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Abstract

We discuss in this paper phase-field approximations of the Willmore functional and the associated
L2-flow. After recollecting known results on the approximation of the Willmore energy and its L1

relaxation, we derive the expression of the flows associated with various approximations, and we
show their behavior by formal arguments based on matched asymptotic expansions. We introduce
an accurate numerical scheme, whose local convergence can be proved, to describe with more details
the behavior of two flows, the classical and the flow associated with an approximation model due to
Mugnai. We propose a series of numerical simulations in 2D and 3D to illustrate their behavior in both
smooth and singular situations.

1 Introduction

Phase-field approximations of the Willmore functional have raised quite a lot of interest in recent years,
both from the theoretical and the numerical viewpoints. In particular, attention has been given to un-
derstanding the continuous and numerical approximations of both smooth and singular sets with finite
relaxed Willmore energy. Various approximation models have been proposed so far, whose properties
are known only partially. Our main motivation in this paper is a better understanding of these models,
and more precisely:

1. Exhibiting algebraic differences/similarities between the various approximations;

2. Deriving the L2-flows associated with these models;

3. Studying the asymptotic behavior of the flows, at least in smooth situations;

4. Simulating numerically these flows, and observing whether and how singularities may appear.

We focus on four models due, respectively, to De Giorgi, Bellettini, and Paolini [30, 14], Bellettini [8],
Mugnai [65], and Esedoglu, Rätz, and Röger [41]. The paper is organized as follows: Section 2 is an
introductory section where we collect known results on the diffuse approximation of the perimeter, the
diffuse approximation of the Willmore energy, and the critical issue of approximating singular sets with
finite relaxed Willmore energy. We also recall the definitions of the above mentioned approximations.
In Section 2.5, we make new observations on the differences between these different diffuse energies.
Section 3 is devoted to the derivation of the L2-flows associated with, respectively, Bellettini’s, Mug-
nai’s, and Esedoglu-Rätz-Röger’s models (actually a variant of the latter), and, for every flow, we use
the formal method of matched asymptotic expansions to derive the asymptotic velocity of the limit

1Université de Lyon, CNRS UMR 5208, INSA de Lyon, Institut Camille Jordan, 20, avenue Albert Einstein, F-69621 Villeur-
banne Cedex, France. Email: bretin@cmap.polytechnique.fr

2Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 boulevard du 11 novembre 1918, F-69622
Villeurbanne-Cedex, France. Email: masnou@math.univ-lyon1.fr

3Lab. Jean Kuntzmann, Université Joseph Fourier, Tour IRMA, BP 53, 51, rue des Mathématiques, F-38041 Grenoble Cedex 9,
France. Email: edouard.oudet@imag.fr

1

ar
X

iv
:1

30
5.

54
35

v1
  [

m
at

h.
O

C
] 

 2
3 

M
ay

 2
01

3



interface as the diffuse approximation becomes asymptotically sharp. We show in particular that, in
dimensions 2 and 3 for all flows, and in any dimension for some of them, they correspond asymptoti-
cally to the continuous Willmore flow as long as the interface is smooth. In Section 4, we focus on the
numerical simulation of De Giorgi-Bellettini-Paolini’s flow (which we shall refer to as the classical flow)
and Mugnai’s flow, and we propose a fixed-point algorithm whose local convergence can be proved.
We illustrate with various numerical examples the behavior of both flows in space dimensions 2 and 3,
both in smooth and singular situations. We show in particular that our scheme can capture with good
accuracy well-known singular configurations yielded by the classical flow, and that these configura-
tions evolve as if the parametric Willmore flow were used. We also illustrate with several simulations
that, in contrast, Mugnai’s flow prevents the creation of singularities.

2 What is known?

2.1 Genesis : the van der Waals-Cahn-Hilliard interface model and the diffuse
approximation of perimeter

In his 1893 paper on the thermodynamic theory of capillary (see an English translation, with interesting
comments, in [75]), van der Waals studied the free energy of a liquid-gas interface. Arguing that the
density of molecules at the interface can be modelled as a continuous function of space u, he used
thermodynamic and variational arguments to derive an expression of the free energy, in a small volume
V enclosing the interface, as

∫
V( f0(u) + λ|∇u|2)dx, where f0(u) denotes the energy of a homogeneous

phase at density u and λ is the capillarity coefficient. The same expression was derived by Cahn and
Hilliard in 1958 in their paper [23] on the interface energy, to a first approximation, of a binary alloy
with u denoting the mole fraction of one component. Cahn and Hilliard argued that both terms in
the energy have opposite contributions: if the transition layer’s size increases, then the gradient term
diminishes, but this is possible only by introducing more material of nonequilibrium composition, and
thus at the expense of increasing

∫
V f0(u)dx. Rescaling the energy, and changing the notations in the

obvious way, yields the general form

Fε(u) =
∫

V
(

ε

2
|∇u|2 + W(u)

ε
)dx (1)

In the original papers of van der Waals, Cahn and Hilliard, f0 was a smooth double-well function,
yet with a slope between the local minima. For simplicity, since it does not modify the mathematical
analysis, W will denote in the sequel a smooth double-well function with no slope (we will take in
general W(s) = 1

2 s2(1− s)2).
Two equations are usually associated with the van der Waals-Cahn-Hilliard energy, and will be used

in this paper: the Allen-Cahn and the Cahn-Hilliard equations. The evolution Allen-Cahn equation is
the L2-gradient descent associated with (1) and is written

ut =
W ′(u)

ε
− ε∆u.

We shall also refer to the stationary Allen-Cahn equation

W ′(u)− ε2∆u = 0.

The Cahn-Hillard evolution equation is derived in a different manner: from a mathematical viewpoint,
it is the H−1-gradient flow associated with the van der Waals-Cahn-Hilliard energy [21, 44]. The physi-
cal derivation of the equation is also instructive [22, 23]: since∇uFε(u) = −ε∆u + W ′(u)

ε quantifies how
the energy changes when molecules change position, it coincides with the chemical potential µ. Fick’s
first law states that the flux of particles is proportional to the gradient of µ, i.e. J = −α∇µ. Finally, the
conservation law ut + div J = 0 yields the Cahn-Hilliard evolution equation

ut = α∆(−ε∆u +
W ′(u)

ε
).
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To summarize, the Allen-Cahn equation describes the motion of phase boundaries driven by surface
tension, whereas the Cahn-Hilliard equation is a conservation law that characterizes the motion induced
by the chemical potential, which is the gradient of the surface tension.

Let us now recall the asymptotic behavior of Fε(u), as ε → 0+, that has been exhibited by Modica
and Mortola [62] following a conjecture of De Giorgi. We first fix some notations. Let Ω ⊂ Rn be
open, bounded and with Lipschitz boundary. W ∈ C3(R, R+) is a double-well potential with two equal
minima (in the sequel we will work, unless specified, with W(s) = 1

2 s2(1− s)2). Modica and Mortola
have shown that the Γ-limit in L1(Ω) of the family of functionals

Pε(u) =


∫

Ω

(
ε

2
|∇u|2 + W(u)

ε

)
dx if u ∈W1,2(Ω)

+∞ otherwise in L1(Ω)

is c0P(u) where

P(u) =
{
|Du|(Ω) if u ∈ BV(Ω, {0, 1})
+∞ otherwise in L1(Ω)

and c0 =
∫ 1

0

√
2W(s)ds. In particular, if E ⊂ Rn has finite perimeter in Ω and u := 1E ∈ BV(Ω, {0, 1}),

then one can build a sequence of functions (uε) ∈ W1,2(Ω) such that uε → u ∈ L1(Ω) and Pε(uε) →
c0|Du|(Ω) = c0P(E, Ω) with P(E, Ω) the perimeter of E in Ω.

To prove it, it is enough by density to restrict to smooth sets. Being E smooth, a good approximating
sequence is given by uε = q( d(x)

ε ) (actually a variant of this expression, but we shall skip the details for
the moment) where d is the signed distance function at ∂E, i.e. d(x) = −d(x, ∂E) if x ∈ E and d(x, ∂E)
else, and q(t) = 1−tanh(t)

2 is the unique decreasing minimizer of

∫
R
(
|ϕ′(t)|2

2
+ W(ϕ(t)))dt (2)

under the assumptions limt→−∞ ϕ(t) = 1, limt→∞ ϕ(t) = 0 and ϕ(0) = 1
2 . In other words, the approx-

imation of u = 1E is done by a suitable rescaling of the level lines of the distance function to ∂E. Such
rescaling is optimal, in the sense that it minimizes the transversal energy (2) and forces the concentration
as ε→ 0+.

Observe now that ∫
Ω

(
ε

2
|∇u|2 + W(u)

ε

)
dx ≥

∫
Ω

√
2|∇u|

√
W(u)

and the equality holds if ε
2 |∇u|2 = W(u)

ε . Therefore, by lower semicontinuity arguments, the quality of
an approximation depends on the so-called discrepancy measure

ξε = (
ε

2
|∇u|2 − W(u)

ε
)L2,

that will play an even more essential role for some diffuse approximations of the Willmore functional.

2.2 De Giorgi-Bellettini-Paolini’s approximation of the Willmore energy

Based on a conjecture of De Giorgi [30], several authors [14, 78, 11, 64, 74, 66] have investigated the
diffuse approximation of the Willmore functional, which is for a set E ⊂ RN with smooth boundary
in Ω:

W(E, Ω) =
1
2

∫
∂E∩Ω

|H∂E(x)|2 dHN−1

where H∂E(x) is the classical mean curvature vector at x ∈ ∂E. The approximation functionals are
defined as

Wε(u) =

 1
2ε

∫
Ω

(
ε∆u− W ′(u)

ε

)2

dx if u ∈ L1(Ω) ∩W2,2(Ω)

+∞ otherwise in L1(Ω)
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Introduced by Bellettini and Paolini in [14], they differ from the original De Giorgi’s conjecture in the
sense that the perimeter is not explicitly encoded in the expression. They have however the advantage
to be directly related to the Cahn-Hilliard equation, whose good properties [25] play a key role in the
approximation. In the sequel, we shall refer to these functionals as the classical approximation model.

The reason why ε∆u− W ′(u)
ε is related to the mean curvature can be simply understood at a formal

level: it suffices to observe that the mean curvature of a smooth surface is associated with the first
variation of its area, and that −ε∆u + W ′(u)

ε is the L2 gradient of ε
2 |∇u|2 + W(u)

ε that appears in the
approximation of the surface area.

The results on the asymptotic behavior of Wε as ε → 0+ have started with the proof by Bellettini
and Paolini [14] of a Γ− lim sup property, i.e. the Willmore energy of a smooth hypersurface E is the
limit ofWε(uε), up to a multiplicative constant, where uε is defined exactly as for the approximation of
the perimeter.

The Γ− lim inf property is much harder to prove. The contributions on this point [78, 11, 64, 74, 66]
culminated with the proof by Röger and Schätzle [74] in space dimensions N = 2, 3 and, independently,
by Nagase and Tonegawa [66] in dimension N = 2, that the result holds true for smooth sets. More
precisely, given u = 1E with E ∈ C2(Ω), and uε converging to u in L1 with a uniform control of Pε(uε),
then

c0W(E, Ω) ≤ lim inf
ε→0+

Wε(uε).

The proof is based on a careful control of the discrepancy measure ξε = ( ε
2 |∇u|2 − W(u)

ε )L2 that guar-
antees good concentration properties, i.e. the varifolds vε = |∇uε|L2 ⊗ δ∇u⊥ε

(whose mass is related
naturally to the variations of the approximating functions uε) concentrate to a limit integer varifold that
has generalized mean curvature in L2 and that is supported on a supset of ∂E. Then, in Röger and
Schätzle’s proof, a lower semicontinuity argument and the locality of integer varifolds’ mean curvature
yields the result. It holds in dimensions N = 2, 3 at most due to dimensional requirements for Sobolev
embeddings and for the control of singular terms used in the proof. The result in higher dimension is
still open.

What about unsmooth sets? Can the approximation results be extended to the relaxed Willmore
functional? The answer is negative in general, as discussed below.

2.3 The approximation does not hold in general for unsmooth limit sets

Define for any set E of finite perimeter in Ω its relaxed Willmore functional

W(E, Ω) = inf{lim inf W(Eh, Ω), ∂Eh ∈ Ω ∈ C2, Eh → E in L1(Ω)}.

The properties of this relaxation are fully known in dimension 2 [9, 10, 12, 59] and partially known in
higher dimension [3, 55, 60]. It is natural to ask whether the Γ-convergence ofWε to W can be extended
to W. Unfortunately, this is not the case as it follows from the following observations (for simplicity we
denote Γ− limWε(E) = Γ− limWε(1E)) that are illustrated in Figure 1:

1. there exists a bounded set E1 ⊂ R2 of finite perimeter such that

Γ− limWε(E1) < ∞ and W(E1) = +∞

2. there exists a bounded set E2 ⊂ R2 of finite perimeter such that

Γ− limWε(E2) < W(E2) < +∞

The reason why W(E1) = +∞ is a result by Bellettini, Dal Maso and Paolini [9] according to which
a non oriented tangent must exist everywhere on the boundary. Besides, W(E2) < +∞ because, still by
a result of Bellettini, Dal Maso and Paolini, the boundary is smooth out of evenly many cusps. Let us
now explain why, in both cases, Γ− limWε(E1,2) < +∞. The reason for this is the existence of smooth
solutions with singular nodal sets for the Allen-Cahn equation

∆u−W ′(u) = 0

4



Figure 1: Top: a set E1 such that Γ− limWε(E1) < ∞ and W(E1) = +∞. Bottom, from left to right, a set
E2, the limit configuration whose energy coincides with Γ− limWε(E2), a configuration whose energy
coincides with W(E2).

According to Dang, Fife and Peletier [29], there exists for such equation in R2 a unique saddle solution
u with values in (−1, 1). By saddle solution, it is meant that u(x, y) > 0 in quadrants I and III, and
u(x, y) < 0 in quadrants II and IV, in particular u(x, y) = 0 on the nodal set xy = 0. Considering
uε(x) = u(εx), we immediately get that

ε2∆uε −W ′(uε) = 0

thus the second term inWε(uε) vanishes, and the first term being obviously bounded, it follows from the
lower semicontinuity of the Γ-limit that Γ− limWε(E1,2) < +∞. Furthermore, the approximation of E2
can be made so as to create a cross in the limit, as in bottom-middle figure. The limit energy is therefore
lower than the energy obtained by pairwise connection without crossing of the cusps (bottom-right
figure). Thus, Γ− limWε(E2) < W(E2) < +∞.

For the reader not familiar with varifolds, it must be emphasized that this is not in contradiction
with the results described in the previous section, and more precisely with the fact that the discrepancy
measure guarantees the concentration of the diffuse varifolds at a limit integer varifold with general-
ized curvature in L2. Indeed, the boundary curves of E1 and of the bottom-middle set can be canonically
associated with a varifold having L2 generalized curvature because, by compensation between the tan-
gents associated with each branch meeting at the cross, there is no singularity.

We end this section with the question that follows naturally from the discussion above: is it possi-
ble to find a diffuse approximation that Γ-converges to W (up to a multiplicative constant) whenever
W(E) < +∞ ?

2.4 Diffuse approximations of the relaxed Willmore functional

2.4.1 Bellettini’s approximation in dimension N ≥ 2

In [8], G. Bellettini proposed a diffuse model for approximating the relaxations of geometric functionals
of the form

∫
∂E(1 + f (x,∇dE,∇2dE))dHN−1 where E is smooth and dE is the signed distance function

from ∂E. Such functionals include the Willmore energy since, on ∂E, H = (∆dE)∇dE = tr(∇2dE)∇dE
thus |H|2 = | tr(∇2dE)|2. Particularizing Bellettini’s approximation model to this case yields the smooth
functionals

W Be
ε (u) =


1
2

∫
Ω\{|∇u|=0}

(|div
∇u
|∇u| |

2)(
ε

2
|∇u|2 + W(u)

ε
)dx if u ∈ C∞(Ω)

+∞ otherwise in L1(Ω)
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Then, according to Bellettini [8, Thms 4.2,4.3], in any space dimension,

(Γ− lim
ε→0

Pε +W Be
ε )(E) = c0(P(E) + W(E)) for every E of finite perimeter such that W(E) < +∞

The constructive part of the proof is based, as usual, on using approximating functions of the form
uε = q( dE

ε ). As for the lower semicontinuity part, it is facilitated by the explicit appearance of the
mean curvature in the expression. Recall indeed that, u being smooth, for almost every t, Hu(x) :=
(div ∇u

|∇u| )
∇u
|∇u| (x) is the mean curvature at a point x of the isolevel {y, u(y) = t}. Let (uε) be a sequence

of smooth functions that approximate u = 1E in L1(RN) and has uniformly bounded total variation.
Then, by the coarea formula,

W Be
ε (uε) ≥

1
2

∫
{|∇uh |6=0}

|∇uε|
√

2W(uε)|Huε |2dx =
1
2

∫ 1

0

√
2W(t)

∫
{uε=t}∩{|∇uε |6=0}

|Huε |2dHN−1 dt.

The last inequality is important: it guarantees a control of the Willmore energy of the isolevel surfaces
of uε. This is a major difference with the classical approximation, for which such control does not hold.

Then, it suffices to observe that, by the Cavalieri formula and for a suitable subsequence, |{uε ≥
t}∆{u ≥ t}| → 0 for almost every t. In addition, {u ≥ t} = E for almost every t, and by the lower
semicontinuity of the relaxation F(E) ≤ lim infε→0 F(uε). Fatou’s Lemma finally gives

lim inf
ε→0

W Be
ε (uε) ≥ F(E)

∫ 1

0

√
2W(t)dt = c0F(E).

Bellettini’s approximation has however a drawback that will be explained with more details later: when
one computes the flow associated with the functional, the 4th order term is nonlinear, which raises
difficulties at the numerical level since it cannot be treated implicitly.

2.4.2 Mugnai’s approximation in dimension N = 2

In the regular case and in dimensions 2,3, it follows from the results of Bellettini and Mugnai [13] that,
up to a uniform control of the perimeter, the Γ-limit of the functionals defined by

WMu
ε (u) =

 1
2ε

∫
Ω

∣∣∣∣ε∇2u− W ′(u)
ε

νu ⊗ νu

∣∣∣∣2 dx if u ∈ C2(Ω)

+∞ otherwise in L1(Ω),

where νu = ∇u
|∇u| when |∇u| 6= 0, and νu =constant unit vector on {|∇u| = 0}, coincides with

c0

∫
Ω∩∂E

|A∂E(x)|2dx

for every smooth E, with A∂E(x) the second fundamental form of ∂E at x. Again, this approximation
allows a control of the mean curvature of the isolevel surfaces of an approximating sequence uε, thus
prevents from the creation of saddle solutions to the Allen-Cahn equation since, by [13, Lemma 5.3]
and [65, Lemma 5.2],

|∇u||div
∇u
|∇u| | ≤

1
ε
|ε∇2u− W ′(u)

ε
νu ⊗ νu|

In dimension 2, the second fundamental form along a curve coincides with the curvature. Therefore,
by identifying the limit varifold obtained when uε converges to u = 1E, and using the representation
results of [12], Mugnai was able to prove in [65] that, in dimension 2, the Γ-limit ofWMu

ε (with uniform
control of the perimeter) coincides with F(E) for any E with finite perimeter.
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2.4.3 Esedoglu-Rätz-Röger’s approximation in dimension N ≥ 2

The model of Esedoglu, Rätz, and Röger in [41] is a modification of the classical energy that aims to
preserve the “parallelity” of the level lines of the approximating functions, and avoids the formation of
saddle points, by constraining the level lines’ mean curvature using a term à la Bellettini. More precisely,
one can calculate that

ε∆u− W ′(u)
ε

= ε|∇u|div
∇u
|∇u| − ∇ξε ·

∇u
|∇u|2 .

with ξε =
(

ε
2 |∇u|2 − W(u)

ε

)
the discrepancy function (with a small abuse of notation, we use the same

notation for the discrepancy measure and its density).
Therefore, ε∆u− W ′(u)

ε approximates correctly the mean curvature (up to a multiplicative constant)
if the projection of ∇ξε on the orthogonal direction ∇u is small. Equivalently, it can be required that

ε∆u− W ′(u)
ε
− ε|∇u|div

∇u
|∇u|

be small, therefore a natural profile-forcing approximation model is (with α ≥ 0 a parameter):

W EsRäRö
ε (u) =


1
2ε

∫
Ω

(
ε∆u− W ′(u)

ε

)2

dx+

1
2ε1+α

∫
Ω
(ε∆u− W ′(u)

ε
− ε|∇u|div

∇u
|∇u| )

2dx if u ∈ C∞(Ω)

+∞ otherwise in L1(Ω)

To simplify the theoretical analysis, the model proposed by Esedoglu, Rätz, and Röger is slightly dif-
ferent. It uses the fact that, if a phase field uε resembles q( d

ε ), one has ε|∇u| ∼
√

2W(u), which leads
Esedolu, Rätz, and Röger to penalize

ε∆u− W ′(u)
ε
− (ε|∇u|(2W(u))

1
2 )

1
2 div

∇u
|∇u| .

Finally, they propose the following approximating functional

Ŵ EsRäRö
ε (u) =


1
2ε

∫
Ω

(
ε∆u− W ′(u)

ε

)2

dx+

1
2ε1+α

∫
Ω
(ε∆u− W ′(u)

ε
− (ε|∇u|

√
2W(u))

1
2 div

∇u
|∇u| )

2dx if u ∈ C∞(Ω)

+∞ otherwise in L1(Ω)

This energy controls the mean curvature of the level lines of an approximating function since (see [41])

Ŵ EsRäRö
ε (u) ≥ ε−α

2 + 2ε−α

∫ 1

0

√
2W(t)

∫
{u=t}∩{∇u 6=0}

(div
∇u
|∇u| )

2dHN−1 dt,

which, once again, excludes Allen-Cahn solutions. With the control above, the authors prove with the
same argument as Bellettini [8] that, for any α > 0,

Γ− lim
ε→0

Pε + Ŵ EsRäRö
ε = c0

(
P + W

)
in L1(Ω).

With α = 0 the Γ-convergence result does not hold anymore, but instead, with a uniform control of the
perimeter,

Γ− lim
ε→0
Ŵ EsRäRö

ε ≥ c0

2
W.

which still guarantees a control of W.
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For the sake of numerical simplicity, another version is tackled numerically in [41], based again on
the approximation ε|∇u| ∼

√
2W(u):

̂̂W EsRäRö
ε (u) =


1
2ε

∫
Ω

(
ε∆u− W ′(u)

ε

)2

dx+

1
2ε1+α

∫
Ω
(ε∆u− W ′(u)

ε
−
√

2W(u)div
∇u
|∇u| )

2dx if u ∈ C∞(Ω)

+∞ otherwise in L1(Ω)

We will focus in the sequel onW EsRäRö
ε , whose flow will be derived, as well as its asymptotic behavior

as ε goes to 0.

2.5 Few remarks on the connections between the different approximations

2.5.1 From Mugnai’s model to Esedoglu-Rätz-Röger’s

We saw previously that the phase-field approximations W Be
ε and W EsRäRö

ε Γ-converge, up to a uniform
control of perimeter, to c0W in any dimension, and the same holds true in dimension 2 forWMu

ε . We will
now emphasize the connections between these approximations. More precisely, we will see that Mug-
nai’s approximationWMu

ε can be viewed as the sum of a geometric-type approximation of the Willmore
energy plus a profile penalization term of the same kind as in Esedoglu, Rätz, Röger’s model (or, more
precisely, the initial modelW EsRäRö

ε ). Indeed we have, denoting ν = ∇u
|∇u| when |∇u| 6= 0, and ν =constant

unit vector on {|∇u| = 0},

WMu
ε (u) =

1
2ε

∫
Ω

∣∣∣∣ε∇2u− W ′(u)
ε

ν⊗ ν

∣∣∣∣2 dx

=
1
2ε

∫
Ω\{|∇u|=0}

(
ε∇2u : ν⊗ ν− W ′(u)

ε

)2

dx +
∫

Ω

ε

2

(
|∇2u|2 − (∇2u : ν⊗ ν)2

)
dx.

where, being A, B two matrices, we denote as A : B = ∑i,j AijBij the usual matrix scalar product. Using
A : e1 ⊗ e2 =< Ae2, e1 >, we observe that ∇2u : ν⊗ ν = ∆u− |∇u|div ∇u

|∇u| , therefore the first term of
WMu

ε coincides with the second term ofW EsRäRö
ε for α = 0. The second term ofWMu

ε can be splitted as∫
Ω

ε

2

(
|∇2u|2 − (∇2u : ν⊗ ν)2

)
dx =

1
2

∫
Ω

∣∣∣∣∇( ∇u
|∇u|

)∣∣∣∣2 (ε|∇u|2
)

dx,

+
∫

Ω

ε

2

(
|∇2u ν|2 − |∇2u : ν⊗ ν|2

)
dx.

Note that ∫
Ω

ε

(
|∇2u ν|2 −

(
∇2u : ν⊗ ν

)2
)

dx ≥ 0,

is positive and vanishes for all functions u of the general form u = η (d(x)) with η smooth. It is
therefore a soft profile-penalization term that forces the approximating function to be a profile, yet not

necessarily the optimal profile q. As for the term
∫

Ω

∣∣∣∣∇( ∇u
|∇u|

)∣∣∣∣2 (ε|∇u|2
)

dx, it is purely geometric

and constrains the approximating function’s level lines mean curvature. It would therefore be worth
addressing the Γ-convergence of the new functional

WNew
ε (u) =

1
2ε

∫
Ω
(ε∆u− 1

ε
W ′(u))2dx +

1
2εα

∫
ε

(
|∇2u ν|2 −

(
∇u2 : ν⊗ ν

)2
)

dx.

The reason why such approximation would be interesting is that, if it indeeds Γ-converges, the associ-
ated flow would not be influenced by the asymptotic behavior of the penalization term, since it vanishes
for approximating functions that are profiles. More precisely, the Willmore flow could be captured at
low order of ε, and not at the numerically challenging order ε3 as for the Esedoglu-Rätz-Röger model
with α = 0 or 1.
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2.5.2 Towards a modification of Mugnai’s energy that forces the Γ-convergence in dimension ≥ 3

Obviously, we cannot expect that Mugnai’s energy Γ-converges to the Willmore energy in dimension
greater than 2, since for E smooth

|A∂E|2 = |H∂E|2 −∑
i 6=j

κiκj

where κ1, κ2 . . . κN−1 are the principal curvatures. This identity suggests however that a suitable correc-
tion could force the Γ-convergence, i.e. by subtracting toWMu

ε an approximation of

J(E, Ω) =
∫

∂E∩Ω
∑
i 6=j

κiκj dHN−1.

Recalling our assumptions that d < 0 in E, and as an easy consequence of Lemma 14.17 in [46] (see
also [1]), we obtain in a small tubular neighborhood of ∂E:

div (∆d(x)∇d(x)) = (∆d(x))2 +∇∆d(x) · ∇d(x)

=

(
∑

i

κi(π(x))
1 + d(x)κi(π(x))

)2

−∑
i

κi(π(x))2

(1 + d(x)κi(π(x)))2

' ∑
i 6=j

κiκj on ∂E,

where π(x) is the projection of x on Γ. Thus, a possible approximation of c0 J(E, Ω) is

J1
ε (u) = −

2
ε

∫
Ω

(
ε∆u− 1

ε
W ′(u)

)
W ′(u)

ε
dx.

Indeed, with u = q(d/ε) and with a suitable truncation of q so that q′(d/ε) vanishes on ∂Ω (which is
always possible if E ⊂⊂ Ω), integrating by parts yields:

J1
ε (u) = − 2

ε2

∫
Ω

∆dq′
(

d
ε

)
q′′
(

d
ε

)
dx = −1

ε

∫
Ω

∆d∇
(

q′
(

d
ε

)2
)

.∇d dx

=
1
ε

∫
Ω

div (∆d∇d) q′
(

d
ε

)2
dx ' c0

∫
∂E∩Ω

∑
i 6=j

κiκj dHN−1.

Remark also that since a profile function u = q(d/ε) satisfies 1
ε W ′(u) = ε∇2u : N(u) where N(u) =

ν⊗ ν = ∇u
|∇u| ⊗

∇u
|∇u| , the following energies

J2
ε (u) = − 2

ε2

∫
Ω

(
ε∆u− ε∇2u : N(u)

)
W ′(u)dx

J3
ε (u) = −2

∫
Ω

(
ε∆u− 1

ε W ′(u)
)
∇2u : N(u)dx

J4
ε (u) = −2

∫
Ω

(
ε∆u− ε∇2u : N(u)

)
∇2u : N(u)dx

approximate also c0 J(E, Ω). In particular, as a modified version of Mugnai’s energy, we can consider

W̃Mu
ε =WMu

ε +
1
2
(J1

ε (u) + J3
ε (u)− J4

ε (u))

We have indeed

J1
ε (u) + J3

ε (u)− J2
ε (u)− J4

ε (u) =
2
ε

∫
Ω

(
ε∇2u : ν⊗ ν− W ′(u)

ε

)2

dx.

and
WMu

ε =Wε(u)−
1
2

J2
ε (u)

9



since |∇2u|2 = (∆u)2, N(u) : N(u) = 1,

|ε∇2u− ε−1W ′(u)N(u)|2 = ε2|∇2u|2 − 2W ′(u)∇2u : N(u) + ε−2W ′(u)2N(u) : N(u)

and
(ε∆u− ε−1W ′(u))2 = ε2(∆u)2 − 2W ′(u)∆u + ε−2(W ′(u))2.

Therefore

W̃Mu
ε =Wε(u) +

1
ε

∫
Ω

(
ε∇2u : ν⊗ ν− W ′(u)

ε

)2

dx,

which resembles Esedoglu-Rätz-Röger’s approximation with α = 0 since, in both approximations, the
second term forces u to be a “profile” function, and vanishes at the limit. In view of the approximation
result of Esedoglu, Rätz, and Röger, it is reasonable to expect that W̃Mu

ε Γ-converges to the relaxed
Willmore energy in any dimension.

3 The Willmore flow and its approximation by the evolution of a
diffuse interface

This section is devoted to the approximation of the Willmore flow by L2-gradient flows associated with
the approximating energies introduced above. In particular, we shall derive explicitly each approximat-
ing gradient flow and, using the matched asymptotic expansion method [20, 72, 15, 56], we will show
that, at least formally and for smooth interfaces, there is convergence to the Willmore flow, at least in
dimensions 2 and 3 for all flows, and in any dimension for some of them. The general question “if a
sequence of functionals Γ-converges to a limit functional, is there also convergence of the associated flows?” is
rather natural, since Γ-convergence implies convergence of minimizers, up to the extraction of a subse-
quence. However, the question is difficult and remains open for the Willmore functional. Our results
below give formal indications that the convergence holds. Serfaty discussed in [77] a general theorem
on the Γ-convergence of gradient flows, provided that the generalized gradient of the associated func-
tional can be controled (see in particular the discussion on the Cahn-Hilliard flow). Such control is so
far out or reach for the Willmore functional.

3.1 On the Willmore flow

Let E(t), 0 ≤ t ≤ T, denote the evolution by the Willmore flow of smooth domains, i.e. the outer normal
velocity V(t) is given at x ∈ ∂E(t) by

V = ∆SH − 1
2

H3 + H‖A‖2,

where ∆S is the Laplace-Beltrami operator on ∂E(t), H the scalar mean curvature, A the second funda-
mental form, and ‖A‖2 is the sum of the squared coefficients of A.

In the plane, the Willmore flow coincides with the flow of curves associated with the Bernoulli-Euler
elastica energy, i.e., denoting by κ the scalar curvature

V = ∆Sκ +
1
2

κ3.

The long time existence of a single curve evolving by this flow is established in [39], and any curve with
fixed length converges to an elastica.

In higher dimension, Kuwert and Schätzle give in [53, 52] a long time existence proof of the Willmore
flow and the convergence to a round sphere for sufficiently small initial energy. Singularities may
appear for larger initial energies, as indicated by numerical simulations [61].
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3.2 Approximating the Willmore flow with the classical De Giorgi-Bellettini-Paolini
approach

The L2-gradient flow of the approximating energy

Wε(u) =
1
2ε

∫
Ω

(
ε∆u− W ′(u)

ε

)2

dx,

is equivalent to the evolution equation

∂tu = −∆
(

∆u− 1
ε2 W ′(u)

)
+

1
ε2 W ′′(u)

(
∆u− 1

ε2 W ′(u)
)

,

that can be rewritten as the phase field system{
ε2∂tu = ∆µ− 1

ε2 W ′′(u)µ
µ = W ′(u)− ε2∆u.

(3)

Existence and well-posedness The well-posedness of the phase field model (3) at fixed parameter ε
has been studied in [27] with a volume constraint fixing the average of u, and in [28] with both volume
and area constraints.

Convergence to the Willmore flow Loreti and March showed in [56], by using the formal method of
matched asymptotic expansions, that if ∂E is smooth and evolves by Willmore flow, it can be approxi-
mated by level lines of the solution uε of the phase field system (3) as ε goes to 0. In addition, uε and µε

are expected to take the form uε(x, t) = q
(

d(x,E(t))
ε

)
+ ε2

(
‖A‖2 − 1

2 H2
)

η1

(
d(x,E(t))

ε

)
+ O(ε3)

µε(x, t) = −εHq′
(

d(x,E(t))
ε

)
+ ε2H2η2

(
d(x,E(t))

ε

)
+ O(ε3)

,

where η1 and η2 are two functions depending only of the double well potential W, and defined as the
solutions of {

η′′1 (s)−W ′′(q(s))η1(s) = sq′(s), with lims→±∞ η1(s) = 0,
η′′2 (s)−W ′′(q(s))η2(s) = q′′(s), with lims→±∞ η2(s) = 0.

An important point is that the second-order term in the asymptotic expansion of uε has an influ-
ence on the limit law as ε goes to zero [56]. This is a major difference with the Allen-Cahn equation,
for which the velocity law follows from the expansion at zero and first orders only [15]. As a conse-
quence, addressing numerically the Willmore flow is more delicate and requires using a high accuracy
approximation in space to guarantee a sufficiently good approximation of the expansion of uε.

3.3 Approximating the Willmore flow with Bellettini’s model

We focus now on the approximation model

W Be
ε (u) =

1
2

∫
Ω

div
(
∇u
|∇u|

)2 ( ε

2
|∇u|2 + 1

ε
W(u)

)
dx

We will prove in the next section that its L2-gradient flow is equivalent to the evolution equation

∂tu =
K(u)2

2

(
∆u− 1

ε2 W ′(u)
)
+

1
2
∇[K(u)2].∇u− 1

ε
div

(
Pu∇ [K(u)hε(u)]

|∇u|

)
, (4)

where Pu = Id − ∇u
|∇u| ⊗

∇u
|∇u| = Id −N(u), hε(u) =

(
ε
2 |∇u|2 + 1

ε W(u)
)

and K(u) = div
(
∇u
|∇u|

)
.
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Existence and well-posedness of this equation are open questions. Numerical simulations performed
with this flow are shown in [41]. Note that the fourth-order nonlinear term makes numerics harder.

Using the formal method of matched asymptotic expansions, we show below that the phase field
model (4) converges in any dimension, at least formally, to the Willmore flow as ε goes to 0. More
precisely, we observe an asymptotic expansion of uε of the form

uε(x, t) = q
(

d(x, E(t))
ε

)
+ O(ε2),

where the second-order term does not have any influence on the limit velocity law as ε goes to zero, in
contrast with the classical approximation of the previous section.

3.3.1 Derivation of the L2-gradient flow ofWBe
ε (u)

Proposition 3.1 The L2-gradient flow of Bellettini’s model is equivalent to

∂tu =
K(u)2

2

(
∆u− 1

ε2 W ′(u)
)
+

1
2
∇[K(u)2].∇u− 1

ε
div

(
Pu∇ [K(u)hε(u)]

|∇u|

)
,

where Pu = Id − ∇u
|∇u| ⊗

∇u
|∇u| , hε(u) =

(
ε
2 |∇u|2 + 1

ε W(u)
)

and K(u) = div
(
∇u
|∇u|

)
.

Proof: The differential of K at u satisfies

K′(u)(w) = lim
t→0

K(u + tw)− K(u)
t

= div
(
∇w
|∇u| −

∇u.∇w∇u
|∇u|3

)
,

therefore

(W Be
ε (u))

′(w) =
∫

Ω
[K(u)hε(u)]div

(
∇w
|∇u| −

∇u.∇w∇u
|∇u|3

)
dx

+
1
2

∫
Ω

K(u)2
(

ε∇u∇w +
1
ε

W ′(u)w
)

dx

It follows that the L2-gradient ofW Be
ε reads as

∇W Be
ε (u) = div

(
∇ [K(u)hε(u)]
|∇u|

)
− div

(
∇ [K(u)hε(u)]
|∇u| · ∇u

|∇u|
∇u
|∇u|

)
−1

2

(
ε div

(
K(u)2∇u

)
− 1

ε
K(u)2W ′(u)

)
.

whence the L2-gradient flow ofW Be
ε (u) follows.

3.3.2 Asymptotic analysis

In this section, we compute the formal expansions of the solution uε(x, t) to the phase field model (4).

Preliminaries We assume without loss of generality that the isolevel set Γ(t) = {uε =
1
2} is a smooth

n − 1 dimensional boundary Γ(t) = ∂E(t) = ∂{x ∈ Rd; uε(x, t) ≥ 1/2}. We follow the method of
matched asymptotic expansions proposed in [20, 72, 15, 56]. We assume that the so-called outer expan-
sion of uε, i.e. the expansion far from the front Γ, is of the form

uε(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3)
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In a small neighborhood of Γ, we define the stretched normal distance to the front,

z =
d(x, t)

ε
,

were d(x, t) denotes the signed distance to E(t) such that d(x, t) < 0 in E(t). We then focus on inner
expansions of uε(x, t), i.e. expansions close to the front, of the form

uε(x, t) = U(z, x, t) = U0(z, x, t) + εU1(z, x, t) + ε2U2(z, x, t) + O(ε3)

Let us define a unit normal m to Γ and the normal velocity V to the front as

V = −∂td(x, t), m = ∇d(x, t), x ∈ Γ,

where ∇ refers to spatial derivation only (the same holds for further derivation operators used in the
sequel). Following [72, 56] we assume that U(z, x, t) does not change when x varies normal to Γ with z
held fixed, or equivalently ∇xU.m = 0. This amounts to requiring that the blow-up with respect to the
parameter ε is coherent with the flow.

Claim 3.2 In a suitable regime provided by the method of matched asymptotic expansions, the normal velocity of
the 1

2 -front Γ(t) = ∂E(t) associated with a solution uε(x, t) to Bellettini’s phase field model (4) is the Willmore
velocity

V = ∆Γ H + ‖A‖2H − H3

2
,

and

uε(x, t) = q(
d(x, E(t))

ε
) + O(ε2)

Following [72, 56], it is easily seen that
∇u = ∇xU + ε−1m∂zU
∆u = ∆xU + ε−1∆d∂zU + ε−2∂2

zzU
∂tu = ∂tU − ε−1V∂zU.

Recall also that in a sufficiently small neighborhood of Γ, according to Lemma 14.17 in [46] (see also [1]),
we have

∆d(x, t) =
n−1

∑
i=1

κi(π(x))
1 + κi(π(x))d(x, t)

=
n−1

∑
i=1

κi(π(x))
1 + κi(π(x))εz

where π(x) is the projection of x on Γ, and κi are the principal curvatures on Γ.
In particular this implies that

∆d(x, t) = H − εz‖A‖2 + O(ε2),

where H and ‖A‖2 denote, respectively, the mean curvature and the squared 2-norm of the second
fundamental form on Γ at π(x).

Outer solution: We now compute the solution uε in the outer region. By equation (4), u0 satisfies
W ′(u0) = 0 and

u0(x, t) =

{
1 if x ∈ E(t)
0 otherwise

We also see that u1 = 0 is a possible solution at the first order.
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Matching condition : The inner and outer expansions are related by the following matching condition

u0(x, t) + εu1(x, t) + · · · = U0(z, x, t) + εU1(z, x, t) + · · ·

with x near the front Γ and εz between O(ε) and ◦(1). With the notation

u±i (x, t) = lim
s→0±

ui(x + sm, t),

one has that {
u±0 (x, t) = limz→±∞ U0(z, x, t)
limz→±∞ u±1 (x, t) + zm · ∇u±0 (x, t) = limz→±∞ U1(z, x, t)

In particular, for the phase field model (4), it follows that

lim
z→+∞

U0(z, x, t) = 0, lim
z→−∞

U0(z, x, t) = 1 and lim
z→±∞

U1(z, x, t) = 0,

Inner solution: Note that
∇u
|∇u| =

m− ε∇xU/∂zU√
1 + ε2|∇xU|2/(∂zU)2

,

therefore, using the orthogonality condition ∇xU.m = 0:

K(u) = ∆d + O(ε)

hε(u) = 1
ε

[
1
2 (∂zU)2 + W(U)

]
+ O(1)

1
2∇
[
K(u)2] .∇u = 1

ε (∆d∇(∆d).∇d) ∂zU + O(1)
1
ε div

(
Pu∇[K(u)hε(u)]

|∇u|

)
= 1

ε div (∇(∆d)−∇(∆d) · ∇d∇d)
(

1
2 (∂zU)2+W(U)

|∂zU|

)
+ O(1)

Recall also that in a sufficiently small neighborhood of Γ,

∆d(x, t) =
n−1

∑
i=1

κi(π(x))
1 + κi(π(x))εz

,

thus {
(∆d∇(∆d).∇d) = −‖A‖2H + O(ε)

div (∇(∆d)−∇(∆d) · ∇d∇d) = ∆Γ H + O(ε).

Then, the first order in ε−2 of Equation (4) reads

H2

2

(
∂2

zzU0 −W ′(U0)
)
= 0.

Adding the boundary condition obtained from the matching condition, and using U0(0, x, t) = 1/2
leads to

U0 = q(z).

Moreover, the second order in ε−1 of (4) shows that

−V∂zU0 =
H2

2

(
∂2

zzU1 −W ′′(U0)U1

)
+

H3

2
∂zU0 − ‖A‖2H∂zU0 − ∆Γ H

(
1
2 (∂zU0)

2 + W(U0)

|∂zU0|

)
.

As U0(z, x, t) = q(z) and q′ = −
√

2W(q), we obtain

−Vq′ =
H2

2

(
∂2

zzU1 −W ′′(q)U1

)
+

(
H3

2
− ‖A‖2H − ∆ΓH

)
q′.
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Then, multiplying by q′ and integrating over R, it follows that

V = ∆Γ H + ‖A‖2H − H3

2
,

thus the sharp interface limit ∂E(t) as ε goes to zero evolves, at least formally, as the Willmore flow. In
addition, we have U1 = 0, therefore

uε(x, t) = q(
d(x, E(t))

ε
) + O(ε2)

and the second-order term does not appear in the expression of V. This explains the numerical stability,
despite the use of an explicit Euler scheme, observed by Esedoglu, Rätz and Röger in [41].

3.4 Approximating the Willmore flow with Mugnai’s model

The aim of this section is the derivation and the study of the L2-gradient flow associated with Mugnai’s
energy

WMu
ε (u) =

1
2ε

∫
Ω

∣∣∣∣εD2u− 1
ε

W ′(u)
∇u
|∇u| ⊗

∇u
|∇u|

∣∣∣∣2 dx.

We will show that the flow is equivalent to the phase field system{
ε2∂tu = ∆µ− 1

ε2 W ′′(u)µ + W ′(u)B(u)
µ = 1

ε2 W ′(u)− ∆u,
(5)

where

B(u) = div
(

div
(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)
.

Note that this system coincides with the classical one, up to the addition of a penalty term L(u) =
W ′(u)B(u).

The well-posedness of the phase field model (5) at fixed parameter ε is open, and requires presum-
ably a regularization of the term B(u) as done numerically in the next section.

Claim 3.3 In a suitable regime provided by the method of matched asymptotic expansions, the normal velocity of
the 1

2 -front Γ(t) = ∂E(t) associated with a solution (uε, µε) to Mugnai’s phase field model (5) is

V = ∆Γ H + ∑
i

κ3
i −

1
2
‖A‖2H.

and  uε(x, t) = q
(

d(x,E(t))
ε

)
+ ε2 ‖A‖2

2 η1

(
d(x,E(t)

ε

)
+ O(ε3)

µε(x, t) = −εHq′
(

d(x,E(t)
ε

)
+ ‖A‖2ε2η2

(
d(x,E(t)

ε

)
O(ε3),

where η1 and η2 are profile functions.

Remark 3.4 The front velocity associated with Mugnai’s phase field model coincides, up to a multi-
plicative constant, with the velocity of the L2-flow of the squared second fundamental form energy∫

Γ ‖A‖2dHN−1. Indeed, according to [2, Section 5.3], the latter is

Ṽ = 2∆Γ H + 2H‖A‖2 − H3 + 6 ∑
i<j<`

κiκjκ`

Observing that H‖A‖2 = ∑i κ3
i + ∑i 6=j κiκ

2
j and

H3 = ∑ κ3
i + 3 ∑

i 6=j
κiκ

2
j + 6 ∑

i<j<`

κiκjκ`,
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one has
H‖A‖2 − 1

2
H3 + 3 ∑

i<j<`

κiκjκ` =
1
2
(∑

i
κ3

i −∑
i 6=j

κiκ
2
j ).

Since

∑
i

κ3
i −

1
2

H‖A‖2 =
1
2
(∑ κ3

i −∑
i 6=j

κiκ
2
j )

we finally get that Ṽ = 2V.

Remark 3.5 It is easily seen that, in dimensions 2 and 3, Mugnai’s flow coincides with the Willmore
flow. It is obvious in dimension 2, whereas in dimension 3 one has

∑ κ3
i −

1
2

H‖A‖2 = κ3
1 + κ3

2 −
1
2
(k1 + k2)(k2

1 + k2
2) = ‖A‖2H − H3

2
.

Another explanation involves Gauss-Bonnet Theorem. In Mugnai’s model, the energy associated with
the squared 2-norm of the second fundamental form prevents from topological changes. By Gauss-
Bonnet Theorem, this energy coincides with the Willmore energy up to a topological additive constant,
and thus both associated flows coincide.

3.4.1 Derivation of the gradient flow

Proposition 3.6 The L2-gradient flow of Mugnai’s model is equivalent to{
ε2∂tu = ∆µ− 1

ε2 W ′′(u)µ + W ′(u)B(u)
µ = 1

ε2 W ′(u)− ∆u,

where

B(u) = div
(

div
(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)
.

Proof: Let
V(u) = εD2u− 1

ε
W ′(u)

∇u
|∇u| ⊗

∇u
|∇u| .

The differential of V in the direction w is

V′(u)(w) = lim
t→0

(V(u + tw)−V(u))/t

= εD2w− 1
ε

W ′′(u)w
∇u
|∇u| ⊗

∇u
|∇u| −

1
ε

W ′(u)
(
∇u⊗∇w +∇w⊗∇u

|∇u|2

)
+

2
ε

W ′(u)
(
∇u⊗∇u
|∇u|4 < ∇u,∇w >

)
Denoting N(u) = ∇u⊗∇u

|∇u|2 , we have

ε∇WMu
ε (u) = εD2 : V(u)− 1

ε
W ′′(u)N(u) : V(u)

+
2
ε

div
(

W ′(u)
V(u)∇u
|∇u|2

)
− 2

ε
div

(
W ′(u) (V(u) : N(u))

∇u
|∇u|2

)
,

where D2 : V(u) = ∇⊗∇ : V(u) = ∑ij ∂2
ijVij(u) = div(div V(u)) with the same abuse of notation as

when one writes div w = ∇ · w. The gradient ofWMu
ε can be also expressed as

ε∇WMu
ε (u) = εD2 : V(u)− 1

ε
W ′′(u)N(u) : V(u)+

2
ε

div
(

W ′(u)
(

V(u)∇u
|∇u|2 − < V(u)∇u/|∇u|2,∇u/|∇u| > ∇u

|∇u|

))
We now give an explicit expression of each previous term.
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Evaluation of εD2 : V(u)
For any operator Λ and any real-valued function u 7→ ρ(u), we have

D2 : (ρ(u)Λ(u)) = Λ(u) : D2ρ(u) + 2 < ∇ρ(u), div(Λ(u)) > +ρ(u)D2 : Λ(u).

In particular, applying to Λ(u) = V(u)

εD2 : V(u) = ε2D2 : D2u− D2 :
(
W ′(u)N(u)

)
= ε2∆2u−

(
W ′(u)D2 : N(u) + 2W ′′(u) < ∇u, div(N(u)) > +(D2(W ′(u))) : N(u)

)
.

The last term reads as follows

D2(W ′(u)) : N(u) =
(

W(3)(u)∇u⊗∇u + W ′′(u)∇2u
)

: N(u)

= W(3)(u)|∇u|2 + W ′′(u)
< D2u∇u,∇u >

|∇u|2

= ∆
(
W ′(u)

)
−W ′′(u)

(
∆u− < D2u∇u,∇u >

|∇u|2

)
,

where we used
∆W ′(u) = W ′′(u)∆u + W(3)(u)|∇u|2.

Recalling that for all vector fields w1, w2,

div(w1 ⊗ w2) = div(w2)w1 + (∇w1)w2,

and applying to the estimation of div(N(u)), one gets that

div(N(u)) = div
(
∇u
|∇u|

)
∇u
|∇u| +∇

(
∇u
|∇u|

)
∇u
|∇u| .

Note that [
∇
(
∇u
|∇u|

)
∇u
|∇u|

]
· ∇u =

[
D2u∇u
|∇u|2 − <

D2u∇u
|∇u|2 ,

∇u
|∇u| >

∇u
|∇u|

]
· ∇u = 0.

Therefore

2W ′′(u) < ∇u, div(N(u)) >= 2W ′′(u)|∇u|div
(
∇u
|∇u|

)
= 2W ′′(u)

(
∆u− < D2u∇u,∇u >

|∇u|2

)

Lastly,

W ′(u)D2 : N(u) = W ′(u)div (div (N(u)))

= W ′(u)div
(

div
(
∇u
|∇u|

)
∇u
|∇u| +∇

(
∇u
|∇u|

)
∇u
|∇u|

)
= W ′(u)

[
div

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
+ div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)]
therefore

εD2 : V(u) = ε2∆2u− ∆W ′(u)−W ′′(u)
(

∆u− < D2u∇u,∇u >

|∇u|2

)
− W ′(u)

[
div

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
+ div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)]
.
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Sum of the first two terms of ε∇WMu
ε (u)

Let I1 = εD2 : V(u)− 1
ε

W ′′(u)N(u) : V(u). Remark that

1
ε

W ′′(u)N(u) : V(u) =
1
ε

W ′′(u)N(u) :
(

εD2u− 1
ε

W ′(u)N(u)
)

= W ′′(u)
(
< D2u∇u,∇u >

|∇u|2 − 1
ε2 W ′(u)

)
= W ′′(u)

(
∆u− 1

ε2 W ′′(u)
)
−W ′′(u)

(
∆u− < ∇2u∇u,∇u >

|∇u|2

)
Combining with the previous estimation of εD2 : V(u), we obtain

I1 = εD2 : V(u)− 1
ε

W ′′(u)N(u) : V(u)

= ε∆
[

ε∆u− 1
ε

W ′(u)
]
− 1

ε
W ′′(u)

[
ε∆u− 1

ε
W ′(u)

]
−W ′(u)

[
div

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
+ div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)]
.

Estimation of the divergence term

Let I2 =
2
ε

div W ′(u)
(

V(u)∇u
|∇u|2 −W ′(u)(V(u) : N)

∇u
|∇u|2

)
. On the one hand, with

V(u)
∇u
|∇u|2 = εD2u

∇u
|∇u|2 −

1
ε

W ′(u)
∇u
|∇u|2 ,

we see that

div
(

W ′(u)V(u)
∇u
|∇u|2

)
= W ′(u)

[
ε div

(
D2u∇u
|∇u|2

)
− 1

ε
div

(
W ′(u)

∇u
|∇u|2

)]
+ W ′′(u)

(
ε
< D2u∇u,∇u >

|∇u|2 − 1
ε

W ′(u)
)

On the other hand,

W ′(u)(V(u) : N)
∇u
|∇u|2 = W ′(u)

(
ε
< D2u∇u,∇u >

|∇u|2
∇u
|∇u|2 −

1
ε

W ′(u)
∇u
|∇u|2

)
and

div
(

W ′(u)(V(u) : N)
∇u
|∇u|2

)
= W ′′(u)

[
ε
< D2u∇u,∇u >

|∇u|2 − 1
ε

W ′(u)
]

+ W ′(u)div
[

ε
< D2u∇u,∇u >

|∇u|2
∇u
|∇u|2 −

1
ε

W ′(u)
∇u
|∇u|2

]
.

Finally,

I2 = 2W ′(u)div
(

D2u∇u
|∇u|2 − <

D2u∇u
|∇u| ,

∇u
|∇u| >

∇u
|∇u|2

)
= 2W ′(u) div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)

18



Evaluation of the energy gradient

ε∇WMu
ε (u) = I1 + I2

= ε∆µ− 1
ε

W ′′(u)µ−W ′(u)
[

div
(

div
(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)]
,

where
µ = ε∆u− 1

ε
W ′(u).

whence the L2-gradient flow associated with Mugnai’s model follows.

3.4.2 Formal asymptotic expansions

We apply in this section the formal method of matched asymptotic expansions to the solution (uε, µε)
of (5) {

ε2∂tu = ∆µ− 1
ε2 W ′′(u)µ + W ′(u)B(u)

µ = W ′(u)− ε2∆u.
.

Again, we assume without loss of generality that the isolevel set Γ(t) = {uε = 1
2} is a smooth n − 1

dimensional boundary Γ(t) = ∂E(t) = ∂{x ∈ Rd; uε(x, t) ≥ 1/2}. In addition, we assume that there
exist outer expansions of uε and µε far from the front Γ of the form{

uε(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3)

µε(x, t) = µ0(x, t) + εµ1(x, t) + ε2µ2(x, t) + O(ε3)

Considering the stretched variable z = d(x,t)
ε on a small neighborhood of Γ, we also look for inner

expansions of uε(x, t) and µε(x, t) of the form{
uε(x, t) = U(z, x, t) = U0(z, x, t) + εU1(z, x, t) + ε2U2(z, x, t) + O(ε3)

µε(x, t) = W(z, x, t) = W0(z, x, t) + εW1(z, x, t) + ε2W2(z, x, t) + O(ε3)

As before, we define a unit normal m to Γ and the normal velocity V to the front as

V = −∂td(x, t), m = ∇d(x, t), x ∈ Γ.

Let us now expand uε and µε.

Outer expansion: Analogously to [56], we obtain

u0(x, t) =

{
1 if x ∈ E(t)
0 otherwise

, and u1 = u2 = u3 = µ0 = µ1 = µ2 = 0.

Matching conditions: The matching conditions (see [56] for more details) imply in particular that

lim
z→+∞

U0(z, x, t) = 0, lim
z→−∞

U0(z, x, t) = 1, lim
z→±∞

U1(z, x, t) = 0 and lim
z→±∞

U2(z, x, t) = 0

and
lim

z→±∞
W0(z, x, t) = 0, lim

z→±∞
W1(z, x, t) = 0 and lim

z→±∞
W2(z, x, t) = 0
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Penalization term B(u) : With

∇u
|∇u| =

m− ε∇xU/∂zU√
1 + ε2|∇xU|2/(∂zU)2

,

and using ∇xU.m = 0, it follows that

B(u) =

[
div

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)]

= div (∆d∇d)− div
(
∇2d∇d

)
+ O(ε) =

(
∑

i

κi(π(x))
1 + zεκi(π(x)

)2

−∑
i

κi(π(x))2

(1 + zεκi(π(x)))2 + O(ε)

=
(

H2 − ‖A‖2
)
+ O(ε).

Inner expansion: We can derive the asymptotics of the second equation of the system (5)

µ = W ′(u)− ε2∆u

as follows 
W0 = W ′(U0)− ∂2

zU0

W1 = W ′′(U0)U1 − ∂2
zU1 − κ∂zU0

W2 = W ′′(U0)U2 − ∂2
zU2 +

1
2 W(3)(U0)U2

1 − H∂zU1 + z‖A‖2∂zU0 − ∆xU0,

As for the first equation

ε2∂tu = ∆µ− 1
ε2 W ′′(u)µ + W ′(u)B(u)

therefore {
0 = ∂2

zW0 −W ′′(U0)W0,

0 = ∂2
zW1 + H∂zW0 −

(
W ′′(U0)W1 + W(3)(U0)U1W0

)
,

.

and

0 = ∂2
zW2 + H∂zµ̃1 − ‖A‖2z∂zW0 + ∆xW0 + W ′(U0)

(
H2 − ‖A‖2

)
−

(
W ′′(U0)W2 + W(3)(U0)U1W1 + W(3)(U0)U2W0 +

1
2

W(4)(U0)U2
1W0

)
First order:
The two following equations

∂2
zW0 −W ′′(U0)W0 = 0, and W0 = W ′(U0)− ∂2

zU0,

associated with the boundary conditions

lim
z→−∞

U0(z, x, t) = 1, lim
z→+∞

U0(z, x, t) = 0, and lim
z→±∞

W0(z, x, t) = 0,

admit as solution pair
U0(z, x) = q(z), and W0 = 0.

Second order:
The second order gives

∂2
zW1 −W ′′(q)W1 = 0, W1 = W ′′(q)U1 − ∂2

zU1 − Hq′(z),

which has the solution
U1 = 0, and W1 = −Hq′(z).
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Third order:
Using U0 = q, W0 = U1 = 0 and W1 = −Hq′, the first equation can be rewritten as

∂2
zW2 −W ′′(q)W2 = −H∂zW1 −

(
H2 − ‖A‖2

)
W ′(q)

= H2q′′(z)−
(

H2 − ‖A‖2
)

q′′(z) = ‖A‖2q′′(z),

and implies that
W2 = ‖A‖2η2(z) + c(x, t)q′(z),

where η2 is defined as the solution of

η′′2 (z)−W ′′(q(z))η2(z) = q′′(z), with lim
z→±∞

η2(z) = 0.

Remark that η2 can be expressed as

η2(z) =
1
2

zq′(z).

Note that the second equation also reads as

∂2
zU2 −W ′′(q)U2 = z‖A‖2q′(z)−W2 =

1
2

z‖A‖2q′(z)− c(x, t)q′(z).

In particular, multiplying by q′ and integrating over R in z shows that c(x, t) = 0. We then deduce that

U2 =
1
2
‖A‖2η1(z),

where η1 is defined as the solution of

η′′1 (s)−W ′′(q(s))η1(s) = sq′(s), with lim
s→±∞

η1(s) = 0.

In conclusion, we have

W2 =
1
2
‖A‖2zq′(z) and U2 =

1
2
‖A‖2η1(z).

Fourth order and estimation of the velocity V:
We can now explicit the term of order 1 in ε of B(u). Indeed we have U(z, x, t) = q(z) + O(ε2), and as
∇xq(z) = 0, we have

B(u) =

[
div

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)]

= div (∆d∇d)− div
(
∇2d∇d

)
+ O(ε2) =

(
∑

i

κi(π(x))
1− zεκi(π(x))

)2

−∑
i

κi(π(x))2

(1− zεκi(π(x)))2 + O(ε2)

=
(

H2 − ‖A‖2
)
− ε2z

(
H‖A‖2 −Θ3

)
+ O(ε2),

where Θ3 = ∑i ki(π(x))3.

The fourth order of the first equation now reads

−Vq′ =
[
∂2

zW3 −W ′′(q)W3

]
−W(3)(q)U2W1 +

(
H∂zW2 − ‖A‖2z∂zW1

)
+ ∆xW1 − zW ′(q)2

(
H‖A‖2 −Θ3

)
=

[
∂2

zW3 −W ′′(q)W3

]
+

1
2

W(3)(q)H‖A‖2η1q′ +
1
2
‖A‖2H

(
3zq′′ + q′

)
− (∆Γ H) q′ − 2

(
H‖A‖2 −Θ3

)
zq′′

=
[
∂2

zW3 −W ′′(q)W3

]
+

1
2

W(3)(q)H‖A‖2η1q′ +
(
−1

2
‖A‖2H + 2B3

)
zq′′ +

1
2
‖A‖2Hq′ − (∆ΓH) q′
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Multiplying by q′ and integrating over R leads to

V = − 1
S

[(
1
2
‖A‖2HS +

(
−1

2
‖A‖2H + 2Θ3

) ∫
R

zq′′q′dz +
1
2
‖A‖2H

∫
R

W(3)(q)η1(q′)2dz
)
− ∆Γ HS

]
,

where S =
∫

R
q′(z)2dz.

Remark also that ∫
R

zq′′q′dz =
1
2

∫
R

z((q′)2)′dz = −1
2

∫
R
(q′)2dz = −1

2
S.

Moreover, recall that η1 satisfies{
η
′′
1 −W ′′(q)η1 = zq′

η
′′′
1 −W ′′(q)η′1 −W(3)(q)q′η1 = (zq′)′,

then we have ∫
R

W(3)(q)η1(q′)2dz =
∫

R

(
η
′′′
1 −W ′′(q)η′1

)
q′dz−

∫
R
(zq′)′q′dz = −1

2
S,

and we conclude that
V = ∆Γ H + Θ3 − 1

2
‖A‖2H.

3.5 Approximating the Willmore flow with Esedoglu-Rätz-Röger’s energy

We now consider the following variant of the Esedoglu-Rätz-Röger’s energy, which we introduced in
Section 2.4.3

W EsRäRö
ε (u) =

1
2ε

∫
Ω

(
ε∆u− W ′(u)

ε

)2

dx + βJε(u)

where the penalization term Jε(u) reads

Jε(u) =
1

ε1+α

∫
Ω

(
ε∇2u : N(u)− W ′(u)

ε

)2

dx, and N(u) =
∇u
|∇u| ⊗

∇u
|∇u| .

The aim of this section is to derive and study the PDE obtained as the L2-gradient flow of W EsRäRö
ε (u).

We will show that the flow is equivalent to the phase field system

ε2∂tu = ∆µ− 1
ε2 W ′′(u)µ− βL̃(u)

µ = W ′(u)− ε2∆u.

ξε = ε∇2u : N(u)− W ′(u)
ε

L̃(u) = 2ε1−α
[(

N(u) : ∇2ξε − 1
ε2 W ′′(u)ξε

)
+ 2

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
· ∇ξε + B(u)ξε

]
B(u) = div

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)
(6)

Note that this system coincides with the classical one, up to the addition of a penalty term −βL̃(u).

The well-posedness of the phase field model (6) at fixed parameter ε is open, and requires presum-
ably a regularization as done numerically in [41].

By formal arguments involving matched asymptotic expansions again, we will show that this ap-
proximating flow is expected to converge, as ε goes to zero, to the Willmore flow in dimension N ≥ 2,
at least whenever α = 0 or α = 1. More precisely we will show the
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Claim 3.7 In a suitable regime provided by the method of matched asymptotic expansions, the normal velocity of
the 1

2 -front Γ(t) = ∂E(t) associated with a solution (uα
ε , µα

ε , ξα
ε ) to Esedoglu-Rätz-Röger’s phase field model (6)

in both cases α = 0 and α = 1 is the Willmore velocity

V = ∆Γ H + ‖A‖2H − H3

2
.

In addition, for α = 0:
u0

ε (x, t) = q
(

d(x,E(t))
ε

)
+ ε2 ‖A‖2−H2

1+2β η1

(
d(x,E(t)

ε

)
+ O(ε3)

µ0
ε (x, t) = −εHq′

(
d(x,E(t)

ε

)
+ ε2

(
H2 − 2β

[
2‖A‖2−H2

1+2β

])
η2

(
d(x,E(t)

ε

)
+ O(ε3),

ξ0
ε (x, t) = ε

(
2‖A‖2−H2

1+2β

)
η2

(
d(x,E(t)

ε

)
+ O(ε2)

where η2(z) = zq′(z) is a profile function. For α = 1:
u1

ε (x, t) = q
(

d(x,E(t))
ε

)
+ O(ε3)

µ1
ε (x, t) = −εHq′

(
d(x,E(t)

ε

)
+ 2ε2‖A‖2η2

(
d(x,E(t)

ε

)
+ O(ε3),

ξ1
ε (x, t) = ε2 (2‖A‖2−H2)

4β η2

(
d(x,E(t)

ε

)
+ O(ε3)

Remark 3.8 The previous claim gives indications on the design of a numerical scheme for simulating
the Esedoglu-Rätz-Röger’s flow in the cases α = 0, 1. Clearly, the flow acts at the second order for u in
the case α = 0, and not less than at the third order (at least) whenever α = 1. This implies that capturing
with accuracy the motion of the interface should be much more delicate when α = 1.

3.5.1 Derivation of the L2-gradient flow ofW EsRäRö
ε (u)

Proposition 3.9 The L2-gradient flow of Esedoglu-Rätz-Röger’s ’s model is equivalent to

ε2∂tu = ∆µ− 1
ε2 W ′′(u)µ− βL̃(u)

µ = W ′(u)− ε2∆u.
ξε = ε∇2u : N(u)− W ′(u)

ε

L̃(u) = 2ε1−α
[(

N(u) : ∇2ξε − 1
ε2 W ′′(u)ξε

)
+ 2

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
· ∇ξε + B(u)ξε

]
B(u) = div

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
− div

(
∇
(
∇u
|∇u|

)
∇u
|∇u|

)
Proof: Since

ξε(u) = ε∇2u : N(u)− W ′(u)
ε

= ε

(
∇2u

∇u
|∇u|

)
· ∇u
|∇u| −

1
ε

W ′(u),

one has that

ξ ′ε(u)(w) = ε

(
∇2w : N(u) + 2

∇2u : ∇w⊗∇u
|∇u|2 − 2∇2u : N(u)

∇u · ∇w
|∇u|2

)
− 1

ε
W ′′(u)w.

The gradient of Jε(u) follows, recalling that Pu = Id −N(u):

∇Jε(u) =
2
εα

[
∇2 : [N(u)ξε]−

1
ε2 W ′′(u)ξε − 2 div

(
ξε(u)∇2u∇u
|∇u|2

)
+ 2 div

(
∇2u : N(u)ξε∇u

|∇u|2

)]
=

2
εα

[
∇2 : [N(u)ξε]−

1
ε2 W ′′(u)ξε − 2 div

(
ξε(u)Pu∇2u∇u

|∇u|2

)]
More precisely, using

∇2 : [N(u)ξε] = (∇2 : N(u))ξε + 2 div(N(u)) · ∇ξε + N(u) : ∇2ξε,
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div(N(u)) =

(
div

(
∇u
|∇u|

)
∇u
|∇u| +∇

[
∇u
|∇u|

]
∇u
|∇u|

)
=

(
div

(
∇u
|∇u|

)
∇u
|∇u| +

Pu∇2u∇u
|∇u|2

)
and

(∇2 : N(u)) = div(div N(u)) = div
(

div
(
∇u
|∇u|

)
∇u
|∇u| +

Pu∇2u∇u
|∇u|2

)
,

one gets

∇Jε(u) =
2
εα

[(
N(u) : ∇2ξε −

1
ε2 W ′′(u)ξε

)
+ 2

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
· ∇ξε + B(u)ξε

]
.

from which the L2-gradient flow of Esedoglu-Rätz-Röger’s ’s model follows.

3.5.2 Asymptotic analysis

In this section, we perform the formal method of matched asymptotic expansions to the system solution
(uε, µε, ξε) of

ε2∂tu = ∆µ− 1
ε2 W ′′(u)µ− βL̃(u)

µ = W ′(u)− ε2∆u.

ξε = ε∇2u : N(u)− W ′(u)
ε

L̃(u) = 2ε1−α
[(

N(u) : ∇2ξε − 1
ε2 W ′′(u)ξε

)
+ 2

(
div

(
∇u
|∇u|

)
∇u
|∇u|

)
· ∇ξε + B(u)ξε

]
,

in both cases α = 0 and α = 1.

As previously, we assume that the 1/2-isolevel set of uε is a smooth (n− 1)−dimensional interfaces
Γ(t) defined as the boundary of a set E(t) =

{
x ∈ Rd; uε(x, t) ≥ 1/2

}
.

We assume that there exist outer expansions of uε, µε and ξε far from the front Γ of the form
uε(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3)

µε(x, t) = µ0(x, t) + εµ1(x, t) + ε2µ2(x, t) + O(ε3)

ξε(x, t) = 1
ε ξ−1(x, t) + ξ0(x, t) + εξ1(x, t) + ε2ξ2(x, t) + O(ε3)

Considering the stretched variable z = d(x,t)
ε on a small neighborhood of Γ, we also look for inner

expansions of uε(x, t), µε(x, t) and ξε(x, t) of the form
uε(x, t) = U(z, x, t) = U0(z, x, t) + εU1(z, x, t) + ε2U2(z, x, t) + O(ε3)

µε(x, t) = W(z, x, t) = W0(z, x, t) + εW1(z, x, t) + ε2W2(z, x, t) + O(ε3)

ξε(x, t) = Φ(z, x, t) = ε−1Φ−1(z, x, t) + Φ0(z, x, t) + εΦ1(z, x, t) + ε2Φ2(z, x, t) + O(ε3)

In particular, remark that the third equation of (6) yields

Φ(z, x, t) =
1
ε

 ∂2
zzU(

1 + ε2 |∇xU|2
(∂zU)2

) −W ′(U)

+ ε

(
∂z
(
|∇xU|2

)
∂zU

)(
1 + ε2 |∇xU|2

(∂zU)2

)−1

.

As before, it can be observed for the outer expansions that

u0(x, t) =

{
1 if x ∈ E(t)
0 otherwise

, and u1 = u2 = u3 = µ0 = µ1 = µ2 = ξ−1 = ξ0 = ξ2 = 0.
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The matching conditions imply the following boundary conditions on the inner expansions:{
limz→+∞ U0(z, x, t) = 0
limz→−∞ U0(z, x, t) = 1

, lim
z→±∞

Ui(z, x, t) = 0 for i ∈ {1, 2},

and

lim
z→±∞

Wi(z, x, t) = 0, for i ∈ {0, 1, 2}, and lim
z→±∞

Φi(z, x, t) = 0, for i ∈ {−1, 0, 1, 2}.

Inner expansion with α = 0 :
This paragraph is devoted to the derivation of the expression of the inner expansion in the special case
α = 0.

First order:
We have the following system

0 = ∂2
zW0 −W ′′(U0)W0 − 2β [∂zzΦ−1 −W ′′(U0)Φ−1]

W0 = W ′(U0)− ∂2
zU0

Φ−1 = ∂2
zU0 −W ′(U0)

,

which admits the solution triplet

U0 = q(z), W0 = 0, and Φ−1 = 0.

Second order:
At second order, we obtain

0 = ∂2
zW1 −W ′′(q)W1 − 2β [∂zzΦ0 −W ′′(q)Φ0]

W1 = W ′′(q)U1 − ∂2
zU1 − Hq′

Φ0 = ∂2
zU1 −W ′′(q)U1

,

whose solution is given by
U1 = 0, W1 = −Hq′, and Φ0 = 0.

Third order:
At third order, 

0 = ∂2
zW2 −W ′′(U0)W2 + H∂zW1 − 2β [∂zzΦ1 −W ′′(q)Φ1]

W2 = W ′′(q)U2 − ∂2
zU2 + ‖A‖2zq′

Φ1 = ∂2
zU2 −W ′′(q)U2

,

and we are now looking for a system of solutions of the form

W2 = cW(x, t)η2(z), U2 = cU(x, t)η1(z), and Φ1 = cΦ(x, t)η2(z),

where the two profiles η1 and η2 are solutions, respectively, of

η′′1 −W ′′(q)η1 = zq′ and η′′2 −W ′′(q)η2 = q′′.

Furthermore, the first equation gives

0 = cW
(
η′′2 −W ′′(q)η2

)
− H2q′′ − 2cΦ

(
η′′2 −W ′′(q)η2

)
=
(

cW − H2 − 2βcΦ

)
q′′,
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the second equation implies that

1
2

cWzq′ = −cU
(
η′′1 −W ′′(q)η1

)
+ ‖A‖2zq′ = (−cU + ‖A‖2)zq′.

and the third equation shows that

1
2

cΦzq′ = cU
(
η′′1 −W ′′(q)η1

)
= (cU)zq′.

This provides a linear system

cW − β2cΦ = H2, cW + 2cU = 2‖A‖2 and cΦ = 2cU ,

which admits as solutions

cW = H2 − 2β

[
2‖A‖2 − H2

1 + 2β

]
, cU =

‖A‖2 − H2/2
1 + 2β

, and cΦ =
2‖A‖2 − H2

1 + 2β
.

Therefore, 
W2 =

(
H2 − 2β

[
2‖A‖2−H2

1+2β

])
η2,

U2 =
(
‖A‖2−H2/2

1+2β

)
η1,

Φ1 =
(

2‖A‖2−H2

1+2β

)
η2.

Fourth order and estimation of the velocity V:
The fourth order reads as follows

−Vq′ =
[
∂2

zW3 −W ′′(q)W3

]
−W(3)(q)U2W1 +

(
H∂zW2 − ‖A‖2z∂zW1

)
+ ∆xW1

−2β
([

∂zzΦ2 −W ′′(q)Φ2
]
+ 2H∂zΦ1

)
=

[
∂2

z(W3 − 2βΦ2)−W ′′(q)(W3 − 2βΦ2)
]
+

(
H‖A‖2 − H3/2

1 + 2β

)
W(3)(q)η1q′

−∆ΓHq′ +
(

H3/2 + ‖A‖2H − Hβ

(
2‖A‖2 − H2

1 + 2β

))
zq′′ +

(
H3/2− Hβ

(
2‖A‖2 − H2

1 + 2β

))
q′

Recalling that 
∫

R
(q′(z))2dz = S∫

R
zq′′q′dz = − 1

2 S∫
R

W(3)(q)η1(q′)2dz = − 1
2 S,

multiplying the last equation by q′ and integrating over R leads to

V = ∆ΓH +
‖A‖2H

2
− H3

4
+

H‖A‖2 − H3/2
2(1 + 2β)

(1 + 2β) = ∆Γ H + ‖A‖2H − 1
2

H3

Inner expansion with α = 1 :
We are now looking for the inner expansion of the PDE system (6) in the special case α = 1 :

First order:
We have the following system 

0 = −2β [∂zzΦ−1 −W ′′(U0)Φ−1]

W0 = W ′(U0)− ∂2
zU0

Φ−1 = ∂2
zU0 −W ′(U0)

,
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whose solution is given by
U0 = q(z), W0 = 0, and Φ−1 = 0.

Second order:
At second order 

0 = ∂2
zzW0 −W ′′(q)W0 − 2β

[
∂2

zzΦ0 −W ′′(q)Φ0
]

W1 = W ′′(q)U1 − ∂2
zzU1 − Hq′

Φ0 = ∂2
zzU1 −W ′′(q)U1

,

which admits as solution
U1 = 0, W1 = −Hq′, and Φ0 = 0.

Third order:
At third order 

0 = ∂2
zzW1 −W ′′(q)W1 − 2β [∂zzΦ1 −W ′′(q)Φ1]

W2 = W ′′(q)U2 − ∂2
zzU2 + ‖A‖2zq′

Φ1 = ∂2
zU2 −W ′′(q)U2

,

whose solution triplet is
U2 = 0, W2 = ‖A‖2zq′, and Φ1 = 0.

Fourth order:
From

0 = ∂2
zW2 −W ′′(q)W2 + H∂zW1 − 2β

[
∂zzΦ2 −W ′′(q)Φ2

]
,

we deduce that [
∂zzΦ2 −W ′′(q)Φ2

]
=

(2‖A‖2 − H2)

2β
q′′,

and then

Φ2 =
(2‖A‖2 − H2)

2β
η2 =

(2‖A‖2 − H2)

4β
zq′.

Last order and estimation of the velocity V:
We have

−Vq′ =
[
∂2

zW3 −W ′′(q)W3

]
−W(3)(q)U2W1 +

(
H∂zW2 − ‖A‖2z∂zW1

)
+ ∆xW1

−2β
([

∂zzΦ3 −W ′′(q)Φ3
]
+ 2H∂zΦ2

)
=

[
∂2

z(W3 − 2βΦ3)−W ′′(q)(W3 − 2βΦ3)
]
− ∆Γ Hq′

+

(
2‖A‖2H − Hβ

(
2‖A‖2 − H2

β

))
zq′′ +

(
‖A‖2H − Hβ

(
2‖A‖2 − H2

β

))
q′

=
[
∂2

z(W3 − 2βΦ3)−W ′′(q)(W3 − 2βΦ3)
]
− ∆ΓHq′ + H3zq′′ +

(
−‖A‖2H + H3

)
q′.

As previously, this shows that the velocity V of the interfaces equals the Willmore velocity

V = ∆Γ H + ‖A‖2H − H3

2
.

Remark 3.10 The analysis of the asymptotic behavior for α non integer is more delicate because it re-
quires studying non integer orders of ε and it is far from being clear how integer and non integer scales
may combine. As for integer values of α > 1, a careful study at higher orders of ε should be possible
but is out of the scope of the present paper.
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4 2D and 3D numerical simulations for the classical and Mugnai’s
diffuse flows

There is an important literature on numerical methods for the approximation of interfaces evolving by
a geometric law. They can be roughly classified into three categories: parametric methods [31, 76, 32,
5, 7, 73, 49], level-set formulations [70, 68, 69, 43, 26], phase-field approaches [63, 24, 16, 71]. See for
instance [32] for a complete review (with a particular emphasis on the mean curvature flow, but fourth-
order flows are also addressed) and a comparison between the different strategies. In the context of
fourth order geometric evolution equations, in particular the Willmore flow, parametric approaches
have been proposed in [38, 4, 6] for curves and surfaces using a semi-implicit finite element method.
In [67], a fully implicit approach via a variational formulation is also analyzed for the approximation
of anisotropic Willmore flow. The level set methods have been applied for the first time in [34]. Con-
cerning the phase field approach, semi-implicit schemes including standard finite element differences,
finite elements, and Fourier spectral methods are developed in [35, 36, 41] and analyzed in [37]. A fully
implicit scheme coupled with a finite element method has been more recently introduced in [45] via
a variational formulation. An adaptation to fourth order geometric evolution equations of the Bence-
Merriman-Osher algorithm [17] is also proposed in [42]. Let us finally mention the discrete methods
involving surface triangulations and discrete curvature operators [49, 18, 79].

In this paper, we will consider a quite different and new scheme to solve both the classical and
Mugnai’s phase field systems (3) and (5). The simulations can be compared with those obtained by Ese-
doglu, Rätz and Röger in [41] for their phase field system (6) (actually a variant of it, see Section 2.4.3),
and for Bellettini’s phase field system (4).

Here, we use an implicit scheme to ensure the decreasing of the diffuse Willmore energy, and a
Fourier spectral method in order to get high accuracy approximation in space. At each step time, it is
necessary to solve a nonlinear equation. A Newton algorithm like in [45] appears to be very efficient
in practice, but not in accordance with a Fourier spectral discretization, so we opted for a fixed point
approach.

4.1 New numerical schemes for the approximation of classical and Mugnai’s flows

4.1.1 Classical diffuse approximation flow

We introduce a new scheme to approximate numerically some solutions of the phase field system∂tu =
1

αε2 ∆µ− 1
αε4 W ′′(u)µ

µ = αW ′(u)− αε2∆u,

where α is a positive constant. The particular phase field system (3) corresponding to the classical
diffuse Willmore flow is obtained for α = 1.

We compute the solution for any time t ∈ [0, T] in a box Ω = [0, 1]N with periodic boundary condi-
tions. We use a Euler semi-implicit discretization in time:{

un+1 = δt

[
1

αε2 ∆µn+1 − 1
αε4 W ′′(un+1)µn+1

]
+ un

µn+1 = αW ′(un+1)− αε2∆un+1,

where δt is the time step, un and µn are the approximations of the solutions u and µ, respectively,
evaluated at time tn = n δt. The system can be written as{

un+1 − δt
αε2 ∆µn+1 = E

µn+1 + αε2∆un+1 = F,
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with E = un − δt
αε4 W ′′(un+1)µn+1, F = αW ′(un+1). Therefore,{

un+1 + δt∆2un+1 = E + δt
αε2 ∆F

µn+1 + δt∆2µn+1 = F− αε2∆E.

Thus, (un+1, µn+1) is the solution of the nonlinear equation(
un+1

µn+1

)
= φ

(
un+1

µn+1

)
, (7)

where

φ

(
un+1

µn+1

)
=
(

Id + δt∆2
)−1

(
Id

δt
αε2 ∆

−αε2∆ Id

)(
un − δt

αε4 W ′′(un+1)µn+1

αW ′(un+1)

)
A natural way to approximate the solution (un+1, µn+1) to (7) is a fixed point iterative method.

The space discretization is built with Fourier series. It has the advantage of preserving a high order
approximation in space while allowing a fast and simple processing of the homogeneous operator

G =
(

Id + δt∆2
)−1

(
Id

δt
αε2 ∆

−αε2∆ Id

)
=

(
Id − δt

αε2 ∆
αε2∆ Id

)−1

.

In practice, the solutions u(x, tn) and µ(x, tn) at time tn = nδt are approximated by the truncated Fourier
series :

un
P (x) = ∑

‖p‖∞≤P
un

pe2iπx·p, and µn
P (x) = ∑

‖p‖∞≤P
µn

pe2iπx·p

where ‖p‖∞ = max1≤i≤N |pi|, P is the maximal number of Fourier modes in each direction, and the

coefficients un
p, µn

p are derived from a prior Fourier decomposition of

(
un − δt

αε4 W ′′(un+1)µn+1

αW ′(un+1)

)
com-

bined with an application in the Fourier domain of the operator G. More precisely, the fixed point
algorithm that we propose reads as follows:

Algorithm 1 Initialization : un+1
0 = un, µn+1

0 = µn

While ‖un+1
k+1 − un+1

k ‖+ ‖µn+1
k+1 − µn+1

k ‖ > 10−8, perform the loop on k:

1) Compute

hn
P = un − δt

αε4 W ′′(un+1
k )µn+1

k , and h̃n
P = αW ′(un+1

k )

2) Using the Fast Fourier Transform, compute the truncated Fourier series of hn
P and h̃n

P :

hn
P (x) = ∑

‖p‖∞≤P
hn

p e2iπx·p, and h̃n
P (x) = ∑

‖p‖∞≤P
h̃n

p e2iπx·p

3) Compute

un+1
k+1 (x) = ∑

‖p‖∞≤P
(uk+1)

n
p e2iπx·p, and µn+1

k+1 (x) = ∑
‖p‖∞≤P

(µk+1)
n
p e2iπx·p,

where (uk+1)
n
p = 1

1+δt(4π2|p|)2

(
hn

p − δt
αε2 4π2|p|2h̃n

p

)
(µk+1)

n
p = 1

1+δt(4π2|p|)2

(
h̃n

p + αε24π2|p|2hn
p

)
End
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Note that the semi-implicit scheme{
un+1 = δt

[
1

ε2α
∆µn+1 − 1

ε4α
W ′′(un)µn

]
+ un

µn+1 = αW ′(un)− αε2∆un+1,

implies the following scheme on un

un+1 =
(

Id + δt∆2
)−1

[
un +

δt

ε2 ∆W ′(un) +
δt

ε2 W ′′(un)

(
∆un − 1

ε2 W ′(un−1)

)]
,

which is expected to be stable under a condition of the form

δt ≤ C min
{

ε2δx2, ε4
}

where δx = 1/(2P) and C is a constant depending only the double-well potential W.
In practice, using fixed point iterations instead of a semi-implicit scheme appears more accurate numer-
ically. This can be justified with the following proposition:

Proposition 4.1 Algorithm 1 converges locally under the assumptions

max
{
[αM2]

2 + 2[
δt

ε4 M3(M1 + N3/2π2 ε2

δ5/2
x

)]2, 2[
δt

αε4 M2]
2
}
‖ < 1 (8)

where Mi = sups∈[0,1] |W(i)(s)|.

Proof: We look for the conditions such that

‖Dφ(un+1, µn+1)(δu, δµ)‖2 < ‖(δu, hµ)‖2,

where the differential of φ is such that

Dφ(un+1, µn+1)(δu, δµ) =

(
Id − δt

αε2 ∆
αε2∆ Id

)−1(
− δt

αε4

(
W(3)(un+1)µn+1δu + W(2)(un+1)δµ

)
αW(2)(un+1)δu

)
.

Note that the eigenvalues of the operator (
Id − δt

αε2 ∆
αε2∆ Id

)
are

λp = 1± 4π2i
√

δt|p|2, for ‖p‖∞ ∈ [0,P ].

In particular, this implies that ∥∥∥∥∥∥
(

Id − δt
αε2 ∆

αε2∆ Id

)−1
∥∥∥∥∥∥ ≤ 1.

Moreover, remark also that

|µn+1| = |αW ′(un+1)− αε2∆un+1| ≤ α

(
M1 + N3/2π2 ε2

δ5/2
x

)
.

It follows that|αW(2)(un+1)δu| ≤ αM2|δu|∣∣∣W(3)(un+1)µn+1δu + W(2)(un+1)δµ

∣∣∣ ≤ (αM3(M1 + N3/2π2 ε2

δ5/2
x

)|δu|+ M2|δµ|
)
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and then∥∥∥∥∥
(
− δt

αε4

(
W(3)(un+1)µn+1δu + W(2)(un+1)δµ

)
αW(2)(un+1)δu

)∥∥∥∥∥
2

≤ max
{
[αM2]

2 + 2[
δt

ε4 M3(M1 + N3/2π2 ε2

δ5/2
x

)]2, 2[
δt

αε4 M2]
2
}
‖(δu, δµ)‖2,

which concludes the convergence proof of the fixed-point iteration procedure if conditions (8) above
are fulfilled.

4.1.2 Mugnai’s flow

We now use a similar scheme for the following generalization of Mugnai’s phase field system:∂tu =
1

ε2α
∆µ− 1

ε4α
W ′′(u)µ + B̃(u)

µ = αW ′(u)− αε2∆u,

with B̃(u) = W ′(u)B(u)
αε4 . The exact Mugnai’s flow (5) corresponds to the choice α = 1 (up to a time

rescaling). We use again a semi-implicit scheme:{
un+1 = δt

[
1

ε2α
∆µn+1 − 1

αε4 W ′′(un+1)µn+1 + B̃(un)
]
+ un

µn+1 = αW ′(un+1)− ε2α∆un+1,

where the penalization term B̃(·) is treated explicitly. We use a fixed point iteration to approximate the
solution pair (un+1, µn+1) to the system:

(un+1, µn+1) = φ̃(un+1, µn+1) =
(

Id + δt∆2
)−1

(
Id

δt
αε2 ∆

−αε2∆ Id

)(
un − δt

αε4 W ′′(un+1)µn+1 + δtB̃(un)

αW ′(un+1)

)
.

For it is highly singular, the penalization term B̃(·) needs to be regularized to avoid numerical errors.
Observing that

B̃(u) = W ′(u)

[(∣∣∣∣∇( ∇u
|∇u|

)∣∣∣∣2 − ∣∣∣∣div
(
∇u
|∇u|

)∣∣∣∣2
)
− curl

(
curl

(
∇u
|∇u|

))
· ∇u
|∇u|

]
we consider the regularized penalization term

B̃σ(u) = W ′(u)
[(
|∇νu,σ|2 − |div νu,σ|2

)
− curl (curl (νu,σ)) · νu,σ

]
where νu,σ = ∇u√

|∇u|2+σ2
with σ a small regularization parameter. In particular, the positivity(

|∇νu,σ|2 − |div νu,σ|2
)
≥ 0,

is ensured, which is in accordance with the continuous case. In practice, finite differences are used for
the numerical evaluation of B̃σ(u). Finally, we propose the following algorithm:

Algorithm 2 Initialization : un+1
0 = un, µn+1

0 = µn

While ‖un+1
k+1 − un+1

k ‖+ ‖µn+1
k+1 − µn+1

k ‖ > 10−8, perform the loop on k:

1) Using finite differences to evaluate B̃σ(un+1
k ), compute

hn
P = un − δt

αε4 W ′′(un+1
k )µn+1

k + δtB̃σ(un), and h̃n
P = αW ′(un+1

k )
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2) Using the Fast Fourier Transform, compute the truncated Fourier series of hn
P and h̃n

P :

hn
P (x) = ∑

‖p‖∞≤P
hn

p e2iπx·p, and h̃n
P (x) = ∑

‖p‖∞≤P
h̃n

p e2iπx·p

3) Compute

un+1
k+1 (x) = ∑

‖p‖∞≤P
(uk+1)

n
p e2iπx·p, and µn+1

k+1 (x) = ∑
‖p‖∞≤P

(µk+1)
n
p e2iπx·p,

where (uk+1)
n
p = 1

1+δt(4π2|p|)2

(
hn

p − δt
αε2 4π2|p|2h̃n

p

)
(µk+1)

n
p = 1

1+δt(4π2|p|)2

(
h̃n

p + αε24π2|p|2hn
p

)
End

Proposition 4.2 Algorithm 2 converges locally under the assumptions

max
{
[αM2]

2 + 2[
δt

ε4 M3(M1 + N3/2π2 ε2

δ5/2
x

)]2, 2[
δt

αε4 M2]
2
}
‖ < 1 (9)

where Mi = sups∈[0,1] |W(i)(s)|.

Proof: Being the penalty term B̃σ(u) treated explicitly, it does not appear in the expression of the differ-
ential of φ̃, thus the same proof as for Proposition 4.1 can be used.

4.2 Numerical simulations of the classical flow

The following simulations have been realized using Matlab. The isolevel sets Γ(t) = {x : u(x, t) = 1
2}

are computed and drawn using the Matlab functions contour in 2D and isosurface in 3D. We use the
double-well potential W(s) = 1

2 s2(1− s)2 and consider the PDE system{
∂tu = ∆µ− 1

ε2 W ′′(u)µ
µ = 1

ε2 W ′(u)− ∆u.

with initial conditions u(x, 0) and µ(x, 0) of the formu(x, 0) = γ
(

d(x,E)
ε

)
µ(x, 0) = − 1

ε ∆d(x, E)γ′
(

d(x,E)
ε

)
Evolution of a circle The first test plotted in Figure 2 illustrates the good behavior of our scheme with
respect to the exact solution. The initial set E is a circle of radius R0 = 0.15. The continuous Willmore
flow preserves the circle yet increases the radius according the law

R(t) =
(

R4
0 + 2t

)1/4
.

The left picture in Figure 2 represents the interfaces Γ(t) at different times t obtained with the following
numerical parameters: P = 27, ε = 2/P and δt = ε2

2P2 . The right picture in Figure 2 depicts the
error between the numerical radius Rε(t) and the theoretical radius R(t), at different times and for two
different values of ε (the other parameters are kept unchanged). It is reasonable to believe that this
experiment illustrates the numerical convergence of Rε(t) to R(t) as ε goes to zero.
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Figure 2: Left : sampling of Γ(t) at different times t ; Right : The graphs of t → Rε(t) for ε = 2
P and

ε = 3
P , compared with the exact solution.

Evolution of two disjoint circles and formation of singularities One of our motivations in this study
is to understand and observe the behavior of the diffuse Willmore solution in the situations where sin-
gularities appear. As it was discussed in Section 2.3, this may happen for instance with the classical
approximation flow. We consider as initial set Ω0 the union of two disjoint circles of radius R = 0.15.
Each circle should evolve as a circle with increasing radius, up to the contact occurs. To the best of our
knowledge, the theoretical Willmore flow is not clearly defined after this critical collision time. There-
fore, the asymptotic limit of the solution t 7→ uε(·, t) as ε goes to 0 could be a good candidate for the
definition of a weak Willmore flow. However, different behaviors of t 7→ uε(·, t) have been observed
in the literature. For instance, the two circle merge in [45] whereas a crossing of interfaces appears at
collision time in [41].

We plot on Figure 3 the graph of t 7→ uε(·, t) computed for different values of ε. We choose for
the other parameters: P = 27, δt = 1/P−4. In the first experiment obtained with ε = 5/P , the two
circles merge. In contrast, a crossing of interfaces appear for the cases ε = 3/P and ε = 1.5. More
precisely, we can distinguish three different periods in the last two experiments: in the first period, both
circles evolve independently one from the other. The second period begins when the distance between
the two circles is about the size of the diffuse interfaces and the formation of a crossing is observed.
This corresponds to a solution of the Allen-Cahn equation with unsmooth nodal set. After contact, the
interfaces continues to evolve while the crossing seems to be numerically stable and does not influence
the interface evolution. More precisely, the interface Γ(t) seems to converge to a growing eight, which
is one of the closed planar elasticae described in Langer and Singer’s work [54].

Numerical examples of saddle-shaped solutions of Allen-Cahn equation We already mentioned in
Section 2.3 the existence result due to Dang, Fife, and Peletier [29] of an entire solution in the plane to
the Allen-Cahn equation whose nodal set coincides with {(x, y), xy = 0} (it can be generalized to every
even dimension [19]). By restricting to a sector and using consecutive reflections, it is possible to build
solutions whose nodal set has an arbitrary number of branches with the property of dihedral symme-
try, i.e. of equal angle between two consecutive branches [47]. Actually, by a result of Hartman and
Wintner [48], saddle-shaped solutions must satisfy the equal angle property. We illustrate numerically
in Figure 4, left, two solutions with different branching degrees. These examples are classical, and have
been previously obtained by various authors [40, 57, 41].

To be complete, let us mention that 2k-ended solutions, i.e. solutions whose nodal set coincides
outside any compact set with the union of 2k straight lines which cross at the origin, do exist without
the dihedral symmetry requirement [33]. In the particular case of 4-ended solutions, the result can even
be proved for arbitrary angles between the lines [50]. Of course, by Hartman and Wintner’s result, the
nodal set itself cannot self-intersect at the origin if the dihedral symmetry does not hold, but remains
smooth instead. This is illustrated in Figure 4, right, where the 1/2-isolevel line has been represented
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Figure 3: Evolution by the classical approximation of the Willmore flow of two disjoint circles, for
various values of ε. First line: ε = 5/P ; second line: ε = 3/P ; third line: ε = 1.5/P ; The curve Γ(t) is
observed at times: t = 0 (left), t = 0.0004 (middle), t = 0.0008 (right).

in black.

Comparison between phase field and parametric approaches We observed previously that the evo-
lution of two disjoint circles after contact and creation of a crossing is similar to the evolution of a
eight-like single curve. To highlight this point, we tested on the same configurations both the evolution
provided by the classical diffuse flow and the evolution with respect to a discrete parametric Willmore
flow. In particular, we consider two different initial conditions corresponding, respectively, to the union
of two or three contiguous circles. The parametric choice of Γ(0) is illustrated on Figure 5 and corre-
sponds to using a single smooth C1,1 curve that covers two or three circles, respectively. The discrete
parametric Willmore flow is computed with a finite element method as proposed and analyzed by Dz-
iuk in [38]. The phase field simulations are done with the set of parameters: P = 27, ε = 1/P and
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Figure 4: Left : two examples of saddle-shaped Allen-Cahn solutions with 4 and 8 ends. Right: Allen-
Cahn solution without dihedral symmetry (thus without saddle point, the 1/2-isolevel line is shown in
black).

Figure 5: Two different choices of a smooth parametric initial curve Γ(0) forming either two or three
circles.

δt = εP−2/10. Numerical results are shown on Figure 6. As expected, these two different approaches
give very similar results. This suggests that the interface obtained by a phase field approximation con-
verges, after apparition of a singularity, to an interface which evolves as a regular parametric Willmore
flow. This is actually very much in favor of a varifold interpretation, at least on this example, of both
flows. What really cares is the support, and its geometry, and not the fact that it is seen either as an
isolevel set or as a parametrized set.

The experiments on Figure 7 are in the same spirit. On the first line, we illustrate the evolution of two
phases forming a circle cut by a straight line. Note that the circle seems to evolve independently of the
line. The second situation is quite similar with two disjoint circles cut by a line, and the same conclusion
holds.

Evolution by the classical diffuse Willmore flow of two contiguous circles
We now compare in Figure 8 the evolution by a discrete parametric Willmore flow of the different in-
terfaces obtained from three different initial parameterizations of two contiguous circles. In the first
parametrization (in blue), both circles are parametrized independently. The second parameterization
(in magenta) corresponds to the covering of the two circles by a unique smooth parametric curve that
self-crosses at the origin. The third parameterization (in red) corresponds to the singular curve that does
not cross the horizontal axis at the origin (thus forming a double cusp point). The first two pictures in
Figure 8 show the three interfaces obtained at different times. The third one depicts the evolution of
the Willmore energy associated to each evolving interface. It is interesting to compare the second and
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Figure 6: Comparison between the classical phase field flow and the parametric Willmore flow (black
line) starting from the initial curves of Figure 5; Left : t = 0 ; Middle : t = 5.10−5 ; Right : t = 5.10−4.
Both flows yield the same numerical solution.

the third parameterization. The energy of the second parameterization (i.e. passing from two circles to
the eight-type curve after contact) decreases smoothly, therefore the parameterization seems to relate
naturally to a continuous evolution. In contrast, the energy of the third parameterization explodes at
contact, and then decreases strongly to become the lowest (after time t > 10−5) with respect to the other
parameterizations. This experiment illustrates clearly the bifurcation at contact, and justifies why dif-
ferent configurations have been observed in the literature. For instance, there is no crossing observed
in [45] because the authors used a large time step δt and therefore ignored the contact. However, after
a while, the energy of the non-crossing configuration is indeed the best. It may be argued that a contin-
uous flow should go up to contact, and therefore a numerical flow that is accurate enough to capture
the singularity should be the best. On the other hand, once the crossing configuration has been chosen,
there is no way to have an energy as low as the non crossing configuration’s energy.

Experiments in space dimension 3 For the 3D simulations presented hereafter, we used the parame-
ters : P = 27, ε = 1.5/P and δt = 1/10 P−2 ε2.

The first simulation illustrates the evolution of a torus. According to the Willmore conjecture, which
seems to have been proved in [58], the torus that minimizes the Willmore energy is Clifford’s, whose
ratio between both radii equals

√
2. In the first line of Figure 9, we plot for different values of t, a

Clifford torus (in blue) and the interface Γ(t) (in red) obtained numerically. As expected, the interface
Γ(t) converges to the Clifford torus. The second line of Figure 9 shows the evolution of a parallelepiped
with two holes. The interface converges to a Lawson-Kusner surface of genus 2, that is conjectured to
minimize the Willmore energy among surfaces with genus 2 [51, 49]. The same experiment is done for a
genus 4 surface on the last line, and there is again convergence to a Lawson-Kusner surface. We believe
that these simulations illustrate the good quality of our numerical scheme and its ability to recover
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Figure 7: Two examples where the evolution of either one or two circles is not altered by an additional
separating line.

Figure 8: Parametric evolution of two contiguous circles associated to three different initial parametriza-
tions; Left : Interfaces at t = 10−5 ; Middle : Interfaces at t = 5.10−5 ; Right : Evolution of the Willmore
energy of each curve.

some critical points for the Willmore energy.

We present additional experiments in Figure 10 which illustrate the formation of singularities in
dimension 3. On the first line, two spheres evolve by the classical diffuse flow. As the distance between
the two spheres is about ε, they merge. We take in the second experiment the initial set Γ(0) as the
union of two parallel cylinders. The two cylinders grow up until collision time, at which a crossing
arises. The last example shows the evolution of a cube cut by a plane (more precisely, both the plane
and the cube’s boundary separate the two phases, as in the 2D situation of Figure 7). The cube seems
to evolve to a sphere without being disturbed by the presence of the plane. All these experiments show
that the classical diffuse flow may yield singularities, although the comprehension of singular solutions
to the Allen-Cahn equation in dimension 3 remains uncomplete.
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Figure 9: Smooth evolution of Γ(t) by the classical diffuse Willmore flow in 3 D. First line: convergence
to a Clifford torus (in blue). Second and third lines: convergence to Lawson-Kusner’s surfaces of genus
2 and 4, respectively.

Conclusion In view of the above simulations, the following observations can be made on the classical
diffuse approximation flow:

• It is possible to simulate the crossings of more than two interfaces;

• The evolution, by the classical diffuse flow, of two interfaces after crossing seems to be similar to
the evolution by a smooth parametric approach. This is in favor of a varifold interpretation of the
Willmore flow.
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Figure 10: 3D-examples of evolutions by the classical diffuse flow yielding singularities.

4.3 Numerical simulations of Mugnai’s flow

We now consider the PDE system associated with Mugnai’s flow in the form that we introduced in
Section 4.1.2: {

∂tu = ∆µ− 1
ε2 W ′′(u)µ + B̃σ(u)

µ = 1
ε2 W ′(u)− ∆u.

where
B̃σ(u) = W ′(u)

[(
|∇νu,σ|2 − |div νu,σ|2

)
− curl (curl (νu,σ)) · νu,σ

]
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with νu,σ = ∇u√
|∇u|2+σ2

. The initial conditions u(x, 0) and µ(x, 0) have the form

u(x, 0) = γ
(

d(Γ0)
ε

)
µ(x, 0) = − 1

ε ∆d(Γ0)γ
′
(

d(Γ0)
ε

)
We set the approximation parameter σ = 10−3 and we solve numerically the system using Algorithm 2.

Convergence of Mugnai’s approximation The first example illustrated in Figure 11 shows the evo-
lution of a circle taken as initial set Γ0, and the comparison with the exact solution. The numerical
parameters are P = 27, ε = 2/P or 3//P , and δt = 1/2ε21/P2. The smaller is ε, the closer the numeri-
cal flow is with respect to the continuous flow. This may indicate that the penalization term B̃σ(u) does
not influence the evolution of smooth interfaces.

Figure 11: Left: evolution of a circle by Mugnai’s flow; Right : Graphs of t 7→ Rε(t) for different values
of ε

This is also illustrated in Figure 12 where an initial torus in 3D evolves to the Clifford torus.

Figure 12: Smooth evolution by Mugnai’s flow of a torus in 3D. The blue torus is the target Clifford
torus.

We present two experiments in Figure 13 obtained with the set of parameters P = 27, ε = 2/P
and δt = 1/8ε2P−2. The simulations indicate that the additional penalization term B̃σ(u) prevents the
interfaces from colliding. This is coherent with what we argued in Section 2.5, i.e. that Mugnai’s energy
equals the classical energy plus a functional that penalizes non profile functions.

The same observation is illustrated in 3D on Figure 14. Both cylinders grow up, but deform them-
selves rather than colliding.
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Figure 13: Illustrations in 2D that Mugnai’s flow prevents from colliding.

Figure 14: Illustrations in 3D that Mugnai’s flow prevents from colliding. The interfaces preferably
deform themselves rather than merging.
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Conclusion To conclude this experimental section on Mugnai’s flow, let us observe that

• As long as the interfaces are smooth, Mugnai’s and the classical flow behave in the same way,
which was of course expected from the theoretical properties of the associated functionals. In
particular, the penalization term B̃σ(u) has no critical influence on the evolution of a smooth
interface, as long as the evolution remains smooth as well with the classical flow.

• Since Mugnai’s energyWMu
ε Γ-converges in dimension 2 to the relaxation of the Willmore energy,

the associated flow prevents from crossing, which is confirmed by the simulations. In 3D as well,
our simulations indicate that no crossing should occur. This indicates that the Γ-convergence
property should also be true in 3D for Mugnai’s energy, which is so far an open question that
requires a better understanding of the diffuse approximation of the genus (having in mind the
Gauss-Bonnet Theorem).
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