(q−s)A(η ′(t),η ′(q))dt dsdq
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and

I
j

2 :=
∫ t j

t j−1

∫ t j−1

0
[ωα+1(t j−1−s)−ωα+1(q−s)]A(η(s),η ′(q))dsdq

=−
j−1

∑
i=1

∫ t j

t j−1

∫ ti

ti−1

∫ ti

s
[ωα+1(t j−1−s)−ωα+1(q−s)]A(η ′(t),η ′(q))dt dsdq.

To boundI
j

1 andI
j

2 , we use the Cauchy-Schwarz inequality and integrating

I
j

1 ≤
∫ t j

t j−1

‖∇η ′(t)‖
∫ q

t j−1

ωα+1(q−s)
∫ t j

t j−1

‖∇η ′(q)‖dt dsdq

≤ ω2+α(k j)
(

∫ t j

t j−1

‖η ′‖1dt
)2

and

I
j

2 ≤
j−1

∑
i=1

∫ t j

t j−1

‖∇η ′(q)‖
∫ ti

ti−1

[ωα+1(t j−1−s)−ωα+1(t j −s)]
∫ ti

s
‖∇η ′(t)‖dt dsdq

≤ j
max
i=1

(

∫ ti

ti−1

‖∇η ′‖dt

)2 ∫ t j−1

0
[ωα+1(t j−1−s)−ωα+1(t j −s)]ds

≤ ω2+α(k j)
j

max
i=1

(

∫ ti

ti−1

‖η ′‖1dt
)2

.

Now, inserting the estimates ofI
j

1 andI
j

2 in (14), and using the mesh assumption
ki ≤ k j for i ≤ j . This implies

∫ tn

0
A(Bα η,η)dt ≤ 2tn

Γ (α +2)
n

max
j=1

kα
j

(

∫ t j

t j−1

‖η ′‖1dt
)2

,

and therefore, for 1≤ n≤ N,

|θ |2n+2
∫ tn

0
A(Bαθ ,θ )dt ≤ 4‖U0

−−u0‖2+
4tnd2

α
Γ (α +2)

n
max
j=1

kα
j

(

∫ t j

t j−1

‖η ′‖1dt
)2

.

But, for pn = 1, the left-hand side is≥ supt∈In ‖θ (t)‖2, however forpn ≥ 2, it is

≥ cα tα
n

∫ tn

tn−1

‖∇θ‖2 dt ≥Ccα tα
n

∫ tn

tn−1

‖θ‖2dt ≥Ccα tα
n

kn

p2
n

(

sup
t∈In

‖θ (t)‖2
)

by the assumption that the operatorA possesses a complete orthonormal eigen-
system{λm,φm}∞

m=1, the coercivity property in Lemma 1 (i), and the Poincare’s
(θ |∂ Ω = 0) and inverse (θ |In ∈ Ppn) inequalities. This completes the proof.�

The main abstract error bound will be derived in the next theorem. For conve-
nience, we introduce the following notation:

‖φ‖L∞(L2) := ‖φ‖L∞((0,T);L2(Ω )) =
N

max
n=1

(

sup
t∈In

‖φ(t)‖
)

.
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Theorem 4 Let u be the solution of (1) and U be the DG solution defined by(5)
with U0

− = u0 (for simplicity). Assume that ki ≤ k j for i ≤ j. Then we have

N
max
n=1

{‖Un−1
+ −u(tn−1)‖,‖Un

−−u(tn)‖}

+
N

min
n=1

(

t−1
n kmin{1,pn−1}

n

) ‖u−U‖2
L∞(L2)

maxN
n=1 p2

n
≤Cα ,T

N
max
n=1

kα
n

(

∫ tn

tn−1

‖η ′‖1dt
)2

.

Proof This bound follows from the decomposition of the error in (11), the triangle
inequality, Theorem 3, and the fact (by the interpolation properties of the operator

Π ), ‖η‖L∞(L2) = max1≤n≤N

(

supt∈In ‖η(t)‖
)

≤ max1≤n≤N
∫ tn
tn−1

‖η ′‖dt . �

5 h-version errors

In this section, we focus on the explicit error bounds of theh-DG solutionU of
uniform degreep on each subintervalIn for 2 ≤ n ≤ N. Because of the singular
behavior of the solutionu of (1) neart = 0, the degree ofU on the first subin-
terval I1 will be chosen to be one (i.e.,p1 = 1). So,p = (1, p, · · · , p). However,
the numerical results suggested that this modification is not always needed. More
precisely, we are required to considerp1 = 1 if the time mesh, (16), is strongly
graded.

Following [14,19,20], we assume that the solutionu of (1) satisfies:

‖u( j)(t)‖1 ≤ Mtσ− j ∀1≤ j ≤ p+1, (15)

for some positive constantsM andσ ; for a proof we refer the reader to [11,13] .
To compensate for singular behaviour ofu neart = 0, we employ a family

of non-uniform meshes denoted byMγ , where the time-steps are graded towards
t = 0. Following [14,19,20,21], for a fixed parameterγ ≥ 1, we assume that

tn = (nk)γ with k=
T1/γ

N
for 0≤ n≤ N. (16)

Noting that the time step sizes are nondecreasing, that is,ki ≤ k j for i ≤ j . More-
over, one can show that

kn ≤ γkt1−1/γ
n for n≥ 1 and tn ≤ 2γ tn−1 for n≥ 2. (17)

In the next theorem, we derive the error estimate for theh-DG solution over
the graded meshMγ . In theL∞(0,T)-norm, we prove anO(kmax{2,p+ 1

2}+
α
2 ) con-

vergence rate, i.e., short by−α
2 power from being optimal forp= 1 and by1−α

2
power for p ≥ 2. However, the numerical results indicate optimalO(kp+1)-rates
for p≥ 1. Indeed, these results are high-order extensions (also improvements) of
the ones shown in [14,19,20] forp∈ {0,1}. In contrast, for 0< α < 1, we suc-
cessfully proved optimalO(kp+1) convergence rates in [22, Theorem 4.9], but in
a much weaker norm. Noting that, the proof here is more technical but the general
approach is partially similar to the proof of Theorem 4.9 in [22].
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Theorem 5 Let the solution u of(1) satisfy the regularity property(15). Let U∈
W (Mγ ,p) be the h-DG approximation with U0− = u0. Then forγ ≥ 1, we have

‖U −u‖L∞(L2) ≤C ×
{

kmin{γ(σ+ α
2 ),2+

α
2 } for p= 1,

kmin{γ(σ+ α
2 ),p+1+ α

2 }− 1
2 for p≥ 2

where C is a constant that depends only on T ,α, γ , σ and p.

Proof Theorem 4 yields

min{1,
N

min
n=2

(

t−1
n kmin{1,p−1}

n
)

}‖u−U‖2
L∞(L2)

≤Ckα
1

(

∫ t1

0
‖η ′‖1

)2

+C
N

max
n=2

kα+1
n

∫ tn

tn−1

‖η ′‖2
1.

Since

t−1
n kmin{1,p−1}

n = 1− tn−1

tn
= 1− (1−1/n)γ ≥ 1/n≥ 1/N for p≥ 2,

1

Nmin{1,p−1} ‖u−U‖2
L∞(L2)

≤Ckα
1

(

∫ t1

0
‖η ′‖1dt

)2

+C
N

max
n=2

kα+1
n

∫ tn

tn−1

‖η ′‖2
1dt.

On the subintervalI1, Πu∈ P1 and satisfies:

Πu(t−1 ) = u(t1) and
∫ t1

0

[

u(t)−Πu(t)]dt = 0.

Explicitly, the derivative of the interpolation error admits the integral representa-
tions [18, Equation (3.8)]:

η ′(t) =−u′(t)+
2

k2
1

∫ t1

0
su′(s)ds, for t ∈ I1. (18)

So, from the triangle inequality and (18), we notice that
∫ t1

0
‖η ′‖1dt ≤

∫ t1

0

(

‖u′(t)‖1+
2
k1

∫ t1

0
‖u′(s)‖1ds

)

dt ≤ 3
∫ t1

0
‖u′(t)‖1dt .

Thus, using the regularity assumption, (15), and the mesh property, (17),

kα
1

(

∫ t1

0
‖η ′‖1dt

)2

≤Ckα
1

(

∫ t1

0
tσ−1dt

)2
=C

k2σ+α
1

σ
≤Ckγ(2σ+α) for γ ≥ 1.

(19)
In addition, forn≥ 2, we use Theorem 2 and get

kα+1
n

∫ tn

tn−1

‖η ′‖2
1dt ≤Ck2p+α+1

n

∫ tn

tn−1

‖u(p+1)‖2dt

≤Ck2p+2+α
n tn

2(σ−1−p)

≤Ck2p+2+α t2σ+α−(2p+2+α)/γ
n

≤Ckmin{γ(2σ+α),2p+2+α} for γ ≥ 1. �
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6 hp-version errors

We discuss the error results of thehp-DGM based on geometrically refined time-
steps and linearly increasing approximation orders. Following [17,22], we con-
sider thehp-DGM for problems with solutions that have start-up singularities as
t → 0, but are analytic fort > 0. More precisely, we stipulate that the solutionu
of (1) has the analytic regularity:

‖u( j)(t)‖+ t‖u( j)(t)‖1 ≤ M d jΓ ( j +1)tσ− j ∀t ∈ (0,T], ∀ j ≥ 1, (20)

for positive constantsσ , M andd. Proving the regularity statement (20) remains
an open issue, which is beyond the scope of the present paper.

To resolve the singular behavior of the solution neart = 0, we shall make use of
geometrically refined time-steps and linearly increasing degree vectors, and apply
the hp-techniques that were developed in [17,22,24]. To describethis, we first
partition(0,T) into (coarse) time intervals{Ji}K

i=1. The first intervalJ1 = (0,T1)

is then further subdivided geometrically intoL+1 subintervals{In}L+1
n=1 as follows:

t0 = 0, tn = δ L+1−nT1 for 1≤ n≤ L+1. (21)

As usual, we callδ ∈ (0,1) the geometric refinement factor, andL is the number
of refinement levels. From (21), we observe that the subintervals{In}L+1

n=1 satisfy

kn = tn− tn−1 = λ tn−1 with λ = (1−δ )/δ for n≥ 2. (22)

Let ML,δ be the mesh on(0,T) defined in this way. The polynomial degree distri-
butionp onML,δ is defined as follows. On the first coarse intervalJ1 the degrees
are chosen to be linearly increasing:

pn = ⌊µn⌋ for 1≤ n≤ L+1, (23)

for a slope parameterµ > 0. On the coarse time intervals{Ji}K
i=2 away fromt = 0,

we set the approximation degrees uniformly topL+1 = ⌊µ(L+1)⌋. The resulting
hp-version finite element space is denoted byW (ML,δ ,p).

Our main result of this section suggests that non-smooth solutions satisfy-
ing (20) can be approximated at exponential rates convergence on thehp-version
discretizations introduced above. This will be done by proceeding along the lines
of [17, Theorem 4.2] in our earlier work.

Theorem 6 Let U ∈ W (ML,δ ,p) be the hp-DG approximation with U0− = u0.
Then there exists a slopeµ0 > 0 depending onδ and the constantsσ and d in(20)
such that for linearly increasing polynomial degree vectorsp with slopeµ ≥ µ0,

‖U −u‖L∞(L2) ≤Cexp(−b
√

N ),

with positive constants C and b that are independent ofN := dim(W (ML,δ ,p)),
but depending on the problem parameters T andα, the regularity parameters M,
d andσ in (20), and the mesh parametersδ , T1 andµ .
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Proof From the geometric mesh assumptions (21)–(22), we notice that t−1
i ki =

1−δ for 1≤ i ≤ L+1. Hence, using Theorem 4 and obtain

‖U −u‖2
L∞(L2)

≤Cp2
L+1max{1/(1−δ ),K}(E1+E2), (24)

where

E1 = kα
1

(

∫

I1
‖η ′‖1dt

)2

+
L+1
max
i=2

kα+1
i

∫ ti

ti−1

‖η ′‖2
1dt

E2 =
K

max
i=2

(Ti −Ti−1)
α+1

∫ Ti

Ti−1

‖η ′‖2
1dt .

Since the solutionu is analytic on the coarse elementsJi , 2≤ i ≤ K, from Theo-
rem 2 and the approximation results for analytic functions in [25, Theorem 3.19]
yields an error estimate of the form

E2 ≤C1exp(−b1L). (25)

On the first subintervalI1 adjacent tot = 0, Πu∈ P1. Hence, we follow the steps
in (19), and then using the regularity assumption (20) and the geometric mesh
properties, (21),

kα
1

(

∫ t1

0
‖η ′‖1dt

)2

≤Ckα
1

(

∫ t1

0
tσ−1dt

)2
=C

k2σ+α
1

σ
≤C2exp(−b2L). (26)

On the subintervalsI j for 2 ≤ j ≤ L+ 1, from the regularity property (20), we
readily conclude that

∫ t j

t j−1

‖u(q j+1)‖2
1dt ≤Cd2q j Γ (qj +1)2

∫ t j

t j−1

t2(σ−1−q j )dt

≤Ckj d
2q j Γ (qj +1)2t

2(σ−1−q j )
j−1 ,

and hence, we use Theorem 2 and the equalityk j = λ t j−1 with t j−1 ≤ δ L+2− jT1
(from (22) and (21)), and get

kα+1
j

∫ t j

t j−1

‖η ′‖2
1dt ≤CΓp j ,q j p2

j

(

k j

2

)2(q j+1)+α
d2q j Γ (qj +1)2t

2(σ−1−q j )
j−1

≤CΓp j ,q j p2
j

(

dλ
2

)2q j

Γ (qj +1)2δ (2σ+α)(L+2− j) .

Using interpolation arguments analogous to [25, Lemma 3.39], it can be seen
that the above inequality also holds for any non-integer regularity parameterqj
with 0≤ qj ≤ pj . Thus, we takeqj = c j pj with c j ∈ (0,1) and proceed as in [25,
Theorem 3.36], and obtain

Γp j ,q j

(

dλ
2

)2q j

Γ (qj +1)2 ≤Cpj

(

(

λdcj

2

)2c j (1−c j)
1−c j

(1+c j)
1+c j

)p j

.
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Noting that

inf
0<c j<1

(

λ dcj

2

)2c j (1−c j)
1−c j

(1+c j)
1+c j

=: ℓλ ,d(cmin)< 1 with cmin =
1

√

1+(λd/2)2
,

and consequently, choosingc j = cmin andpj = ⌊µ j⌋ ≥ µ0 j with µ0 > 0 such that
(

ℓλ ,d(cmin)
)µ0 = δ (2σ+α), we conclude that

kα+1
j

∫ t j

t j−1

‖η ′‖2
1dt ≤Cδ (2σ+α)L p3

L+1 (ℓλ ,d(cmin))
p j δ−(2σ+α) j

≤Cδ (2σ+α)L p3
L+1 ≤C3exp(−b3L).

(27)

where we have absorbed the termp3
L+1 into the constantsC3 andb3.

Finally, by referring to (24), (25), (26) and (27) yields

‖U −u‖2
L∞(L2)

≤C4exp(−b4L),

where we have absorbed the termp2
L+1max{1/(1− δ ),K} in (24) into the con-

stantC4 andb4. Finally, sinceN = dim(W (ML,δ ,p)) ≤ CL2 for L sufficiently
large, we obtain the desired result.�

7 Numerical results

In this section, we demonstrate the validity of the achievederror estimates for both
the h-DG and hp-DG time-stepping schemes, for problems of the form (1) when
Au= −uxx andΩ = (0,1). To compute our numerical solution, we discretize in
space using the standard FEs. So, we construct a family of uniform partitions of
the domainΩ into subintervals with step sizeh, and letSh ⊂ H1

0(Ω ) denote the
space of continuous, piecewise polynomial functions of degree≤ r with r ≥ 1.
The discontinuous finite element space (4) is now modified to the fully discrete
finite dimensional space

W (M ,p,Sh) =
{

Uh : [0,T]→ Sh : Uh|In ∈ Ppn(Sh), 1≤ n≤ N
}

(28)

where byPp(Sh) we denote the space of polynomials of degree≤ p in the time
variable with coefficients inSh.

We define our fully-discrete time-stepping DG-spatial FE scheme as follows:
find Uh ∈ W (M ,p,Sh) such that

GN(Uh,X) = 〈Rhu0,X
0
+〉+

∫ tN

0
〈 f (t),X(t)〉dt ∀X ∈ W (M ,p,Sh) (29)

whereGN is the global bilinear form defined as in (8) andRh : H1
0(Ω )→ Sh is the

Ritz projection given byA(Rhv,χ) = A(v,χ) for all χ ∈ Sh .
To demonstrate the validity of the algebraic and exponential convergence re-

sults of Theorems 5 and 6 for the fully discrete version scheme, we chooseh (the
spatial step size) andr (the degree of the approximate FE solution in the spatial
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variable) so that the temporal errors are dominating. To evaluate the errors, we
introduce the finer grid

G
m = {t j−1+nkj/m : 1≤ j ≤ N, 0≤ n≤ m} (30)

(N is the number of time mesh subintervals). Thus, for large values ofm, the error
measure|||v|||m := maxt∈G m‖v(t)‖ approximate the norm‖v‖L∞(L2). To compute
the spatialL2-norm, we apply a composite Gauss quadrature rule with(r + 1)
points on each interval of the finest spatial mesh.

Example: We choose the initial datum such that the exact solution is:

u(x, t) = sin(πx)− tα+2sin(2πx). (31)

It can be seen that the regularity conditions (20) and (15) hold for σ = α + 2.

N γ = 1 γ = 1.3 γ = 1.6
18 8.32e-04 2.78e-04 1.93e-04
27 4.80e-04 1.35 1.36e-04 1.76 8.28e-05 2.08 p= 1
36 3.27e-04 1.34 8.28e-05 1.73 4.59e-05 2.05
72 1.31e-04 1.32 2.53e-05 1.71 1.12e-05 2.03
N γ = 1 γ = 1.6 γ = 2.3 γ = 3
18 1.07e-04 1.18e-05 2.64e-06
27 6.18e-05 1.36 4.87e-06 2.18 7.43e-07 3.12 p= 2
36 4.20e-05 1.34 2.62e-06 2.15 3.06e-07 3.08
72 1.67e-05 1.33 6.06e-07 2.11 4.13e-08 2.89
9 1.01e-04 2.00e-05 3.65e-06 2.42e-06

18 3.81e-05 1.41 4.18e-06 2.26 3.87e-07 3.23 1.30e-07 4.22 p= 3
27 2.19e-05 1.36 1.72e-06 2.18 1.10e-07 3.10 2.79e-08 3.80
36 1.49e-05 1.34 9.29e-07 2.15 4.54e-08 3.08 1.03e-08 3.46

Table 1 The errors|||Uh − u|||10 for the h-DGM for different mesh gradings withα = −0.7.
We observe convergence of orderk(α+2)γ(= k1.3γ) for 1 ≤ γ ≤ (p+ 1)/(α + 2) for p = 1, 2
with some deterioration in the convergence rates forp= 3 andγ = 3. This might be due to the
direct implementation of the discrete solution which will then cause some numerical instability
in computing the integrals involved the memory term especially when p≥ 3. Indeed, forp= 3
andγ = 3, modifying the order of the DG solution on the first time subintervalI1 by replacing it
with a linear DG approximation (as we assumed in the theory) was beneficial.

We first test the accuracy of the h-DGM with uniform polynomial degreep (in
time) on the non-uniformly graded meshesM = Mγ in (16) for various choices
of γ ≥ 1 and forα = −0.7. In Table 1 we computed the errors and the experi-
mental rates of convergence for various values ofγ . We observe a uniform global
error bounded byCkmin{γ(2+α),p+1} for γ ≥ 1 (in particular forp∈ {1,2}), which
is optimal forγ ≥ (p+1)/(α +2). These numerical results illustrated more op-
timistic convergence rates (faster and optimal) compared to Theorem 5, and also
demonstrated that the grading mesh parameterγ is slightly relaxed. Recall that, for
a strongly graded mesh, the achieved convergence rate in Theorem 5 is of order

O(kmin{γ(2+ 3α
2 ),2+ α

2 }) for p = 1 andO(kmin{3γ (α+1)
2 ,p+ α+1

2 }) for p ≥ 2, i.e., short
by order−α

2 from being optimal forp = 1 while short by order1−α
2 for p ≥ 2

(more pessimistic)
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L N (L) δ = 0.21 δ = 0.24 δ = 0.27 δ = 0.30
3 14 1.58e-04 2.72 2.66e-04 2.49 4.20e-04 2.29 6.33e-04 2.10
4 20 2.11e-05 2.76 4.20e-05 2.53 7.72e-05 2.32 1.33e-04 2.13
5 27 3.76e-06 2.38 6.65e-06 2.55 1.42e-05 2.34 2.81e-05 2.15
6 35 1.09e-06 1.72 1.06e-06 2.55 2.63e-06 2.35 5.93e-06 2.16
7 44 1.01e-06 0.09 2.49e-07 2.02 4.86e-07 2.35 1.26e-06 2.16

Table 2 The errors|||Uh −u|||60 and the calculated exponentb for different choices ofδ with
α =−0.7. We partitioned the time interval geometrically (see (21)) into L+1 subintervals.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N1/2 

E
rr

o
rs

 in
 L

∞
(0

,T
,L

2(Ω
))

δ=0.21
δ=0.24
δ=0.27
δ=0.3
δ=0.33

Fig. 1 The errors|||Uh−u|||60 plotted against
√

N for different choices ofδ , with α =−0.7.

Next, we test the performance of thehp-version time-stepping of the scheme
(29). We use the geometrically refined time-step and linearly increasing polyno-
mial degrees as introduced in Section 6 for the exact solution in (31) with α =
−0.7. We chooseT1 = 1 andµ = 1. We notice that the analytic regularity property
(20) holds forσ = α + 2 and hence, in accordance with Theorem 6, we expect
the error to converge exponentially (exp(−b

√
N ) with N = dim(W (ML,δ ,p))).

We calculate the coefficientb in the exponent using the formula:

log(error(NL−1)/error(NL))/(
√

NL −
√

NL−1), (32)

whereNL = dim(W (ML,δ ,p)) and error(NL) is the error inL∞(0,T) correspond-
ing to the geometric time mesh (21) (withT1 = T = 1) which consists ofL+ 1
subintervals. The numerical values ofb are approximately the same (as it should
be) for different values of geometric gradingsL. This is illustrated tabularly in Ta-
ble 2 where it can be seen thatδ = 0.24, thehp-version gives anL∞-error smaller
thane−07 with less than 44 degrees of freedom and 8 time subintervals only. This
clearly underlines the suitability ofhp-version approaches for the numerical ap-
proximation of the fractional diffusion problem (1). We show thehp-errors against√

N graphically in Figure 1. In the semi-logarithmic scale, thecurves are roughly
straight lines, which indicates exponential convergence rates.
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In Figure 2, for a fixedN = 44, we plot the errors against the parameterδ
for different values ofα. We observe that values ofδ in the neighborhood of the
interval[0.2,0.3] yields the best results.
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Fig. 2 The errors|||Uh−u|||60 plotted againstδ for different values ofα and fixedN = 44.
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