Skip to main content
Log in

Numerical Ricci–DeTurck flow

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a numerical method for the computation of the \(n\)-dimensional Ricci–DeTurck flow. The Ricci flow is a partial differential equation (PDE) deforming a time-dependent metric on a closed Riemannian manifold in proportion to its Ricci curvature. The Ricci–DeTurck flow is a reparametrization of this flow using the harmonic map flow in order to get a strictly parabolic PDE. Our numerical method is based on the assumption that the manifold is embeddable into \(\mathbb R^{n+1}\) as a differentiable manifold. By this means, it is possible to do computations in the Euclidean coordinates of the ambient space. A weak formulation of the Ricci–DeTurck flow is derived such that it only contains tangential gradients. A spatial discretization of this formulation with finite elements on polyhedral hypersurfaces and a semi-implicit time discretization lead to an algorithm for computing the Ricci–DeTurck flow. We have performed numerical tests for two- and three-dimensional hypersurfaces using piecewise linear finite elements. The generalization to non-orientable hypersurfaces of higher codimensions is still open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angenent, S., Knopf, D.: An example of neckpinching for Ricci flow on \(\mathbb{S}^{n+1}\). Math. Res. Lett. 11, 493–518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chow, B., Knopf, D.: The Ricci Flow: An introduction. In: Mathematical Surveys and Monographs, vol. 110. AMS, Providence (2004)

  3. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. In: Graduate Studies in Mathematics. AMS Science Press, Providence (2006)

  4. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numerica 14, 139–232 (2005)

  5. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47, 805–827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. DeTurck, D.M.: Deforming metrics in the direction of their Ricci tensor. In: Cao, H.D., Chow, B., Chu, S.C., Yau, S.T. (eds.) Collected papers on Ricci flow, Series in Geometry and Topology, vol. 37. International Press, Somerville (2003)

  7. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)

  8. Dziuk, G.: Computational parametric Willmore flow. Numer. Math. 111, 55–80 (2008)

  9. Dziuk, G.: Theorie und Numerik Partieller Differentialgleichungen. De Gruyter, Studium (2010)

    Book  MATH  Google Scholar 

  10. Fritz, H.: Isoparametric finite element approximation of Ricci curvature. IMA J Numer Anal (2013). doi:10.1093/imanum/drs037

    MathSciNet  Google Scholar 

  11. Garfinkle, D., Isenberg, J.: Numerical studies of the behavior of Ricci flow. In: Geometric Evolution Equations, Contemporary Mathematics, vol. 367. AMS, Providence (2005)

  12. Garfinkle, D., Isenberg, J.: The modeling of degenerate neck pinch singularities in Ricci flow by Bryant solitons. J. Math. Phys. 49, 073505 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MATH  Google Scholar 

  14. Hamilton, R.S.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, vol. II. International Press, Cambridge (1995)

  15. Heine, C.J.: Isoparametric finite element approximation of curvature on hypersurfaces. Preprint, Fakultät für Mathematik und Physik, Universität Freiburg Nr. 26 (2004)

  16. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis Comput Graph. 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  17. Lee, J.M.: Riemannian manifolds: an introduction to curvature. In: Graduate Texts in Mathematics. Springer, Berlin (1997)

  18. Lima, E.L.: The Jordan-Brouwer separation theorem for smooth hypersurfaces. Am. Math. Mon. 95(1), 39–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109

  20. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  21. Perelman, G.: Finite extinction time for solutions to the Ricci flow on certain three-manifolds (2003). arXiv:math.DG/0307245

  22. Rubinstein, J.H., Sinclair, R.: Visualizing Ricci flow of manifolds of revolution. Exp. Math. 14(3), 285–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmidt, A., Siebert, K.G.: Design of adaptive finite element software. In: Lecture Notes in Computational Science and Engineering. vol. 42. Springer, Berlin (2005)

  24. Shi, W.X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 223–301 (1989)

    MATH  Google Scholar 

  25. Simon, M.: A class of Riemannian manifolds that pinch when evolved by Ricci flow. Manuscr. Math. 101, 89–114 (2000)

    Article  MATH  Google Scholar 

  26. Taft, J.C.: Intrinsic geometric flows on manifolds of revolution. Ph.D. thesis (2010)

  27. Topping, P.: Lectures on the Ricci flow. Lecture Note Series 325. London Mathematical Society (2006)

  28. Vorst, H.A.v.d.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

  29. Yano, K.: On harmonic and killing vector fields. Ann. Math. Second Ser. 55(1), 38–45 (1952)

Download references

Acknowledgments

This work was supported by the German Research Foundation DFG via the SFB/TR 71 “Geometric Partial Differential Equations”. We thank Gerhard Dziuk for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Fritz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, H. Numerical Ricci–DeTurck flow. Numer. Math. 131, 241–271 (2015). https://doi.org/10.1007/s00211-014-0690-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0690-5

Mathematics Subject Classification

Navigation