Skip to main content
Log in

A new algebraic multigrid approach for Stokes problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Standard discretizations of Stokes problems lead to linear systems of equations in saddle point form, making difficult the application of algebraic multigrid methods. In this paper, a new approach is proposed. It consists in first transforming the system by pre- and post-multiplication with simple, algebraic, sparse block triangular matrices. This is a form of pre-conditioning in the literal sense, designed to make sure that the transformed matrix is well adapted to multigrid. In particular, after transformation, all the diagonal blocks are symmetric and positive definite, and correspond to, or resemble, a discrete Laplace operator. Then, to each of these diagonal blocks is associated a prolongation that works well for it, using any relevant algebraic or geometric multigrid method. Next, a multigrid scheme for the global system is naturally set up by combining these partial prolongations with a Galerkin coarse grid matrix. For this approach combined with damped Jacobi-smoothing, a uniform two-grid convergence bound is derived for the global system under the assumption that the two-grid schemes for the different diagonal blocks are themselves uniformly convergent. This result is illustrated by a few examples, showing further that time-dependent problems and variable viscosity can be handled in a natural way, without requiring parameter adjustment. A numerical comparison also shows that the new approach can be more effective than state-of-the-art block preconditioning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If \(0<\alpha <2(\lambda _{\max }(D_A^{-1}A))^{-1}\), then \(2\alpha D_A^{-1}-\alpha ^2 D_A^{-1}A D_A^{-1}\) is SPD, and hence \(\widehat{C}\) is SPD as well when \(C\) is positive definite on the range of \(B^T\).

  2. The offdiagonal entries of \(A_b^{(i)}\) correspond to the two offdiagonal entries of \(A\) that connect each node to other nodes belonging to the same aggregate (one on the same horizontal grid line and one on the same vertical grid line). In addition, each nodes has two connections that points outside the aggregate; altogether, these connections form the offdiagonal entries of \(A_r\).

  3. Other algebraic multigrid methods often require less iterations while being overall slower because this result is achieved thanks to larger complexities; see [23] for a comparative discussion.

References

  1. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brandt, A.: Algebraic multigrid theory: the symmetric case. Appl. Math. Comput. 19, 23–56 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brandt, A., Livne, O.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, revised edn. SIAM (2011)

  6. Brandt, A., McCormick, S.F., Ruge, J.W.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D.J. (ed.) Sparsity and its Application, pp. 257–284. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  7. Brezina, M., Cleary, A.J., Falgout, R.D., Henson, V.E., Jones, J.E., Manteuffel, T.A., McCormick, S.F., Ruge, J.W.: Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22, 1570–1592 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cahouet, J., Chabard, J.-P.: Some fast 3D finite element solvers for the generalized stokes problem. Int. J. Numer. Methods Fluids 8, 869–895 (1988)

    Article  MathSciNet  Google Scholar 

  9. Clees, T.: AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation. Dissertation, Mathematisch-Naturwissenschaftlichen Fakultät, Universität Köln, Germany (2005)

  10. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20, 345–357 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. J. Comput. Phys. 227, 1790–1808 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  13. Falgout, R.D., Vassilevski, P.S.: On generalizing the algebraic multigrid framework. SIAM J. Numer. Anal. 42, 1669–1693 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gaspar, F.J., Notay, Y., Oosterlee, CW., Rodrigo, C.: A simple and efficient segregated smoother for the discrete Stokes equations. SIAM J. Sci. Comput. 36, A1187–A1206 (2014)

  15. Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  16. Larin, M., Reusken, A.: A comparative study of efficient iterative solvers for generalized Stokes equations. Numer. Linear Algebra Appl. 15, 13–34 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Linden, J., Steckel, B., Stüben, K.: Parallel multigrid solution of the Navier–Stokes equations on general 2D domains. Parallel Comput 7, 461–475 (1988)

    Article  MATH  Google Scholar 

  18. Maitre, J., Musy, F., Nigon, P.: A fast solver for the stokes equations using multigrid with a Uzawa smoother. In: Braess, D., Hackbusch, W., Trottenberg, U. (eds.) Advances in Multi-Grid Methods. Notes on Numerical Fluid Mechanics, vol. 11. Vieweg, Braunschweig, pp. 77–83 (1985)

  19. Mardal, K.-A., Winther, R.: Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98, 305–327 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Metsch, B.: Algebraic Multigrid (AMG) for Saddle Point Systems. Dissertation, Institut für Numerische Simulation, Universität Bonn, Germany (2013)

  21. Napov, A., Notay, Y.: Algebraic analysis of aggregation-based multigrid. Numer. Linear Algebra Appl. 18, 539–564 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Napov, A., Notay, Y.: An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34, A1079–A1109 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Napov, A., Notay, Y.: Algebraic multigrid for moderate order finite elements. SIAM J. Sci. Comput. 36, A1678–A1707 (2014)

  24. Notay, Y.: AGMG software and documentation. http://homepages.ulb.ac.be/ynotay/AGMG. Accessed 15 Feb 2015

  25. Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37, 123–146 (2010)

    MATH  MathSciNet  Google Scholar 

  26. Notay, Y.: Algebraic analysis of two-grid methods: the nonsymmetric case. Numer. Linear Algebra Appl. 17, 73–96 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Notay, Y.: Aggregation-based algebraic multigrid for convection–diffusion equations. SIAM J. Sci. Comput. 34, A2288–A2316 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Notay, Y.: Algebraic theory of two-grid methods. Numer. Math. Theor. Methods Appl. (2014). (To appear)

  29. Notay, Y.: A new analysis of block preconditioners for saddle point problems. SIAM J. Matrix Anal. Appl. 35, 143–173 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Olshanskii, M.A., Peters, J., Reusken, A.: Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations. Numer. Math. 105, 159–191 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (eds.) Multigrid Methods. Frontiers in Applied Mathematics, vol. 3. SIAM, Philadelphia, pp. 73–130 (1987)

  33. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  34. Vanka, S.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid based on smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wabro, M.: Algebraic Multigrid Methods for the Numerical Solution of the Incompressible Navier–Stokes Equations. Dissertation, Johannes Kepler Universität Linz (2003)

  37. Wabro, M.: AMGe-coarsening strategies and application to the Oseen equations. SIAM J. Sci. Comput. 27, 2077–2097 (2005)

    Article  MathSciNet  Google Scholar 

  38. Wesseling, P.: Principles of Computational Fluid Dynamics. In: Springer Series in Computational Mathematics, vol. 29. Springer, Berlin (1992)

  39. Wittum, G.: Multi-grid methods for Stokes and Navier–Stokes equations. Numer. Math. 54, 543–563 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank Artem Napov for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Notay.

Additional information

Research Director of the Fonds de la Recherche Scientifique-FNRS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notay, Y. A new algebraic multigrid approach for Stokes problems. Numer. Math. 132, 51–84 (2016). https://doi.org/10.1007/s00211-015-0710-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0710-0

Mathematics Subject Classification

Navigation