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Abstract

The literature on meshless methods observed that kernel-based numerical dif-
ferentiation formulae are robust and provide high accuracy at low cost. This paper
analyzes the error of such formulas, using the new technique of growth functions.
It allows to bypass certain technical assumptions that were needed to prove the
standard error bounds on interpolants and their derivatives. Since differentiation
formulas based on polynomials also have error bounds in terms of growth functions,
we have a convenient way to compare kernel–based and polynomial–based formulas.
It follows that kernel-based formulas are comparable in accuracy to the best possible
polynomial–based formulas. A variety of examples is provided.

1 Introduction

We consider a linear differential operator D of order k in d real variables in the notation

Df =
∑

|α|≤k

aα∂αf, ∂α :=
∂|α|

∂xα
=

∂|α|

∂xα1

1 · · · ∂xαd
d

, |α| = α1 + · · · + αd, (1)

where aα are real functions of the independent variable such that
∑

|α|=k

|aα(z)| 6= 0 (2)

for a point z ∈ R
d that will be kept fixed as well as D throughout. We shall consider

formulas

Df(z) ≈
N∑

j=1

wj f(xj) (3)

that allow to evaluate Df(z) approximately using only function values at the nodes.
Given a point set X = {x1, . . . ,xN}, a standard way of obtaining numerical differ-

entiation formulas is by requiring that the formula should be exact for polynomials of
certain order. We denote by Πd

q the space of all d-variate polynomials of order at most

q, i.e. of total degree less than q, and Πd
0 := {0}.
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Definition 1. Let D be a linear differential operator of order k. A numerical differ-
entiation formula (3) based on a set X = {x1, . . . ,xN} ⊂ R

d of centres is said to be
polynomially consistent of order m ≥ 1 if it is exact for any polynomial p ∈ Πd

m+k.

Polynomially consistent formulas are extensively used in the finite difference methods
for partial differential equations, where X typically is a scaled and translated version of a
particular configuration of centres, such as the five point star used for the discretisation
of the Laplacian, and the weights are obtained by scaling a single stencil. This approach
is indeed efficient and effective if the centres used for the discretisation of a problem are
regularly distributed. In contrast to this, we consider the setting where the weights wj

need to be generated for each unique scattered constellation of centres x1, . . . ,xN that
arises for example in the cause of adaptive refinement or relocation.

A polynomially consistent formula of order m can be obtained by numerically solving
the equations

Dp(z) =
N∑

j=1

wj p(xj) for all p ∈ Πd
m+k (4)

for weights wj . The achievable order of polynomial consistency on a set X is limited
by solvability of (4) and will depend crucially on the geometry of X and the differential
operator D. For example, if all points are on a line, only derivatives along that line can
be approximated to reasonable order.

Numerical differentiation formulas on scattered centres are needed in meshless meth-
ods where the trial functions are often written “entirely in terms of nodes” [2], in particu-
lar in generalized finite difference methods [4]. For example, shape functions u1, . . . , uN

can be parametrized in terms of their values at scattered nodes x1, . . . , xN to yield
interpolatory trial functions [6]

uf (x) :=
N∑

j=1

uj(x) f(xj)

and formulas that are exact on these functions take the form

Df(z) ≈ Duf (z) =

N∑

j=1

Duj(z) f(xj)

which is of the required form with wj = Duj(z).
Similarly, the weights of a kernel based differentiation formula are obtained by re-

quiring that

DrX,K,f(z) =

N∑

j=1

wj f(xj),

where rX,K,f is a kernel interpolant of the data f(xj), j = 1, . . . ,N , defined by a positive
definite or conditionally positive definite kernel K, for example a radial basis function
interpolant. This means that there are no geometric restrictions on X and the weights
are computed by solving a single and simple linear system (see (18)) and lead to a
formula (3) that often works nicely without having a positive polynomial consistency
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order. The kernel based approach gains a growing popularity in meshless methods in
both weak and strong form [11, Sections 12–14]. The high approximation quality and
robustness of the method have been observed in many numerical experiments despite
the lack of polynomial consistency.

This paper provides a theoretical justification for these observations. We show (The-
orem 9) that the error of a kernel based differentiation formula is bounded by

inf
m≥1

ρm+k,D(z,X)CK,f,m, (5)

where CK,f,m is a measure of smoothness of K and f , independent of the geometry of
X, and ρq,D(z,X) is the growth function defined as

ρq,D(z,X) = sup
{
Dp(z) : p ∈ Πd

q , |p(xi)| ≤ ‖xi − z‖q
2, i = 1, . . . ,N

}
.

It turns out that the error of polynomially consistent formulas of order m is also governed
by the expressions of the type

ρm+k,D(z,X)Cf,m,

where Cf,m accounts for the smoothness of f , see (38) and (39) for precise formulations
of the lower and upper bounds. Therefore any data set X allowing some polynomial con-
sistency leads to a kernel–based differentiation formula that shares the error behaviour
with the differentiation formula of the optimal polynomial consistency order on that set,
without knowing or calculating that order. This explains the robustness of kernel-based
formulas in numerical applications.

As an illustration, we consider (see Section 4) the standard regular five–point star
approximation for the Laplacian in 2 variables. It has a polynomial consistency order
m = 2 and is exact on bivariate polynomials of order at most 4. Its error is O(h2) under
scaling. Our results show that for all sufficiently smooth kernels, the kernel–based
differentiation formulas for this special geometry have the same O(h2) error without
being polynomially consistent at all.

Note that the standard theory of error bounds for kernel interpolation, including
the error of derivatives, see e.g. [13], accounts for the geometry of X by resorting to
the fill distance, a measure of density of centers. This however presumes that the
centers of the same density should be equally well suited for interpolation or numerical
differentiation, and misses the fact that kernel based approximation actually does the
best a polynomially consistent method can do on a given point set. As a results, the
fill distance type estimates turn out to be either not applicable or utterly pessimistic
for the numerical differentiation formulas because of their requirement that the centres
are “sufficiently dense.” In the proof of the bound (5) we follow the classical scheme
involving a power function estimate and local polynomial reproduction [14], but instead
of the density assumption we use a duality argument relating the error to the polynomial
growth, see also [3, 1]. Note that although the density assumption was not used in
[3, 1], the estimates obtained there are not optimal when applied to the RBF numerical
differentiation formulas.

The paper is organized as follows. In Section 2 we introduce kernel-based numerical
differention formulas and discuss their existence and computation. Section 3 is devoted
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to our main results giving error bounds in terms of the growth function. In Section 4 we
derive lower and upper bounds for polynomially consistent formulas and compare them
to the kernel-based formulas. Finally, in Section 5 we provide numerical examples that
illustrate the theoretical results of the paper and compare the errors of numerical dif-
ferention formulas generated by Gaussian, Wendland and Matérn kernels, as well as the
polynomially consistent formulas of different orders. In particular, we provide examples
where the highest polynomial consistency order is not optimal, and demonstrate that
the kernel-based formulas are ‘aware’ of this, in line with the prediction given by (5).

2 Kernel-based numerical differentiation

Let
K : R

d × R
d → R

be a symmetric kernel on R
d. We will often require existence of certain partial derivatives

of K. Since it is important to distinguish both d-dimensional arguments of K, we will
use the following notation:

∂α,βK(x,y) :=
∂|α|

∂xα

( ∂|β|

∂yβ
K(x,y)

)
.

The kernel K is assumed to be conditionally positive definite (cpd) of some order
s = 0, 1, 2, . . .. This means that for any distinct points xi ∈ R

d, i = 1, . . . ,N the kernel
matrix

[K(xi,xj)]
N
i,j=1

is positive definite on the subspace of R
N of vectors a ∈ R

N satisfying zero moment
conditions

N∑

j=1

aj p(xj) = 0, for all p ∈ Πd
s .

If s = 0, the kernel is called (unconditionally) positive definite. For later use, we set
M := dim(Πd

s) =
(d+s−1

d

)
≥ 0 and fix a basis {p1, . . . , pM} for Πd

s .
Obviously, a cpd-kernel of order s is also a cpd-kernel of any order higher than s. In

particular, any positive definite kernel can be treated as a cpd-kernel of some nonzero
order and a polynomial term can be added to ensure that the interpolant (7) and any
numerical differentiation formula derived from it reproduce polynomials of order s.

A translation-invariant kernel K has the form K(x,y) = Φ(x−y), where Φ : R
d → R

is a real-valued function on R
d. A radial basis function (RBF) is a translation- and

rotation-invariant kernel K(x,y) = φ(‖x−y‖2) with a scalar function φ : [0,∞) → R.
Since the kernel-based differentiation formulas are derived from the derivatives of

interpolants, we now consider interpolation using a conditionally positive kernel K of
order s on sets of distinct points X = {x1, . . . ,xN} ⊂ R

d using the values of a real
function f at the points x1, . . . ,xN . The kernel interpolants rX,K,f have the form

rX,K,f = σa,X,b :=
N∑

j=1

ajK(·,xj) +
M∑

j=1

bjpj, (6)
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where the coefficients a = {aj} ∈ R
N and b = {bj} ∈ R

M in (6) are determined from
the conditions

rX,K,f(xk) =

N∑

j=1

ajK(xk,xj) +

M∑

j=1

bjpj(xk) = fk, k = 1, . . . ,N, (7)

and
N∑

j=1

aj pi(xj) = 0, 1 ≤ i ≤ M. (8)

This is uniquely solvable (see e.g. [13]) under the assumptions that N ≥ M = dim Πd
s

and X is a unisolvent set for Πd
s, that is p|X = 0 implies p = 0.

The representation (6) of functions is a direct sum, as can be easily shown, and we
view it as a split into a kernel part and a polynomial part. Now conditional positive
definiteness implies that

(σa,X,b, σc,Y,d)K :=
∑

xj∈X

∑

yk∈Y

ajK(xj ,yk)ck

is a semi-inner product which is zero on the polynomial part (if present) and an inner
product on the kernel part of (6). Going over to the completion turns the kernel part
into a Hilbert space, and thus there is a native space FK of functions on Ω which is the
direct sum of a Hilbert space and the polynomial space Πd

s, arising as completion of the
space of functions of the form (6). It is not straightforward to interpret the abstract
completion as a space of functions, but we leave details on this to [9].

Since we want to discuss differentiation formulas, we have to consider continuous
linear functionals on the native space. This starts with functionals of the form

λa,X : f 7→
N∑

j=1

ajf(xj) (9)

for all sets X = {x1, . . . ,xN} that are Πd
s–unisolvent and all vectors a ∈ R

N that satisfy
zero moment conditions on X in the sense of (8), that is λa,Xp = 0 for each p ∈ Πd

s. We
can define an inner product on these functionals by

(λa,X, λc,Y)K :=
∑

xj∈X

∑

yk∈Y

ajK(xj ,yk)ck = λa,Xσc,Y,0 = (σa,X,0, σc,Y,0)K (10)

and this implies that on the functionals of the above form we have the Riesz map

R(λa,X) = σa,X,0

mapping functionals into functions arising as kernel parts of (6). This carries over to the
completions of the pre–Hilbert spaces, and we see that continuous linear functionals on
the native space arise as limits of functionals of the form (9) under the topology induced
by the inner product (10). Furthermore, (10) implies that

|λa,Xf | = |(σa,X,0, f)K | ≤ ‖σa,X,0‖K‖f‖K = ‖λa,X‖K‖f‖K
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holds for all functions f ∈ FK , and

‖λa,X‖2
K =

N∑

j,k=1

ajakK(xj,xk) = λx
a,Xλy

a,XK(x,y) (11)

where the upper index shows the variable that the functional acts on. This proves that
all functionals λ will be admissible that arise as limits of functionals of the form λa,X

and give the right–hand side of the above equation a finite limit. Moreover, for any such
functional we have λyK(·,y) ∈ FK , and (11) remains valid in the form

‖λ‖2
K = ‖λyK(·,y)‖2

K = λxλyK(x,y). (12)

Lemma 2. The linear functional ∂α
z : f 7→ ∂αf(z) for a fixed z ∈ Ω and |α| ≥ s is

continuous on FK if ∂α,αK(z, z) exists.

Proof. We take finite–difference approximations to ∂α
z of the form λa,X with Πd

s–unisolvent
sets X and let all points move towards z to produce the derivative in the limit. The
functionals λa,X vanish on Πd

s because λa,Xp reproduces ∂α
z p exactly for all p ∈ Πd

s.

The above argument fails for lower–order derivatives, since we need that the func-
tionals λa,X vanish on Πd

s . But there is a workaround:

Lemma 3. All functionals of the form

µα
b,Y,z : f 7→ ∂αf(z) −

M∑

j=1

bjf(yj) (13)

that vanish on Πd
s and are based on Πd

s–unisolvent sets Y are continuous on FK if
∂α,αK(z, z) exists.

Proof. We take finite–difference approximations to ∂α
z of the form λa,X with Πd

s–unisolvent
sets X not containing z or points of Y, but we do not assume zero moment conditions
for the coefficient vectors a on Πd

s . Then we consider the functional

f 7→ λa,Xf −
M∑

j=1

bjf(yj) = λa,Xf − ∂αf(z) + µα
b,Y,z

which vanishes on Πd
s and is based on the unisolvent set X∪Y. This functional vanishes

on Πd
s because λa,Xp reproduces ∂α

z p exactly for all p ∈ Πd
s . Thus the functional can

be used in the standard argument, and we can let all points of X move towards z to
produce the limit functional µα

b,Y,z.

Of course, the above results generalize to values of linear differential operators:

Lemma 4. Let D be a linear differential operator of order k. All functionals of the
form

µb,Y,z : f 7→ Df(z) −
M∑

j=1

bjf(yj) (14)
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that vanish on Πd
s and are based on Πd

s–unisolvent sets Y are continuous on FK if
∂α,αK(z, z) exists for all |α| ≤ k. Moreover,

‖µb,Y,z‖
2
K = µx

b,Y,zµ
y
b,Y,zK(x,y). (15)

For the goals of this paper, we shall focus on functionals of the form (14), but note
that more general functionals are admissible as well, e.g. local integrals over derivatives.

Concerning approximations of derivatives, we should add a practical recipe. The
linear system

N∑

j=1

uj(x)K(xk,xj) +

M∑

j=1

vj(x)pj(xk) = K(x,xk), 1 ≤ k ≤ N,

N∑

j=1

uj(x)pi(xj) + 0 = pi(x), 1 ≤ i ≤ M,

(16)

is uniquely solvable as well as (7) and (8), having the same coefficient matrix. The
solution functions u1, . . . , uN are a Lagrange basis, i.e. they satisfy uj(xk) = δjk, 1 ≤
j, k ≤ N , and they are a linear combination of the functions p1, . . . , pM as well as
K(·,x1), . . . ,K(·,xN ), but, as can be shown by some linear algebra, their coefficients
in terms of the latter satisfy zero moment conditions on X. Some more details on the
Lagrange basis are in [11, Section 3.3].

Thus the interpolant rX,K,f to some function f can be written as

rX,K,f =
N∑

j=1

ujf(xj),

and each derivative thereof takes the form

∂αrX,K,f =
N∑

j=1

∂αuj︸ ︷︷ ︸
weights

f(xj) ≈ ∂αf

fitting into (3) if evaluated at z. These derivatives exist if the derivatives ∂αK(·,xj) exist,
since they are obtained from them via the linear system. Note that the above equation
directly gives the approximation of a derivative via kernel methods. In particular, by
applying λ := δzD to both sides of (16), we see that the weight vector w of the numerical
differentiation formula

Df(z) ≈ DrX,K,f(z) =
N∑

j=1

wj f(xj), (17)

where wj = Duj(z), can be obtained by solving the linear system

N∑

j=1

wjK(xk,xj) +

M∑

j=1

cjpj(xk) = δzDK(·,xk), 1 ≤ k ≤ N,

N∑

j=1

wjpi(xj) + 0 = δzDpi, 1 ≤ i ≤ M.

(18)
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Note that the components of the “dummy” vector c are not needed for the numerical
differentiation.

Note further that we have polynomial reproduction

rX,K,p = p for all p ∈ Πd
s

and hence

Dp(z) =

N∑

j=1

wj p(xj) for all p ∈ Πd
s

in the conditionally positive definite case of order s due to the second set of equations
in (16).

We summarize the results of this section in the following statement.

Proposition 5. Let D be a linear differential operator of order k and let K be a cpd-
kernel of order s. Kernel–based numerical differentiation formula (17) is well defined
as long as ∂α,βK(z, z) exists for all |α|, |β| ≤ k and X is a unisolvent set for Πd

s . The
formula (17) is exact for p ∈ Πd

s and its weight vector w can be found by solving the
linear system (18).

In the translation-invariant case K(x,y) = Φ(x − y) on R
d, the native space FK

generated by the kernel K can be described with the help of the generalised Fourier
transform f̂ as

FK = {f ∈ L2(R
d) : ‖f‖K < ∞},

where the (semi-) norm is

‖f‖K := (2π)−d/4
∥∥∥f̂/

√
Φ̂

∥∥∥
L2(Rd)

, f ∈ L2(R
d),

see [13, Theorem 10.21]. Recall that f̂ is given for any f ∈ L1(R
d) by the usual formula

f̂(x) = (2π)−d/2

∫

Rd

e−ixT
ωf(ω)dω, x ∈ R

d,

and it is defined in a distributional sense for certain functions f /∈ L1(R
d), see e.g. [13,

Section 8.2].
In the Fourier case, functionals λ have a complex–valued formal Fourier transform

λ̂ defined via

λ(f) = (2π)−d/2

∫

Rd

f̂(ω) λ̂(ω) dω

on functions f for which this integral exists. By Cauchy–Schwarz inequality, continuity
on the native space of Φ holds if

‖λ‖2
K = (2π)−d/2

∫

Rd

Φ̂(ω) |λ̂(ω)|2 dω < ∞

This is λyλxΦ(x − y), illustrating Lemmas 2 and 3.
To shed some light on the hidden peculiarities here, we consider the example of

thin–plate splines Φ(x − y) = ‖x − y‖2
2 log ‖x − y‖2 in R

2, which is a conditionally
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positive definite radial kernel of order 2. It is the fundamental solution of the bihar-
monic equation, and since the Fourier transform of −∆ is ‖ω‖2

2, its generalized Fourier
transform in R

2 thus is Φ̂(ω) = ‖ω‖−4
2 up to a constant [13, Theorem 8.17]. In this case,

continuous linear functionals are required to vanish on linear polynomials, and point
evaluation functionals are not continuous. After quite some work, the native space can
be identified with a Beppo–Levi space [13, Theorem 10.43], and we get continuous linear
functionals if we compose L2 functionals with second derivatives, e.g. λ(f) = −µ(∆f)
with µ ∈ (L2(R

2))∗. Their norms then are

‖λ‖2
K = (2π)−d/2

∫

Rd

Φ̂(ω) |∆̂(ω)|2|µ̂(ω)|2 dω = (2π)−d/2

∫

Rd

|µ̂(ω)|2 dω.

Lemma 2 is not applicable because the kernel is not smooth enough, while Lemma 3
works for |α| ≤ 1. On the other hand, Lemma 5 allows |α| = 2, but not with continuity.

3 Error bounds in terms of a growth function

We now proceed towards error bounds for kernel–based approximations of derivative
formulas. We start with a slight generalization of a standard result in kernel based
approximation, see e.g. [13, Theorem 11.4 and 11.5]:

Lemma 6. Let λ be a linear functional of the form λ = δzD, that is λf = Df(z), where
D is a linear differential operator of order k. Assume that ∂α,βK(z, z) exists for all
|α|, |β| ≤ k. Furthermore, let X be a unisolvent set for Πd

s . Then the interpolant rX,K,f

to a function f ∈ FK satisfies

|λf − λ rX,K,f | ≤ Pλ,X ‖f‖K , (19)

where Pλ,X is the power function defined by

P 2
λ,X = min

{
Qλ,X(w) : w ∈ R

N , λ p =

N∑

j=1

wjp(xj) for all p ∈ Πd
s

}
, (20)

where

Qλ,X(w) := ǫxλ,X,wǫyλ,X,wK(x,y), with ǫλ,X,w := λ −
N∑

j=1

wj δxj . (21)

Proof. We consider the functional

µ : f 7→ λf − λ rX,K,f = λf −

N∑

j=1

f(xj)λuj

on the native space FK using the Lagrange basis of (16). It vanishes on Πd
s due to

polynomial reproduction of interpolants, and it is a special case of the functionals ǫλ,X,w

in (21) for wj = λuj . Due to our assumptions on λ, all functionals ǫλ,X,w vanishing on
Πd

s satisfy Lemma 4, so that the quadratic form Qλ,X(w) is well–defined and

‖ǫλ,X,w‖2
K = ǫxλ,X,wǫyλ,X,wK(x,y) = Qλ,X(w),

9



which proves
|ǫλ,X,wf |2 ≤ Qλ,X(w)‖f‖2

K

for all coefficient vectors w admissible in (20).
The minimization of the quadratic form Qλ,X(w) with respect to w under the con-

ditions of polynomial reproduction in (20) can be carried out via Lagrange multipliers
in a standard way [13, Theorem 11.5], and the result is the system (16). This proves
that the optimal w is given by wj = λuj , and we get (19).

The above result shows in particular that

DrX,K,f(z) =

N∑

j=1

w∗
j f(xj), w∗

j = λuj , j = 1, . . . ,N,

provides the optimal recovery of Df(z) for f in the native space FK among all numerical
differentiation formulas exact for polynomials in Πd

s . Namely, under the hypotheses of
Lemma 6, let w be any weight vector satisfying the condition of polynomial reproduction
in (20). We have shown that

sup
‖f‖K≤1

|Df(z) −
N∑

j=1

wjf(xj)| =
√

Qλ,X(w), (22)

whereas

sup
‖f‖K≤1

|Df(z) −
N∑

j=1

w∗
j f(xj)| =

√
Qλ,X(w∗) = Pλ,X, (23)

which is the infimum of
√

Qλ,X(w) over all such weights w.
We now deduce an upper bound for Qλ,X(w) by using the Boolean sum of Taylor

polynomials of K with respect to x and y at z.

Lemma 7. Let λ = δzD, that is λf = Df(z), where D is a linear differential operator
of order k, and let X = {x1 . . . ,xN} ⊂ R

d be a Πd
s-unisolvent set. Assume that for some

q ≥ max{s, k + 1}, the cpd kernel K of order s possesses continuous partial derivatives
∂α,βK(x,y), |α|, |β| ≤ q for all (x,y) ∈ Ωz × Ωz, where Ωz ⊂ R

d is any domain
that contains {z} ∪ X and is star-shaped with respect to z. Furthermore, let w satisfy
λp =

∑N
j=1 wjp(xj) for all p ∈ Πd

q . Then

Qλ,X(w) ≤
( 1

q!

N∑

i=1

|wi| ‖xi − z‖q
2

)2( ∑

|α|,|β|=q

(
q

α

)(
q

β

)
max

x,y∈Sz,X

|∂α,βK(x,y)|2
)1/2

, (24)

where

Sz,X :=

N⋃

i=1

[z,xi] ⊂ Ωz.

Proof. Let Tq,zf denote the Taylor polynomial of order q of a function f centered at z

Tq,zf(x) =
∑

|α|<q

(x − z)α

α!
∂αf(z). (25)
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Then, by a well-known remainder formula, for any f ∈ Cq(Ωz),

f(x) − Tq,zf(x) = q
∑

|α|=q

(x − z)α

α!

∫ 1

0
(1 − t)q−1∂αf(z + t(x− z)) dt, x ∈ Ωz. (26)

Since K(x, ·) ∈ Cq(Ωz) for each x ∈ Ωz, its Taylor polynomial in y,

T y
q,zK(x,y) =

∑

|α|<q

(y − z)α

α!
∂0,αK(x, z),

satisfies

K(x,y) − T y
q,zK(x,y) = q

∑

|α|=q

(y − z)α

α!

∫ 1

0
(1 − t)q−1∂0,αK(x, z + t(y − z)) dt

for all x,y ∈ Ωz. Since ∂0,αK(·,y) ∈ Cq(Ωz), |α| < q, for any fixed y ∈ Ωz, we can apply
the remainder formula to the Taylor polynomial of S(x,y) := K(x,y) − T y

q,zK(x,y) in
x, which gives

S(x,y) − T x
q,zS(x,y) = q

∑

|α|=q

(x − z)α

α!

∫ 1

0
(1 − t)q−1∂0,αS(z + t(x − z),y) dt.

We observe that
S(x,y) − T x

q,zS(x,y) = K(x,y) − P (x,y),

where P (x,y) is the Boolean sum of Taylor polynomials,

P (x,y) = T x
q,zK(x,y) + T y

q,zK(x,y) − T x
q,zT

y
q,zK(x,y)

=
∑

|α|<q

(x − z)α

α!
∂α,0K(z,y) +

∑

|α|<q

(y − z)α

α!
∂0,αK(x, z)

−
∑

|α|,|β|<q

(x − z)α(y − z)β

α!β!
∂α,βK(z, z).

Since for all α, β with |α|, |β| < q,

ǫxλ,X,wǫyλ,X,w

(
(x − z)α∂α,0K(z,y)

)
= ǫxλ,X,w

(
(x − z)α

)
ǫyλ,X,w

(
∂α,0K(z,y)

)
= 0,

ǫxλ,X,wǫyλ,X,w

(
(y − z)α∂0,αK(x, z)

)
= ǫxλ,X,w

(
∂0,αK(x, z)

)
ǫyλ,X,w

(
(y − z)α

)
= 0,

ǫxλ,X,wǫyλ,X,w

(
(x − z)α(y − z)β

)
= ǫxλ,X,w

(
(x − z)α

)
ǫyλ,X,w

(
(y − z)β

)
= 0,

we conclude that
ǫxλ,X,wǫyλ,X,w

(
P (x,y)

)
= 0,

and hence

Qλ,X(w) = ǫxλ,X,wǫyλ,X,w

(
K(x,y) − P (x,y)

)

= λxλyR(x,y) − 2
N∑

i=1

wiλ
xR(x,xi) +

N∑

i,j=1

wiwjR(xi,xj),

11



where we set R := K−P and used the fact that both K(x,y) and P (x,y) are symmetric.
Since q > k, we have

λx
(
(x − z)α

)
=

∑

|γ|≤k

aγ(z)
( ∂|γ|

∂xγ
(x − z)α

)∣∣∣
x=z

= 0, |α| = q.

Hence for any y

λxR(x,y) = λx
(
q

∑

|α|=q

(x − z)α

α!

∫ 1

0
(1 − t)q−1∂α,0S(z + t(x− z),y) dt

)
= 0,

which implies λxR(x,xi) = 0 and λxλyR(x,y) = λyλxR(x,y) = 0, thus reducing the
above expression for Qλ,X(w) to its last term,

Qλ,X(w) =

N∑

i,j=1

wiwjR(xi,xj). (27)

To estimate it, we use the remainder of the Taylor polynomial T x
q,zS(x,y) to write

R(xi,xj) = q
∑

|α|=q

(xi − z)α

α!

∫ 1

0
(1 − t)q−1∂α,0S(xt

i,xj) dt,

where xt
i := z + t(xi − z), and

∂α,0S(xt
i,xj) = q

∑

|β|=q

(xj − z)β

β!

∫ 1

0
(1 − s)q−1∂α,βK(xt

i,x
s
j) ds.

By the multinomial theorem it is easy to see that

∑

|α|=q

(xj − z)2α

α!
=

1

q!
‖xj − z‖2q

2 . (28)

Hence, the weighted Cauchy-Schwarz inequality gives

|R(xi,xj)|
2 ≤

( ∑

|α|=q

|(xi − z)α|

α!
max
0≤t≤1

∣∣∣∂α,0S(xt
i,xj)

∣∣∣
)2

≤
∑

|α|=q

(xi − z)2α

α!

∑

|α|=q

1

α!
max
0≤t≤1

∣∣∣∂α,0S(xt
i,xj)

∣∣∣
2

≤
1

q!
‖xi − z‖2q

2

∑

|α|=q

1

α!

∑

|β|=q

(xj − z)2β

β!

∑

|β|=q

1

β!
max

0≤t,s≤1

∣∣∣∂α,βK(xt
i,x

s
j)

∣∣∣
2

=
1

(q!)2
‖xi − z‖2q

2 ‖xj − z‖2q
2

∑

|α|,|β|=q

1

α!β!
max

0≤t,s≤1

∣∣∣∂α,βK(xt
i,x

s
j)

∣∣∣
2
,

and (24) follows in view of (27).
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Lemmas 6 and 7 imply the error bound

|Df(z) − DrX,K,f(z)| ≤

√
MK,q

q!
‖f‖K

N∑

i=1

|wi| ‖xi − z‖q
2, f ∈ FK , (29)

where q ≥ max{s, k + 1}, w is any vector satisfying Dp(z) =
∑N

j=1 wjp(xj) for all

p ∈ Πd
q , and

MK,q :=
( ∑

|α|,|β|=q

(
q

α

)(
q

β

)
‖∂α,βK‖2

C(Ω×Ω)

)1/2
, (30)

with Ω ⊂ R
d such that Sz,X ⊂ Ω and ∂α,βK(x,y) ∈ C(Ω × Ω) for all |α|, |β| ≤ q. We

stress that w in (29) is not the weight vector w of (3) determined by (18).
Clearly, q and w are parameters of the bound (29) rather than of the approximation

method, and hence for given D, z,X one can look for the optimal choice of q,w that
minimize the right hand side of (29). Of course, the greater q is chosen, the more
restrictive is the condition on w, and for a sufficiently large q it is impossible to find
any feasible vector w.

For a fixed q, the optimal value of
∑N

i=1 |wi| ‖xi − z‖q
2 has a useful interpretation as

the maximum attainable value of Dp(z) subject to the conditions |p(xi)| ≤ ‖xi − z‖q
2.

More precisely, the growth function ρq,D(z,X) is defined by

ρq,D(z,X) = sup
{
Dp(z) : p ∈ Πd

q , |p(xi)| ≤ ‖xi − z‖q
2, i = 1, . . . ,N

}
. (31)

Note that a slightly different growth function has been used in the RBF error bounds
in [3, 1]. (The growth function is also related to the norming constant used in the error
bounds introduced in [7].) The following statement is easily obtainable by the duality
of linear functionals, see e.g. [1, Lemma 4].

Lemma 8. The identity

inf
{ N∑

i=1

|wi| ‖xi − z‖q
2 : w ∈ R

N , Dp(z) =
N∑

j=1

wjp(xj) for all p ∈ Πd
q

}
= ρq,D(z,X)

holds as soon as there exists an admissible vector w in the left hand side. If there is no
such vector, then ρq,D(z,X) = ∞.

From this and (29) we obtain the following result.

Theorem 9. Let K be an cpd-kernel of order s on Ω, and let D be a linear differential
operator of order k. Assume that X = {x1 . . . ,xN} ⊂ Ω is a Πd

s-unisolvent set. Then,
for any z ∈ Ω, such that Sz,X ⊂ Ω, and any q ≥ max{s, k + 1} such that ∂α,βK(x,y) ∈
C(Ω × Ω) for all |α|, |β| ≤ q,

Pλ,X ≤ ρq,D(z,X)

√
MK,q

q!
, λf = Df(z), (32)

and hence

|Df(z) − DrX,K,f(z)| ≤ ρq,D(z,X)

√
MK,q

q!
‖f‖K , f ∈ FK . (33)

Note that in the case of the identity operator Df = f , Theorem 9 gives a new error
bound for the kernel based interpolation.
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4 Comparison to polynomially consistent formulas

Recall that the auxiliary weights wi in (29) satisfy Dp(z) =
∑N

j=1 wjp(xj) for all p ∈ Πd
q ,

that is, they are the weights of a numerical differentiation formula

Df(z) ≈

N∑

j=1

wj f(xj)

exact for polynomials of order q and hence polynomially consistent of order q− k in the
sense of Definition 1.

The following theorem gives an error bound for polynomially consistent formulas
strikingly similar to (29).

Theorem 10. Any differentiation formula (3) which is polynomially consistent of order
m ≥ 1 for a linear differential operator D of order k has an error bound

|Df(z) −

N∑

j=1

wj f(xj)| ≤
1

(m + k)!
|f |∞,m+k,Ω

N∑

j=1

|wj |‖xj − z‖m+k
2 (34)

for all f ∈ Cm+k(Ω), where Ω ⊂ R
d is any domain that contains Sz,X. Here, we use the

following semi–norm on Cq(Ω)

|f |∞,q,Ω :=
( ∑

|α|=q

(
q

α

)
‖∂αf‖2

∞,Ω

)1/2
.

Proof. Let Tq,zf denote the Taylor polynomial of order q of a function f centered at z

as defined in (25). In view of the remainder formula (26), by setting R = f − Tq,zf for
q := m + k and using the fact that DR(z) = 0, we can estimate the error of an order m
polynomially consistent numerical differentiation formula as

|Df(z) −

N∑

j=1

wj f(xj)| = |DR(z) −

N∑

j=1

wj R(xj)| ≤

N∑

j=1

|wjR(xj)|

By (26),

|R(xj)| ≤
∑

|α|=q

|(xj − z)α|

α!
‖∂αf‖C(Ω).

By (28) and Cauchy-Schwarz inequality,

( ∑

|α|=q

|(xj − z)α|

α!
‖∂αf‖C(Ω)

)2
≤

∑

|α|=q

(xj − z)2α

α!

∑

|α|=q

‖∂αf‖2
C(Ω)

α!

=
1

q!
‖xj − z‖2q

2

∑

|α|=q

‖∂αf‖2
C(Ω)

α!
,

which implies

|R(xj)| ≤ ‖xj − z‖q
2

( 1

q!

∑

|α|=q

1

α!
‖∂αf‖2

∞,Ω

)1/2
, (35)

and (34) follows.
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We now show that the bound (34) cannot be significantly improved for any numerical
differentiation formula if the centres in X are well separated.

Theorem 11. Given z and X, let K ≥ 1 be such that

‖xj − z‖2 ≤ K dist(xj ,X \ {xj}), j = 1, . . . ,N. (36)

For any numerical differentiation formula (3) there exists a function f ∈ C∞(Rd) such
that

|Df(z) −

N∑

j=1

wj f(xj)| ≥ C|f |∞,m+k,Ω

N∑

j=1

|wj |‖xj − z‖m+k
2 , (37)

where C depends only on m,k,N, d and K. Moreover, if (3) is polynomially consistent
of order m, then

|Df(z) −

N∑

j=1

wj f(xj)| ≥ Cρm+k,D(z,X)|f |∞,m+k,Ω. (38)

Proof. Denote by sj, j = 1, . . . , N , the distance from xj to X∪ {z} \ {xj} and consider
the function

f(x) =

N∑

j=1

xj 6=z

sign(wj)‖xj − z‖m+k
2 φ

(x − xj

sj

)
,

where φ is a C∞ ‘bump function’ supported in the unit disk in R
d, for example

φ(x) =

{
e−1/(1−‖x‖2

2
)e, if ‖x‖2 ≤ 1,

0, otherwise.

Then Df(z) = 0 and

|Df(z) −

N∑

j=1

wj f(xj)| =

N∑

j=1

|wj |‖xj − z‖m+k
2 .

Since
∂|α|

∂xα
φ
(x − xj

sj

)
=

1

sm+k
j

∂αφ
(x − xj

sj

)
, |α| = m + k,

it follows that

|f |∞,m+k,Ω ≤

N∑

j=1

xj 6=z

(‖xj − z‖2

sj

)m+k
|φ|∞,m+k,Rd ≤ NKm+k|φ|∞,m+k,Rd ,

which proves (37). The bound (38) follows immediately in view of Lemma 8.
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If the weight vector w is uniquely determined by the consistency conditions (4), then
Theorem 10 and Lemma 8 lead to the upper bound in the form similar to (33),

|Df(z) −
N∑

j=1

wj f(xj)| ≤ ρm+k,D(z,X)
|f |∞,m+k,Ω

(m + k)!
, (39)

which shows that up to the difference in the norm of f , the error in both cases is
determined by the growth function.

Moreover, in the case when for given z,X and m there are more than one poly-
nomially consistent formula for the operator D, we consider the minimal polynomially
consistent formulas which minimise the weighted ℓ1-norm

∑N
j=1 |wj |‖xj − z‖m+k

2 with
respect to all weights w satisfying the consistency conditions (4). Note that such mini-
mal formulas, with an addtional assumption of positivity, have been studied recently in
[12]. The following statement follows immediately from Theorem 10 and Lemma 8.

Theorem 12. Let (3) be a minimal polynomially consistent differentiation formula of
order m ≥ 1 for a linear differential operator D of order k. Then (39) holds for all
f ∈ Cm+k(Ω), where Ω ⊂ R

d is any domain that contains Sz,X.

As a consequence, we also obtain the following sampling inequality.

Corollary 13. Let ρm+k,D(z,X) < ∞ for a linear differential operator D of order k
and some m ≥ 1, and let f ∈ Cm+k(Ω) for some domain Ω ⊂ R

d containing Sz,X. If
f |X = 0, then

|Df(z)| ≤ ρm+k,D(z,X)
|f |∞,m+k,Ω

(m + k)!
. (40)

Proof. Indeed, by Lemma 8 ρm+k,D(z,X) < ∞ implies the existence of a polynomially
consistent formula (3) of order m. By Theorem 12 a minimal formula satisfies (39),
which implies (40) since f |X = 0.

See [8] for a survey of sampling inequalities and their use.

If D is a homogeneous linear differential operator of order k, then any polynomially
consistent numerical differentiation formula generates a whole family of polynomially
consistent formulas by scaling. Indeed, assume that the formula (3) is consistent of
order m. Then it is easy to see that for any h > 0 the formula

(Df)(z) ≈

N∑

j=1

wj

hk
f(xh

j ), xh
j := z + h(xj − z) (41)

is consistent of the same order, and the error bound (34) takes the form

|Df(z) −

N∑

j=1

wj

hk
f(xh

j )| ≤ hm |f |∞,m+k,Ωh

(m + k)!

N∑

j=1

|wj |‖xj − z‖m+k
2 ,

where Ωh contains Sz,Xh , with Xh := z + h(X − z). Thus, for a minimal polynomially
consistent formula,

|Df(z) −
N∑

j=1

wj

hk
f(xh

j )| ≤ hmρm+k,D(z,X)
|f |∞,m+k,Ωh

(m + k)!
. (42)
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For a homogeneous D, we have

ρq,D(z,Xh) = hq−kρq,D(z,X). (43)

Indeed, by setting ph(x) = h−qp(z + h(x − z)), we have p(xh
j ) = hqph(xj), ‖x

h
j − z‖q

2 =

hq‖xj − z‖q
2 and Dp(z) = hq−kDph(z), and hence

ρq,D(z,Xh) = sup{Dp(z) : p ∈ Πd
q , |p(xh

j )| ≤ ‖xh
j − z‖q

2}

= hq−k sup{Dph(z) : ph ∈ Πd
q , |ph(xj)| ≤ ‖xj − z‖q

2}.

Therefore we obtain from Theorem 9 for the scaled centres Xh,

|Df(z) − DrXh,K,f(z)| ≤ hmρm+k,D(z,X)

√
MK,m+k

(m + k)!
‖f‖K , (44)

showing the same scaling of the error as in (42). However, the weights of the formulas
generated by rXh,K,f will not be in general the scaled versions of the weights generated
by rX,K,f .

As an example consider the classical five point numerical differentiation formula for
the Laplacian D = ∆ in two variables. It is given by the centres

X = {xj}
5
j=1 = {z, z ± (0, 1), z ± (1, 0)}

and weights w1 = −4, w2 = w3 = w4 = w5 = 1 and is exact for all cubic polynomials
p ∈ Π2

4. Then ρ4,∆(z,X) = 4. Indeed, assuming |p(xj)| ≤ ‖xj − z‖4
2, j = 1, . . . , 5, we

have p(x1) = 0, |p(xj)| ≤ 1, j = 2, . . . , 5, which implies ∆p(z) =
∑5

j=1 wjp(xj) ≤ 4.

On the other hand, p̃(x) = ‖x‖2
2 satisfies these conditions, and ∆p̃(z) = 4. Since∑5

j=1 |wj |‖xj − z‖4
2 = 4, we see that this formula is minimal. Now (42) gives the

following error bound for the scaled formulas

|∆f(z) −
5∑

j=1

wj

h2
f(xh

j )| ≤
h2

6
|f |∞,4,Ωh .

Note that by using a standard error formula for the central difference approximation of
the second derivative in one variable h−2

(
f(x+h)−2f(x)+f(x−h)

)
−f ′′(x) = h2

12f (4)(ξ),
for some ξ ∈ (x − h, x + h), a slightly better estimate is obtained in the form

|∆f(z) −

5∑

j=1

wj

h2
f(xh

j )| ≤
h2

12

(
max

|x1−z1|≤h

∣∣∣
∂4f

∂x4
1

(x1, 0)
∣∣∣ + max

|x2−z2|≤h

∣∣∣
∂4f

∂x4
2

(0, x2)
∣∣∣
)
.

By (44) we have a similar bound for the error of the kernel based formulas on the same
scaled centres assuming that s ≤ 4 and MK,4 < ∞,

|∆f(z) − ∆rXh,K,f(z)| ≤
h2

6

√
MK,4‖f‖K .

Note that this error bound cannot be obtained by the standard approach of estimating
the error in terms of the fill distance [13, Section 11.2]. Indeed, the 5 centres are far
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from being “unisolvent” for polynomials, or “sufficiently dense” in the sense of the
hypothesis of a small fill distance arising in the standard literature on error bounds of
kernel–based approximations. In fact, a simple calculation (see [3, Section 3]) shows that
the arguments based on Markov inequality as in [13, Proposition 11.6] would predict
the estimate |∆f(z) − ∆rXh,K,f(z)| = O(h) and thus convergence of the approximate
Laplacian as h → 0 only if X consists of no less than hundreds of centers.

By comparing Theorem 9 with the estimates (39) and (38) we observe the following
important feature of the kernel-based formulas: The estimate (33) is valid for any q ≥
max{s, k +1} bounded above only by the smoothness class of the kernel. Therefore, the
error is governed by ρq,D(z,X) with optimal q. Numerical examples in the next section
illustrate that indeed the error of the kernel-based formula is comparable to the error of
the minimal polynomial formula with optimal order of polynomial reproduction.

5 Numerical Examples

Our experiments are for the approximation of λf = ∆f(z), where ∆ is the Laplace
operator in 2D and z ∈ R

2. We consider three sets X̂i ⊂ [−1, 1]2, i = 1, 2, 3, of 32
points containing the origin, and generate numerical differentiation centres by scaling
and translating these sets as Xh

i = z + hX̂i, where h = 2−n, n = 0, . . . , 10. The set X̂1

consists of the origin and 31 random points in [−1, 1]2 drawn from the uniform distri-
bution, see Figure 1(a). The set X̂2 includes 32 points on a straight line, a hyperbola
and an ellipse, see Figures 1(c) and 2(a), perturbed (except of the point at the origin)
randomly by at most 10−6 in both coordinate directions. The set X̂3 includes 32 points
on three parallel straight lines, see Figures 1(e) and 2(b), also perturbed in a similar
way.

In the first example we consider kernel-based numerical differentiation using the
Gaussian kernel K(x,y) = e−ε2‖x−y‖2

with ε = 2. Figures 1(b)(d)(f) show the power
function Pλ,X, that is the error (23) of the optimal recovery on the unit ball of the
Gaussian native space, the bounds (32) for Pλ,X obtained with various orders q = 3, . . . , 7
(distinguishable by their slopes), and the maximum numerical differentiation error for

the test function f1(x1, x2) = 151/4

2 e−5(x1−0.1)2−4x2

2 over z in a uniform 21 × 21-grid in
z0 + [−0.1, 0.1], where z0 = (0.23, 0.34). Note that ‖f‖K = 1 in the Gaussian (ε = 2)
native space on R

2, ∆f(z0) ≈ −5.0748 and the values of ∆f(z) vary between -11.066
and -0.11128 over the grid. Gaussian numerical differentiation formulas are obtained by
solving (18) directly for h = 1, 1

2 , 1
4 , by the Gauss-QR method (see [5] and references

therein) for h = 1
8 , 1

16 , 1
32 , and using the variable-precision arithmetic (between 32 and

64 digits) of MATLAB Symbolic Math Toolbox for the smaller values of h. For the
evaluation of the power function we used the variable-precision arithmetic already for
h ≤ 1

16 because of numerical instabilities due to cancellations inherent in (21). The
constants MK,q in (32) are computed using Ω = z0 + h[−1.1, 1.1]2 in (30).

Since dimΠ2
7 = 28 < 32 < 36 = dim Π2

8, the highest order we can expect for the
growth function to be finite for 32 centres in general position is q = 7. The smallest
q for which Theorem 9 applies to the Laplacian as a second order operator is q =
3. Therefore, we compute the bounds according to (32) for all q = 3, . . . , 7. The
corresponding dashed curves in Figure 1 are close to straight lines because the factor
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(a) X̂1: random points
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(c) X̂2: near to a curve of degree 5
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(e) X̂3: near to a curve of degree 3
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Figure 1: Numerical differentiation of the Laplacian with Gaussian formulas and bounds
according to Theorem 9 for Xh

i , i = 1, 2, 3. Left: Sets of centres. Right: Differentiation
errors and bounds as functions of h, opt recovery: optimal recovery error (23); test
function: differentiation error for the test function f1; poly bounds: error bounds (32)
for various q.
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Figure 2: .

MK,q in (32) changes insignificantly with scaling whereas the growth function satisfies

ρq,D(z,Xh
i ) = hq−2ρq,D(z, X̂i), which generates distinctive slopes for the lines. We

can see that the error curves in Figures 1(b)(d) generally follow the slope of the best
bounding line which corresponds to q = 7 for X̂1 and q = 6 for X̂2. For the set X̂3 in
Figure 1(f) we can recognise a transition from the slope corresponding to the bound of
order q = 4 for h = 1, 1

2 , 1
4 to the slope of the bound of order q = 6 for h ≤ 1

128 . The

non-optimal behaviour for the sets X̂2 and X̂3 can be explained by their proximity to
lower order algebraic curves, see Figure 2.

In the second example we compare the errors of the numerical differentiation of the
Laplacian λf = ∆f(z) by several kernel-based formulas and the minimal polynomially
consistent formulas of various orders for functions in the Sobolev space H6(R2) on the
above sets of centres Xh

i = z + hX̂i. Recall that Hs(Rd) = W s
2 (Rd) coincides with the

native space of the Matérn kernel

Ms,d(x,y) :=
Ks−d/2(‖x − y‖)‖x − y‖s−d/2

2s−1Γ(s)
, s > d/2,

where Kν(x) denotes the modified Bessel function of second kind. Since Ms,d(x,y) =

Φ(x− y) with Φ̂(ω) = (1 + ‖ω‖2)−s, it follows that

‖f‖2
Hs(Rd) := (2π)−d/2

∫

Rd

|f̂(ω)|2(1 + ‖ω‖2)s dω = ‖f‖2
Ms,d

.

Hence the kernel-based numerical differentiation formula (17) obtained using the Matérn
kernel M6,2 delivers the optimal recovery (23) on H6(R2). In addition to the Matérn ker-
nel M6,2 we consider kernel-based formulas generated by the Gaussian kernel K(x,y) =

e−ε2‖x−y‖2

with ε = 0.5, and by two Wendland kernels, K(x,y) = φ3,3(ε‖x − y‖) and
K(x,y) = φ3,6(ε‖x − y‖) [13, Section 9.4],

φ3,3(r) = (1 − r)8+(32r3 + 25r2 + 8r + 1),

φ3,6(r) = (1 − r)14+ (46189r6 + 73206r5 + 54915r4 + 24500r3 + 6755r2 + 1078r + 77),
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both with ε = 0.07. Note that φ3,3 is 6, and φ3,6 12 times continuously differentiable.
Moreover, we also compute the error of the minimal polynomially consistent formulas
of various orders considered in Section 4. Figures 3(a)(c)(e) present the maximum
approximation error (22) of each numerical differentiation formula on the space H6(R2)
computed using the functional Qλ,X(w) of (21) for the Matérn kernel M6,2. In particular,
the weights obtained with the Matérn kernel itself provide the error of the optimal
recovery on H6(R2). Note that Qλ,X(w) is independent of the choice of z because the
Matérn kernel is translation invariant. In Figures 3(b)(d)(f) we present the errors of
the same formulas for the approximation of ∆f2(0, 0) for the test function f2(x1, x2) =
φ3,2(

√
x2

1 + x2
2), where φ3,2(r) = (1− r)6(35r2 + 18r + 3) is another Wendland function.

Note that f2 ∈ W 5
∞(R2) and H6(R2) is continuously embedded in W 5

∞(R2). We used the
variable-precision arithmetic for the weights of the Wendland and Matérn kernel-based
differentiation formulas, and for the computation of the errors. However, the weights
of the minimal polynomial formulas are computed in the standard double precision
arithmetic, which explains the erroneous behaviour of some of the polynomial curves in
Figures 3(a)(c)(e) for h ≤ 1

128 .
The results in Figure 3 indicate an h3 order of the optimal recovery error for both Xh

1

and Xh
2 and h2 for Xh

3 . Clearly, h3 is indeed the best possible order for the recovery of
the pointwise value of the Laplacian as a second order operator for functions in H6(R2).
This is contrasted with the h5 and h4 orders achieved on Xh

1 and Xh
2 , respectively, on

the native space of the Gaussian in our first experiments, see Figures 1(b)(d). The
order h2 for Xh

3 is explained by the proximity of this set to a curve of degree 3. In
contrast to Figure 1(f), no improvement of the slope of the optimal error curve is seen
for small h. Note that ∂α,βM6,2(x,y) is discontinuous when x = y if |α|+ |β| = 10, and
hence Theorem 9 only implies an estimate of order h2 for the kernel-based numerical
differentiation with M6,2 for centres in a good position. For all formulas the error for
the test function f2 and the maximum error on H6(R2) behave strikingly similar, with
the exception that Wendland function-based formulas seem advantageous for f2 when h
is relatively large, which might be related to the fact that f2 itself belongs to the family
of Wendland functions with the distinctive piecewise polynomial structure. Whereas
the Matérn kernel-based differentiation formulas seem to be the best performers in all
cases, the results delivered by the other methods strongly depend on the character of the
centres. The best performing polynomial method seems to be the one which corresponds
to the order for which the growth functions are the smallest: q = 7 for Xh

1 , q = 6 for
Xh

2 and q = 4 for Xh
3 . (Recall that the dashed lines in Figure 1(b)(d)(f) represent the

growth functions of the orders q = 3, . . . , 7 multiplied by the a factor slowly varying with
h. Note that in the second experiment the curves for the polynomial methods with q = 5
and q = 6 are very close and we decided to only include q = 5 in Figure 3.) Although the
Gaussian kernel with the chosen shape parameter ε = 0.5 gives almost optimal results
for the random centres in Xh

1 , for the more problematic centres its error curve seems to
‘gravitate’ towards a higher order polynomial error curve (q = 7 for Xh

2 and q = 5 for
Xh

3), giving rise to a particularly bizarre shape in Figures 3(c)(d) where this behaviour
only manifests itself for h ≤ 1

128 , whereas for h ≥ 1
8 the Gaussian formulas are almost

optimal, and there is a transition region for 1
128 ≤ h ≤ 1

8 , where the error is actually
larger for smaller h. There are similar patterns in the error curves for φ3,6 on Xh

3 with
a gravitaton towards the polynomial curve with q = 5. The slope of the error curves for
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Figure 3: Error of numerical differentiation of the Laplacian on the Sobolev space H6(R2)
(left) and for the test function f2 using centres in Xh

i , i = 1, 2, 3 (right), as function of h.
The curves correspond to the weights obtained by different methods. opt recovery,

Matern: Matérn kernel, which provides optimal recovery on H6(R2); φ3,3, φ3,6: Wend-
land kernels with ε = 0.07; Gauss: Gaussian kernel with ε = 0.5; poly4, poly5, poly7:
minimal polynomial formulas of corresponding orders.
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φ3,3 resembles that of the polynomial curves with q = 4, giving the approximation order
h2 on all sets. We see that in all cases one of the two Wendland kernel-based formulas
with the shape parameter ε = 0.07 is almost optimal (φ3,6 for Xh

1 and Xh
2 and φ3,3 for

Xh
3).

Further examples along the lines of Figure 3 are in [10, Section 9, Table 1, Figures
3 to 6]. There, the error norms of various differentiation formulas, including those with
polynomial consistency and optimized weights, are not only compared on Sobolev space,
but also on Beppo–Levi spaces. The latter spaces are well–adapted to formulas with
polynomial consistency.
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