Skip to main content
Log in

The contact-stabilized Newmark method: consistency error of a spatiotemporal discretization

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The paper considers a slightly improved variant of the contact-stabilized Newmark method by Deuflhard et al., which provides a spatio-temporal numerical integration of dynamical contact problems between viscoelastic bodies in the frame of the Signorini condition. Up to now, the question of consistency in the case of contact constraints has been discussed for time integrators in function space under the assumption of bounded total variation of the solution. Here, interest focuses on the consistency error of the Newmark scheme in physical energy norm after discretization both in time and in space. The resulting estimate for the local discretization error allows to prove global convergence of the Newmark scheme under an additional assumption on the active contact boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. In: Pure and Applied Mathematics, 2nd edn, vol. 140. Elsevier, Oxford Amsterdam (2003)

  2. Ahn, J., Stewart, D.E.: Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. 29(1), 43–71 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deuflhard, P., Bornemann, F.: Scientific computing with ordinary differential equations. In: Texts in Applied Mathematics, vol. 42. Springer, Berlin Heidelberg (2002)

  4. Deuflhard, P., Krause, R., Ertel, S.: A contact-stabilized Newmark method for dynamical contact problems. Internat. J. Numer. Methods Eng. 73(9), 1274–1290 (2007)

    Article  MathSciNet  Google Scholar 

  5. Deuflhard, P., Weiser, M.: Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen. de Gruyter Lehrbuch. Walter de Gruyter, Berlin (2011)

  6. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  7. Eck, C.: Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. PhD thesis, Universität Stuttgart (1996)

  8. Ekeland, I., Temam, R.: Convex analysis and variational problems. In: Classics in Applied Mathematics, vol. 28. Society for Industrial and Applied Mathematics. Amsterdam, New York (1987)

  9. Gräser, C., Kornhuber, R.: Multigrid methods for obstacle problems. J. Comp. Math. 27(1), 1–44 (2009)

    MATH  Google Scholar 

  10. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. In: Structure-Preserving Algorithms for Ordinary Differential Equations. Computational Mathematics, 2nd edn, vol. 31. Springer, Berlin (2006)

  11. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I. In: Nonstiff Problems. Springer, Berlin (1987)

  12. Kane, C., Repetto, E.A., Ortiz, M., Marsden, J.E.: Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Eng. 180(1–2), 1–26 (1999)

    Article  MathSciNet  Google Scholar 

  13. Kikuchi, N., Oden, J.T.: Contact problems in elasticity. In: SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1988)

  14. Klapproth, C.: Adaptive numerical integration for dynamical contact problems. PhD thesis, Freie Universität Berlin, Also published at Cuvillier Verl. Göttingen (2011)

  15. Klapproth, C., Deuflhard, P., Schiela, A.: A perturbation result for dynamical contact problems. Numer. Math. Theor. Meth. Appl. 2(3), 237–257 (2009)

    MathSciNet  Google Scholar 

  16. Klapproth, C., Schiela, A., Deuflhard, P.: Consistency results on Newmark methods for dynamical contact problems. Numer. Math. 116(1), 65–94 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kornhuber, R.: Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. B. G. Teubner, Stuttgart (1997)

    MATH  Google Scholar 

  18. Kornhuber, R., Krause, R.: Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4(1), 9–20 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kornhuber, R., Krause, R., Sander, O., Deuflhard, P., Ertel, S.: A monotone multigrid solver for two body contact problems in biomechanics. Comput. Vis. Sci. 11(1), 3–15 (2008)

    Article  MathSciNet  Google Scholar 

  20. Krause, R.: Monotone Multigrid Methods for Signorini’s Problem with Friction. PhD thesis, Freie Universität Berlin (2000). http://www.diss.fu-berlin.de/2001/240/indexe.html

  21. Krause, R., Walloth, M.: Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl. Numer. Math. 62, 1393–1410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laursen, T.A.: Computational Contact and Impact Mechanics. Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer, Berlin (2003)

    Google Scholar 

  23. Laursen, T.A., Chawla, V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Internat. J. Numer. Methods Eng. 40(5), 863–886 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Eng. Mech. Div. ASCE 85, 67–94 (1959)

  25. Sander, O., Klapproth, C., Youett, J., Kornhuber, R., Deuflhard, P.: Towards an efficient numerical simulation of complex 3D knee joint motion. SIAM J. Sci. Comput., submitted. Preprint ZR 12–06, Zuse Institute Berlin, (2012). http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1451

  26. Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  27. Wohlmuth, B., Krause, R.: Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zeidler, E.: Nonlinear Functional Analysis and Applications II. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks Anton Schiela, Technical University of Berlin, and especially Peter Deuflhard, Zuse Institute Berlin, for helpful discussions on the topic of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Klapproth.

Additional information

Supported by the DFG Research Center Matheon, “Mathematics for key technologies: Modelling, simulation, and optimization of real-world processes”, Berlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klapproth, C. The contact-stabilized Newmark method: consistency error of a spatiotemporal discretization. Numer. Math. 131, 59–82 (2015). https://doi.org/10.1007/s00211-014-0686-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0686-1

Mathematics Subject Classification

Navigation