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Abstract

We introduce a new class of adaptive methods for optimization problems posed on the
cone of convex functions. Among the various mathematical problems which posses such a
formulation, the Monopolist problem [24, 10] arising in economics is our main motivation.

Consider a two dimensional domain Ω, sampled on a grid X of N points. We show that
the cone Conv(X) of restrictions to X of convex functions on Ω is typically characterized
by ≈ N2 linear inequalities; a direct computational use of this description therefore has a
prohibitive complexity. We thus introduce a hierarchy of sub-cones Conv(V) of Conv(X),
associated to stencils V which can be adaptively, locally, and anisotropically refined. We
show, using the arithmetic structure of the grid, that the trace U|X of any convex function
U on Ω is contained in a cone Conv(V) defined by only O(N ln2N) linear constraints, in
average over grid orientations.

Numerical experiments for the Monopolist problem, based on adaptive stencil refinement
strategies, show that the proposed method offers an unrivaled accuracy/complexity trade-off
in comparison with existing methods. We also obtain, as a side product of our theory, a new
average complexity result on edge flipping based mesh generation.

A number of mathematical problems can be formulated as the optimization of a convex
functional over the cone of convex functions on a domain Ω (here compact and two dimensional):

Conv(Ω) := {U : Ω→ R; U is convex}.

This includes optimal transport, as well as various geometrical conjectures such as Newton’s
problem [16, 18]. We choose for concreteness to emphasize an economic application: the Monop-
olist (or Principal Agent) problem [24], in which the objective is to design an optimal product
line, and an optimal pricing catalog, so as to maximize profit in a captive market. The following
minimal instance is numerically studied in [1, 10, 21] and on Figure 1. With Ω = [1, 2]2

min

{ˆ
Ω

(
1

2
‖∇U(z)‖2 − 〈∇U(z), z〉+ U(z)

)
dz; U ∈ Conv(Ω), U ≥ 0

}
. (1)

We refer to the numerical section §6, and to [24] for the economic model details; let us only say
here that the Monopolist’s optimal product line is {∇U(z); z ∈ Ω}, and that the optimal prices
are given by the Legendre-Fenchel dual of U . Consider the following three regions, defined for
k ∈ {0, 1, 2} (implicitly excluding points z ∈ Ω close to which U is not smooth)

Ωk := {z ∈ Ω; rank(HessianU(z)) = k}. (2)
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Figure 1: Numerical approximation U of the solution of the classical Monopolist’s problem
(1), computed on a 50 × 50 grid. Left: level sets of U , with U = 0 in white. Center left:
level sets of det(HessianU) (with again U = 0 in white); note the degenerate region Ω1 where
det(HessianU) = 0. Center right: distribution of products sold by the monopolist. Right: profit
margin of the monopolist for each type of product (margins are low on the one dimensional part
of the product line, at the bottom left). Color scales on Figure 11.

Strong empirical evidence suggests that these three regions have a non-empty interior, although
no qualitative mathematical theory has yet been developed for these problems. The optimal
product line observed numerically, Figure 1, confirms a qualitative (and conjectural) prediction of
the economic model [24] called “bunching”: low-end products are less diverse than high-end ones,
down to the topological sense. (The monopolist willingly limits the variety of cheap products,
because they may compete with the more expensive ones, on which he has a higher margin.)

We aim to address numerically optimization problems posed on the cone of convex functions,
through numerical schemes which preserve the rich qualitative properties of their solutions, and
have a moderate computational cost. In order to put in light the specificity of our approach,
we review the existing numerical methods for these problems, which fall in the following cate-
gories. We denote by X a grid sampling of the domain Ω, and by Conv(X) the cone of discrete
(restrictions of) convex functions

Conv(X) := {U|X ; U ∈ Conv(Ω)}. (3)

• (Interior finite element methods) For any triangulation T of X, consider the cone

Conv(T ) := {u : X → R; IT u ∈ Conv(Ω)}.

A natural but invalid numerical method for (1) is to fix a-priori a family (Th)h>0 of regular
triangulations of Ω, where h > 0 denotes mesh scale, and to optimize the functional of
interest over the associated cones. Indeed, the union of the cones Conv(Th) is not dense in
Conv(Ω), see [7]. Let us also mention that for a given generic u ∈ Conv(X), there exists
only one triangulation T of X such that u ∈ Conv(T ), see §1.3.

• (Global constraints methods) The functional of interest, suitably discretized, is minimized
over the cone Conv(X) of discrete convex functions [5], or alternatively [10] on the aug-
mented cone

GradConv(X) := {(U|X ,∇U|X); U ∈ Conv(Ω)}, (4)

in which we refer by ∇U to arbitrary elements of the subgradient of the convex map U .

Both Conv(X) and GradConv(X) are characterized by a family of long range linear inequal-
ities, with domain wide supports, and of cardinality growing quadratically withN := #(X),
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see §1.1 and [10]. Despite rather general convergence results, these two methods are im-
practical due to their expensive numerical cost, in terms of both computation time and
memory.

• (Local constraints methods) Another cone Conv′(X) is introduced, usually satisfying nei-
ther Conv(X) ⊆ Conv′(X) nor Conv′(X) ⊆ Conv(X), but typically characterized by
relatively few constraints, with short range supports. Obermann et al. [22, 21] use O(N)
linear constraints, with N := #(X). Merigot et al. [18] use slightly more linear constraints,
but provide an efficient optimization algorithm based on proximal operators. Aguilera et
al. [1] consider O(N) constraints of semi-definite type.

Some of these methods benefit from convergence guarantees [18, 1] as N → ∞. Our
numerical experiments with [1, 22, 21] show however that they suffer from accuracy issues,
see §6.3 and Figure 10, which limits the usability of their results.

• (Geometric methods) A polygonal convex set can be described as the convex hull of a
finite set of points, or as an intersection of half-spaces. Geometric methods approximate a
convex function U by representing its epigraph {(z, t); z ∈ Ω, t ≥ U(z)} under one of these
forms. Energy minimization is done by adjusting the points position, or the coefficients of
the affine forms defining the half-spaces, see [26, 16].

The main drawback of these methods lies in the optimization procedure, which is quite
non-standard. Indeed the discretized functional is generally non-convex, and the polygonal
structure of the represented convex set changes topology during the optimization.

We propose an implementation of the constraint of convexity via a limited (typically quasi-
linear) number of linear inequalities, featuring both short range and domain wide supports,
which are selected locally and anisotropically in an adaptation loop using a-posteriori analysis
of solutions to intermediate problems. Our approach combines the accuracy of global constraint
methods, with the limited cost of local constraint ones, see §6.3. It is based on a family of
sub-cones

Conv(V) ⊆ Conv(X),

each defined by some linear inequalities associated to a family V of stencils, see Definition 1.7.
These stencils are the data V = (V(x))x∈X of a collection of offsets e ∈ V(x) pointing to selected
neighbors x+ e of any point x ∈ X, and satisfying minor structure requirements, see Definition
1.6. The cones satisfy the hierarchy property Conv(V ∩V ′) = Conv(V)∩Conv(V ′), see Theorem
1.8. Most elements of Conv(X) belong to a cone Conv(V) defined by only O(N ln2N) linear
inequalities, in a sense made precise by Theorem 1.11. Regarding both stencils and triangulations
as directed graphs on X, we show in Theorem 1.13 (under a minor technical condition) that the
cone Conv(V) is the union of the cones Conv(T ) associated to triangulations T included in V.
Our hierarchy of cones has similarities, but also striking differences as discussed in conclusion,
with the other multiscale constructions (wavelets, adaptive finite elements) used in numerical
analysis.

The minimizer u ∈ Conv(X) of a given convex energy E can be obtained without ever
listing the inequalities defining Conv(X) (which would often not fit into computer memory for
the problem sizes of interest), but only solving a small sequence of optimization problems over
sub-cones Conv(Vi) associated to stencils Vi, designed through adaptive refinement strategies.
Our numerical experiments give, we believe, unprecedented numerical insight on the qualitative
behavior of the monopolist problem and its variants. Thanks to the adaptivity of our scheme,
this accuracy is not at the expense of computation time or memory usage. See §6.
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1 Main results

The constructions and results developed in this paper apply to an arbitrary convex and compact
domain Ω ⊆ R2, discretized on an orthogonal grid of the form:

Ω ∩ hRθ(ξ + Z2), (5)

where h > 0 is a scale parameter, Rθ is the rotation of angle θ ∈ R, and ξ ∈ R2 is an offset. The
latter two parameters are used in our main approximation result Theorem 1.11, heuristically to
eliminate by averaging the influence of rare unfavorable cases in which the approximated convex
function hessian is degenerate in a direction close to the grid axes. For simplicity, and up to a
linear change of coordinates, we assume unless otherwise mentionned that these parameters take
their canonical values:

X := Ω ∩ Z2.

The choice of a grid discretization provides arithmetic tools that would not be available for
an unstructured point set.

Definition 1.1. 1. An element e = (α, β) ∈ Z2 is called irreducible iff gcd(α, β) = 1.

2. A basis of Z2 is a pair (f, g) ∈ (Z2)2 such that |det(f, g)| = 1. A basis (f, g) of Z2 is direct
iff det(f, g) = 1, and acute iff 〈f, g〉 ≥ 0.

Considering special (non-canonical) bases of Zd is relevant when discretizing anisotropic par-
tial differential equations on grids, such as anisotropic diffusion [11], or anisotropic eikonal
equations [19]. In this paper, and in particular in the next proposition, we rely on a specific
two dimensional structure called the Stern-Brocot tree [13], also used in numerical analysis for
anisotropic diffusion [2], and eikonal equations of Finsler type [20].

Proposition 1.2. The application (f, g) 7→ e := f + g defines a bijection between direct acute
bases (f, g) of Z2, and irreducible elements e ∈ Z2 such that ‖e‖ > 1. The elements f, g are
called the parents of e. (Unit vectors have no parents.)

Proof. Existence, for a given irreducible e with ‖e‖ > 1, of the direct acute basis (f, g) such that
e = f + g. We assume without loss of generality that e = (α, β) has non-negative coordinates.
Since gcd(α, β) = 1 and ‖e‖ > 1 we obtain that α ≥ 1 and β ≥ 1. Classical results on the Stern-
Brocot tree [13] state that the irreducible positive fraction α/β can be written as the mediant
(α′ + α′′)/(β′ + β′′) of two irreducible fractions α′/β′, α′′/β′′ (possibly equal to 0 or +∞), with
α′, β′, α′′, β′′ ∈ Z+ and α′β′′ − β′α′′ = 1. Setting f = (α′, β′) and g = (α′′, β′′) concludes the
proof.

Uniqueness. Assume that e = f + g = f ′ + g′, where (f, g), (f ′, g′) are direct acute bases of
Z2. One has det(f, e) = det(f, f + g) = 1, and likewise det(f ′, e) = 1. Hence det(f − f ′, e) = 0,
and therefore f ′ = f+ke for some scalar k, which is an integer since e is irreducible. Subtracting
we obtain g′ = e− f ′ = g − ke, and therefore

〈f ′, g′〉 = 〈f + ke, g − ke〉 = 〈(k + 1)f + kg,−kf + (1− k)g〉
= −k(k + 1)‖f‖2 − k(k − 1)‖g‖2 + 〈f, g〉(1− 2k2).

This expression is negative unless the integer k is zero, hence f = f ′, and g = g′.
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Figure 2: The supports, and weights, of the different linear forms Sex, T ex , P ex .

1.1 Characterization of discrete convexity by linear inequalities

We introduce some linear forms on the vector space F(X) := {u : X → R}, which non-negativity
characterizes restrictions of convex maps. The convex hulls of their respective supports have
respectively the shape of a segment, a triangle, and a parallelogram, see Figure 2.

Definition 1.3. For each x ∈ Z2, consider the following linear forms of u ∈ F(Z2).

1. (Segments) For any irreducible e ∈ Z2:

Sex(u) := u(x+ e)− 2u(x) + u(x− e).

2. (Triangles) For any irreducible e ∈ Z2, with ‖e‖ > 1, of parents f, g:

T ex(u) := u(x+ e) + u(x− f) + u(x− g)− 3u(x).

3. (Parallelograms) For any irreducible e ∈ Z2, with ‖e‖ > 1, of parents f, g:

P ex(u) := u(x+ e)− u(x+ f)− u(x+ g) + u(x).

A linear form L among the above can be regarded as a finite weighted sum of Dirac masses. In
this sense we define the support supp(L) ⊆ Z2, # supp(L) ∈ {3, 4}. The linear form L is also
defined on F(X) whenever supp(L) ⊆ X.

If u ∈ Conv(X), then by an immediate convexity argument one obtains Sex(u) ≥ 0 and
T ex(u) ≥ 0, whenever these linear forms are supported on X. As shown in the next result, this
provides a minimal characterization of Conv(X) by means of linear inequalities. The linear forms
P ex will on the other hand be used to define strict sub-cones of Conv(X). The following result
corrects1 Corollary 4 in [5].

Theorem 1.4. • The cone Conv(X) is characterized by the non-negativity of the linear
forms Sex and T ex , introduced in Definition 1.3, which are supported in X.

• If one keeps only one representative among the identical linear forms Sex and S−ex , then the
above characterization of Conv(X) by linear inequalities is minimal.

For any given x ∈ X, the number of linear inequalities Sex (resp. T ex) appearing in the
characterization of Conv(X) is bounded by the number of irreducible elements e ∈ Z2 such that
x + e ∈ X. Hence the N -dimensional cone Conv(X) is characterized by at most 2N2 linear
inequalities, where N := #(X).

If all the elements of X are aligned, this turns out to be an over estimate: one easily checks
that exactly N − 1 inequalities of type Sex remain, and no inequalities of type T ex . This favorable

1Precisely, the constraints T ex were omitted in [5] for ‖e‖ >
√
2.
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situation does not extend to the two dimensional case however, because irreducible elements arise
frequently in Z2, with positive density [14]:

6

π2
= lim

n→∞
n−2#

{
(i, j) ∈ {1, · · · , n}2; gcd(i, j) = 1

}
.

If the domain Ω has a non-empty interior, then one easily checks from this point that the minimal
description of Conv(X) given in Theorem 1.4 involves no less than cN2 linear constraints2, where
the constant c > 0 depends on the domain shape but not on its scale (or equivalently, not on
the grid scale h in (5)). This quadratic number of constraints, announced in the description of
global constraint methods in the introduction, is a strong drawback for practical applications,
which motivates the construction of adaptive sub-cones of Conv(X) in the next subsection.

Remark 1.5 (Directional convexity). Several works addressing optimization problems posed on
the cone of convex functions [5, 22], have in the past omitted all or part of the linear constraints
T ex , x ∈ X, e ∈ Z2 irreducible with ‖e‖ > 1. We consider in Appendix A this weaker notion of
discrete convexity, introducing the cone DConv(X) of directionally convex functions, defined by
the non-negativity of only Sex, x ∈ X, e ∈ Z2 irreducible.

We show that elements of DConv(X) cannot in general be extended into globally convex func-
tions, but that one can extend their restriction to a grid coarsened by a factor 2. We also introduce
a hierarchy of sub-cones of DConv(X), similar to the one presented in the next subsection.

1.2 Hierarchical cones of discrete convex functions

We introduce in this section the notion of stencils V = (V(x))x∈X onX, and discuss the properties
(hierarchy, complexity) of cones Conv(V) attached to them. The following family Vmax of sets is
referred to as the “maximal stencils”: for all x ∈ X

Vmax(x) := {e ∈ Z2 irreducible; x+ e ∈ X}. (6)

The convex cone generated by a subset A of a vector space is denoted by Cone(A), with the
convention Cone(∅) = {0}.

Definition 1.6. A family V of stencils on X (or just: “Stencils on X”) is the data, for each
x ∈ X of a collection V(x) ⊆ Vmax(x) (the stencil at x) of irreducible elements of Z2, satisfying
the following properties:

• (Stability) Any parent f ∈ Vmax(x), of any e ∈ V(x), satisfies f ∈ V(x).

• (Visibility) One has Cone(V(x)) = Cone(Vmax(x)).

The set of candidates for refinement V̂(x) consists of all elements e ∈ Vmax(x) \ V(x) which two
parents f, g belong to V(x).

In other words, a stencil V(x) at a point x ∈ Ω contains the parents of its members when-
ever possible (Stability), and covers all possible directions (Visibility). By construction, these
properties are still satisfied by the refined stencil V(x) ∪ {e}, for any candidate for refinement
e ∈ V̂(x). The collection V̂(x) is easily recovered from V(x), see Proposition 3.8.

Definition 1.7. We attach to a family V of stencils on X the cone Conv(V) ⊆ F(X), charac-
terized by the non-negativity of the following linear forms: for all x ∈ X

2This number of constraints is empirically (and slightly erroneously) estimated to O(N1.8) in [5].
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Figure 3: Left: a maximal stencil at a point of a domain. Center: some minimal stencils. Right:
some adaptively generated stencils used in the numerical resolution of (1).

1. Sex, for all e ∈ V(x) such that supp(Sex) ⊆ X.

2. T ex for all e ∈ V(x), with ‖e‖ > 1, such that supp(T ex) ⊆ X.

3. P ex for all e ∈ V̂(x) (by construction supp(P ex) ⊆ X).

When discussing unions, intersections, and cardinalities, we (abusively) identify a family V
of stencils on X with a subset of X × Z2:

V ≈ {(x, e); x ∈ X, e ∈ V(x)}. (7)

Note that the cone Conv(V) is defined by at most 3#(V) linear inequalities. The sets Vmax are
clearly stencils onX, which are maximal for inclusion, and by Theorem 1.4 we have Conv(Vmax) =
Conv(X). The cone Conv(V) always contains the quadratic function q(x) := 1

2‖x‖
2, for any

family V of stencils. Indeed, the inequalities Sex(q) ≥ 0, x ∈ X, e ∈ V(x), and T ex(q) ≥ 0,
‖e‖ > 1, hold by convexity of q. In addition for all e ∈ V̂(x), of parents f, g, one has

P ex(q) =
1

2

(
‖x+ f + g‖2 − ‖x+ f‖2 − ‖x+ g‖2 + ‖x‖2

)
= 〈f, g〉 ≥ 0,

since the basis (f, g) of Z2 is acute by definition, see Proposition 1.2.

Theorem 1.8 (Hierarchy). The union V ∪ V ′, and the intersection V ∩ V ′ of two families V,V ′
of stencils are also families of stencils on X. In addition

Conv(V) ∩ Conv(V ′) = Conv(V ∩ V ′), (8)
Conv(V) ∪ Conv(V ′) ⊆ Conv(V ∪ V ′). (9)

As a result, if two families of stencils V,V ′ satisfy V ⊆ V ′, then

Conv(V) ⊆ Conv(V ′) ⊆ Conv(X).

The left inclusion follows from (8), and the right inclusion from (9) applied to V ′ and Vmax. The
intersection rule (8) also implies the existence of stencils Vmin minimal for inclusion, which are
illustrated on Figure 3 and characterized in Proposition 5.1.

Remark 1.9 (Optimization strategy). For any u ∈ Conv(x), there exists by (8) a unique smallest
(for inclusion) family of stencils V such that u ∈ Conv(V). If u is the minimizer of an energy
E on Conv(X), then it can be recovered by minimizing E on the smaller cone Conv(V), defined
by O(#(V)) linear constraints. Algorithm 1 in §6, attempts to find these smallest stencils V (or
slightly larger ones), starting from Vmin and performing successive adaptive refinements.
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In the rest of this subsection, we fix a grid scale h > 0 and consider for all θ ∈ R, and all
ξ ∈ R2, the grid

Xξ
θ := Ω ∩ hRθ(ξ + Z2). (10)

The notions of stencils and related cones trivially extend to this setting, see §5 for details. We
denote by |Ω| the domain area, and by diam(Ω) := max{‖y − x‖; x, y ∈ Ω} its diameter. We
also introduce rescaled variants, defined for h > 0 by

|Ω|h := h−2|Ω|, diamh(Ω) := h−1 diam(Ω).

For any parameters θ, ξ, one has denoting N := #(Xξ
θ ) (with underlying constants depending

only on the shape of Ω)
|Ω|h ≈ N, diamh(Ω) ≈

√
N. (11)

Proposition 1.10. Let X := Xξ
θ , for some grid position parameters θ ∈ R, ξ ∈ R2, and let

N := #(X). Let u ∈ Conv(X), and let V be the minimal stencils on X such that u ∈ Conv(V).
Then #(V) ≤ CN diamh(Ω), for some universal constant C (i.e. independent of Ω, h, θ, ξ, u).

Combining this result with (11) we see that an optimization strategy as described in Re-
mark 1.9 should heuristically not require solving optimization problems subject to more than
N diamh(Ω) ≈ N

3
2 linear constraints. This is already a significant improvement over the ≈ N2

linear constraints defining Conv(X). The typical situation is however even more favorable: in
average over randomized grid orientations θ and offsets ξ, the restriction to Xξ

θ of a convex map
U : Ω→ R (e.g. the global continuous solution of the problem (1) of interest) belongs to a cone
Conv(Vξθ ) defined by a quasi-linear number O(N ln2N) of linear inequalities.

Theorem 1.11. Let U ∈ Conv(Ω), and let Vξθ be the minimal stencils on Xξ
θ such that U|Xξ

θ
∈

Conv(Vξθ ), for all θ ∈ R, ξ ∈ R2. Assuming diamh(Ω) ≥ 2, one has for some universal constant
C (i.e. independent of h,Ω, U):

ˆ
[0,1]2

ˆ π/2

0
#(Vξθ ) dθ dξ ≤ C |Ω|h (ln diamh(Ω))2. (12)

1.3 Stencils and triangulations

We discuss the connections between stencils and triangulations, which provides in Theorem 1.13
a new insight on the hierarchy of cones Conv(V), and yields in Theorem 1.15 a new result of
algorithmic geometry as a side product of our theory. We assume in this subsection and §4 that
the discrete domain convex hull, denoted by Hull(X), has a non-empty interior. All triangulations
considered in this paper are implicitly assumed to cover Hull(X) and to have X as collection of
vertices.

Definition 1.12. Let T be a triangulation, and let V be a family of stencils on X. We write
T ≺ V iff the directed graph associated to T is included in the one associated to V. In other
words iff for any edge [x, x+ e] of T , one has e ∈ V(x).

The next result provides a new interpretation to our approach to optimization problems
posed on the cone of convex functions, as a relaxation of the naïve (and flawed without this
modification) method via interior finite elements.

8
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z zt t

Figure 4: Delaunay triangulations associated to numerical solutions of (variants of) the monop-
olist problem, see 6.2. Corresponding convex functions shown on Figure 1 (left), Figure 7 (left),
and Figure 8 (left) respectively. Right: illustration of edge flipping. The diagonal [x, t] shared by
two triangles T := [x, y, t] and T ′ := [x, z, t] can be flipped into [y, z] if T ∪ T ′ is convex. Right,
below: the piecewise linear interpolation of a discrete map u is made convex by this flip.

Theorem 1.13. Let V be a family of stencils on X. If Conv(V) has a non-empty interior, then

Conv(V) =
⋃
T≺V

Conv(T ). (13)

Delaunay triangulations are a fundamental concept in discrete geometry [9]. We consider in
this paper a slight generalization in which the lifting map needs not be the usual paraboloid, but
can be an arbitrary convex function, see Definition 1.14. Within this paper Delaunay triangula-
tions are simultaneously (i) a theoretical tool for proving results, notably Proposition 1.10 and
Theorem 1.13, (ii) an object of study, since in Theorem 1.15 we derive new results on the cost of
their construction, and (iii) a numerical post-processing tool providing global convex extensions
of elements of Conv(X), see Figure 4 and Remark 6.3.

Definition 1.14. We say that T is an u-Delaunay triangulation iff u ∈ Conv(T ); equivalently
the piecewise linear interpolation IT u : Hull(X)→ R is convex. We refer to u as the lifting map.

A q-Delaunay triangulation, with q(x) := 1
2‖x‖

2, is simply called a Delaunay triangulation.

Two dimensional Delaunay triangulations, and three dimensional convex hulls, have well
known links [9]. Indeed T is an u-Delaunay triangulation iff the map x ∈ Hull(X) 7→ (x, IT u(x)) ∈
R3 spans the bottom part of the convex envelope K of lifted set {(x, u(x)); x ∈ X}. As a re-
sult of this interpretation, we find that (i) any element u ∈ Conv(X) admits an u-Delaunay
triangulation, and (ii) generic elements of Conv(X) admit exactly one u-Delaunay triangulation
(whenever all the faces of K are triangular). In particular, the union (13) is disjoint up to a set
of Hausdorff dimension N − 1.

Any two triangulations T , T ′ of X can be transformed in one another through a sequence of
elementary modifications called edge flips, see Figure 4. The minimal number of such operations is
called the edge flipping distance between T and T ′. Edge flipping is a simple, robust and flexible
procedure, which is used in numerous applications ranging from fluid dynamics simulation [8] to
GPU accelerated image vectorization [23]. Sustained research has been devoted to estimating
edge flipping distances within families of triangulations of interest [15], although flipping distance
bounds are usually quadratic in the number of vertices.

Theorem 1.15. Let V be a family of stencils on X, and let u ∈ Conv(V). Then any standard
Delaunay triangulation of X can be transformed into an u-Delaunay triangulation via a sequence
of C#(V) edge flips. The constant C is universal (in particular it is independent of u,V,Ω).

9



Combining this result with Theorem 1.11, we obtain that only O(N ln2N) edge flips are
required to construct an U -Delaunay triangulation of X, with N := #(X), for any convex
function U ∈ Conv(Ω), in an average sense over grid orientations. Note that (more complex and
specialized) convex hull algorithms [6] could also be used to produce an U -Delaunay triangulation,
at the slightly lower cost O(N lnN). Theorem 1.15 should be understood as a first step in
understanding the typical behavior of edge flipping.

1.4 Outline

We prove in §2 the characterization of discrete convexity by linear constraints of Theorem 1.4.
The hierarchy properties of Theorem 1.8 are established in §3. Triangulation related arguments
are used in §4 to show Proposition 1.10 and Theorems 1.13 and 1.15. The average cardinality
estimate of Theorem 1.11 is proved in §5. Numerical experiments, and algorithmic details, are
presented in §6. Finally, the weaker notion of directional convexity is discussed in Appendix A.

2 Characterization of convexity via linear constraints

This section is devoted to the proof of Theorem 1.4, which characterizes discrete convex functions
u ∈ Conv(X) via linear inequalities. The key ingredient is its generalization, in [5], to arbitrary
unstructured finite point sets X ′ (in contrast with the grid structure of X).

Theorem 2.1 (Carlier, Lachand-Robert, Maury). Let Ω be a convex domain, and let X ′ ⊆ Ω be
an arbitrary finite set. The cone Conv(X ′), of all restrictions to X ′ of convex functions on Ω, is
characterized by the following inequalities, none of which can be removed:

• For all x, y, z ∈ X ′, all α ∈]0, 1[, β := 1−α, such that z = αx+βy and [x, y]∩X ′ = {x, y, z}:

αu(x) + βu(y) ≥ u(z). (14)

• For all p, q, r, z ∈ X ′, all α, β, γ ∈ R∗+ with α+ β + γ = 1, such that z = αp+ βq+ γr, the
points p, q, r are not aligned and [p, q, r] ∩X ′ = {p, q, r, z}:

αu(p) + βu(q) + γu(r) ≥ u(z). (15)

In the following, we establish Theorem 1.4 by specializing Theorem 2.1 to the gridX := Ω∩Z2,
and identifying (14) and (15) with the constraints Sez(u) ≥ 0 and T ez (u) ≥ 0 respectively, in
Propositions 2.2 and 2.5 respectively. Note that the cases (14) and (15) are unified in [5],
although we separated them in the above formulation for clarity. For x1, · · · , xn ∈ R2, we denote

[x1, · · · , xn] := Hull({x1, · · · , xn}).

Proposition 2.2. Let x, y, z ∈ X, α ∈]0, 1[, β := 1 − α, be such that z = αx + βy and
[x, y] ∩ X = {x, y, z}. Then α = β = 1/2 and there exists an irreducible e ∈ Z2 such that
x = z + e, y = z − e. (Thus αu(x) + βu(y)− u(z) = Sez(u)/2.)

Proof. We define e := x−z ∈ Z2, and assume for contradiction that e is not irreducible: e = ke′,
for some integer k ≥ 2 and some e′ ∈ Z2. Then z + e′ ∈ [z, x] ∩ Z2 ⊆ [x, y] ∩ X, which is a
contradiction. Thus e is irreducible, and likewise f := y − z ∈ Z2 is irreducible. Observing that
f is negatively proportional to e, namely f = −(α/β)e, we obtain that f = −e, which concludes
the proof.
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The next lemma, used in Proposition 2.5 to identify the constraints (15), provides an alter-
native characterization of the parents of an irreducible vector, see Proposition 1.2.

Lemma 2.3. Let e, f, g ∈ Z2 be such that e = f + g, ‖e‖ ≥ max{‖f‖, ‖g‖}, and det(f, g) = 1.
Then f, g are the parents of e.

Proof. Since det(f, e) = det(f, f + g) = 1, the vector e is irreducible. In addition, ‖e‖ > 1,
since otherwise e, f, g would be three pairwise linearly independent unit vectors in Z2. Let f0, g0

be the parents of e. Observing that det(f, e) = det(f0, e) = 1, we obtain that f = f0 + ke
for some scalar k, which must be an integer since e is irreducible. If k > 0 then ‖f‖2 =
k2‖e‖2 +2k〈f0, e〉+‖f0‖2 > ‖e‖2 which is a contradiction (recall that 〈f0, e〉 = 〈f0, f0 +g0〉 ≥ 0).
If k < 0, then observing that g = e − f = g0 − ke we obtain likewise a contradiction. Hence
k = 0 and f, g are the parents of e, which concludes the proof.

Corollary 2.4. Let (f, g) be a basis of Z2 which is not acute. If ‖f‖ ≥ ‖g‖, then f + g is a
parent of f , and otherwise it is a parent ot g.

Proof. Up to exchanging the roles of f, g, we may assume that det(f, g) = 1. Denoting m :=
max{‖f‖, ‖g‖, ‖f + g‖}, we have by Lemma 2.3 three possibilities: (i) ‖f + g‖ = m, and f, g
are the parents of f + g, (ii) ‖f‖ = m, and −g, f + g are the parents of f , (iii) ‖g‖ = m, and
f + g,−f are the parents of g. Excluding (i), since (f, g) is not an acute basis, we conclude the
proof.

Proposition 2.5. Let p, q, r, z ∈ X, α, β, γ ∈ R∗+, with α + β + γ = 1, be such that z = αp +
βq + γr, the points p, q, r are not aligned, and [p, q, r] ∩X = {p, q, r, z}. Then α = β = γ = 1/3
and, up to permuting p, q, r, there exists an irreducible e ∈ Z2 with ‖e‖ > 1, of parents f, g, such
that p = z + e, q = z − f , and r = z − g. (Thus αu(p) + βu(q) + γu(r)− u(z) = T ez (u)/3.)

Proof. Let e := p − z, f := z − q, g := z − r. Up to permuting p, q, r, we may assume that
‖e‖ ≥ max{‖f‖, ‖g‖} and det(f, g) ≥ 0. Note that f and g are not collinear since z lies in the
interior of [p, q, r]. We claim that (f, g) is a basis of Z2. Indeed, otherwise, the triangle [0, f, g]
would contain an element of e′ ∈ Z2 distinct from its vertices. Since Ω is convex, this implies
[p, q, r] ∩X ⊇ {p, q, r, z, z + e′}, which is a contradiction.

Thus (f, g), and likewise (e, f) and (e, g), are bases of Z2, and therefore

|det(e, f)| = |det(f, g)| = | det(g, e)| = 1. (16)

Injecting in the above equation the identity e = (β/α)f + (γ/α)g, we obtain that |β/α| = 1
and |γ/α| = 1. Thus α = β = γ = 1/3 since these coefficients are positive and sum to one.
Finally, we have e = f + g, ‖e‖ ≥ max{‖f‖, ‖g‖}, and f, g is a direct basis. Using Lemma 2.3
we conclude as announced that f, g are the parents of e.

3 Hierarchy of the cones Conv(V)
This section is devoted to the proof of Theorem 1.8, which is split into two parts: the proof that
an intersection (or union) of stencils is still a stencil, and the hierarchy properties (8) and (9).
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3.1 An intersection of stencils is still a stencil

Let V,V ′ be families of stencils on X. Property (Stability) of stencils immediately holds for the
intersection V ∩V ′ and union, V ∪V ′, while property (Visibility) is also clear for the union V ∪V ′.
In order to establish property (Visibility) for the intersection V ∩ V ′, we identify in Proposition
3.7 a family Vmin of stencils which included in any other. From Vmin ⊆ V and Vmin ⊆ V ′ we
obtain Vmin ⊆ V ∩ V ′, so that (Visibility) for Vmin implies the same property for V ∩ V ′.

Definition 3.1. The cyclic strict trigonometric order on R2 \ {0} is denoted by ≺.

In other words e1 ≺ e2 ≺ e3 iff there exists θ1, θ2, θ3 > 0, such that θ1 + θ2 + θ3 = 2π and
ei+1/‖ei+1‖ = Rθiei/‖ei‖ for all 1 ≤ i ≤ 3, with e4 := e1. The following lemma, and Corollary
3.5, discuss the combination of the cyclic ordering with the notions of parents (and children) of
an irreducible vector.

Definition 3.2 (Collection of ancestors of a vector). For any irreducible e ∈ Z2, let Anc(e) be
the smallest set containing e and the parents of any element e′ ∈ Anc(e) such that ‖e′‖ > 1.

Lemma 3.3. Let e ∈ Z2 \ {0}, let (f, g) be a direct basis of Z2 such that f ≺ e ≺ g, and let us
consider the triangle T := [e, f, g]. Then (i) f + g ∈ T . If in addition e is irreducible, ‖e‖ > 1
and (ii.a) 〈f, g〉 ≥ 0 or (ii.b) e /∈ Anc(f) ∪Anc(g), then the parents of e also belong to T .

Proof. Point (i). By construction, we have e = αx + βy for some positive integers α, β. One
easily checks that e + (β − 1)f + (α − 1)g = (α + β − 1)(f + g). This expression of f + g as a
weighted barycenter of the points e, f, g, establishes (i).

Points (ii.a) and (ii.b). We fix e and show these points by decreasing induction on the integer
k = 〈f, g〉. Initialization: Assume that k = 〈f, g〉 ≥ 1

2‖e‖
2. Then ‖e‖2 = ‖αf + βg‖2 ≥

2αβ〈f, g〉 ≥ 2〈f, g〉, which is a contradiction. No basis (f, g) satisfies simultaneously f ≺ e ≺ g
and 〈f, g〉 = k. The statement is vacuous, hence true.

Case k = 〈f, g〉 ≥ 0. If e = f + g, then f, g are the parents of e, and the result follows.
Otherwise, we have either f ≺ e ≺ (f + g) or (f + g) ≺ e ≺ g. Since 〈f, f + g〉 > 〈f, g〉 and
〈f + g, g〉 > 〈f, g〉, we may apply our induction hypothesis to the bases (f, f + g) and (f + g, g)
which satisfy (ii.a). Thus the parents of e belong to T1 := [e, f, f + g] or T2 := [e, g, f + g].
Finally, Point (i) implies that f +g ∈ T , thus T1∪T2 ⊆ T which concludes the proof of this case.

Case k = 〈f, g〉 < 0. Assumption (ii.b) must hold, since (ii.a) contradicts this case. By
corollary 2.4, f + g is a parent of f or of g. Hence e 6= f + g and Anc(f + g) ⊆ Anc(f)∪Anc(g).
We apply our induction hypothesis to the bases (f, f + g) and (f + g, g) which satisfy (ii.b), and
conclude the proof similarly to the case k ≥ 0.

Lemma 3.4. Consider an irreducible e ∈ Z2, ‖e‖ > 1, and let f, g be its parents. The children
of e (i.e. the vectors e′ ∈ Z2 of which e is a parent) have the form f + ke and ke+ g, k ≥ 1.

Proof. Let e′ be a children of e, and let f ′, g′ be its parents. Without loss of generality, we
assume that g′ = e. Then det(f ′, e) = 1 = det(f, e), thus f ′ = f + ke for some k ∈ R. Since e is
irreducible, one has k ∈ Z. Since 0 ≤ 〈f ′, e〉 = 〈f, e〉+ k‖e‖2 ≤ (k − 1)‖e‖2, one has k ≥ 1. The
result follows.

Corollary 3.5. Let e ∈ Z2 \ {0}, let (f, g) be a direct acute basis of Z2 such that f ≺ e ≺ g.
Then any child e′ of e (i.e. e is a parent of e′) satisfies f ≺ e′ ≺ g.

Proof. Let K := Cone({f, g}), and let ◦K be its interior. Let also f ′, g′ be the parents of e. By
assumption e ∈ ◦

K, and by Lemma 3.3 (ii.a) one has f ′, g′ ∈ [e, f, g] ⊆ K. Thus f ′+ke, ke+g′ ∈ ◦
K

for any integer k ≥ 1, which by Lemma 3.4 concludes the proof.
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Lemma 3.6 (Consecutive elements of a stencil). Let V be a family of stencils on X, let x ∈ X,
and let f, g be two trigonometrically consecutive elements of V(x). Then either (i) (f, g) form a
direct acute basis, or (ii) no element e ∈ Vmax(x) satisfies f ≺ e ≺ g.

Proof. We distinguish three cases, depending on the value of det(f, g). In case det(f, g) ≤ 0,
property Visibility of stencils implies (ii).

Case det(f, g) = 1. Assuming that (i) does not hold, Corollary 2.4 implies that f + g is
a parent of f or of g. Assuming that (ii) does not hold, we have f + g ∈ [e, f, g] for some
e ∈ Vmax(x) by Lemma 3.3 (i), thus f + g ∈ Vmax(x) by convexity of Ω, thus f + g ∈ V(x) by
(Stability), which contradicts our assumption f, g are trigonometrically consecutive in V(x).

Case k := det(f, g) > 1. We assume without loss of generality that ‖f‖ ≥ ‖g‖, hence
‖f‖2 ≥ det(f, g) > 1. Let f ′, g′ be the parents of f , so that g = αf ′ + βg′ for some α, β ∈ Z.
We obtain k = det(f, αf ′ + βg′) = β − α. If α = 0 or β = 0, then g is not irreducible,
which is a contradiction. If α and β have the same sign, then ‖g‖ > ‖f‖, which again is a
contradiction. Hence α, β have opposite signs, and since β − α = k > 1 we obtain β > 0 > α.
Finally we have g = α(f − g′) + βg′, thus g − αf = (β − α)g′, and therefore g′ ∈ [0, f, g]. By
convexity g′ ∈ Vmax(x), by (Stability) g′ ∈ V(x), which contradicts our assumption that f, g are
trigonometrically consecutive in V(x). This concludes the proof.

Proposition 3.7 (Characterization of the smallest stencils). For all x ∈ X, define Vmin(x) as
the collection of all e ∈ Vmax(x) which have none or just one parent in Vmax(x) (this includes all
unit vectors in Vmax(x)). Then Vmin := (Vmin(x))x∈X is a family of stencils, which is contained
in any other family of stencils.

Proof. Property (Stability) of stencils. Consider x ∈ X and e ∈ Vmin(x). Assume for contra-
diction that e has one parent e′ ∈ Vmax(x) which is not an element of Vmin(x). Hence e′ has
two parents f, g ∈ Vmax(x). By Corollary 3.5 we have f ≺ e ≺ g, thus by Lemma 3.3 (ii.a) the
two parents of e belong to the triangle [e, f, g], hence also to Vmax(x) by convexity of Ω. This
contradicts our assumption that e ∈ Vmin(x).

Property (Visibility). We consider e ∈ Vmax(x), and prove by induction on the norm ‖e‖ that
e ∈ K := Cone(Vmin(x)). If ‖e‖ = 1 or if none of just one parent of e belongs to Vmax(x), then
e ∈ Vmin(x) ⊆ K. If both parents f, g of e belong to Vmax(x), then by induction f, g ∈ K, and
by additivity f + g ∈ K, which concludes the proof.

Minimality for inclusion of Vmin. Let V be a family of stencils, let x ∈ X, e ∈ Vmin(x), and
let us assume for contradiction that e /∈ V(x). By property (Visibility) of stencils, the vector e
belongs to the cone generated by two elements f, g ∈ V(x), which can be chosen trigonometrically
consecutive in V(x). By lemma 3.6, (f, g) is a direct acute basis of Z2. By Lemma 3.3 (ii.a) the
parents of e belong to the triangle [e, f, g], hence to Vmax(x) by convexity of Ω, which contradicts
the definition of Vmin(x).

Proposition 3.8 (Structure of candidates for refinement). Let V be a family of stencils on X,
and let x ∈ X. Then the parents f, g, of any candidate for refinement e ∈ V̂(x), are consecutive
elements of V(x) in trigonometric order.

Proof. Since e /∈ V(x), there exists by (Visibility) two elements f, g ∈ V(x) such that f ≺ e ≺ g,
and which we can choose trigonometrically consecutive in V(x). By Lemma 3.6, (f, g) is a direct
acute basis. By Lemma 3.3 (ii.a) the parents f ′, g′ of e between satisfy f � f ′ ≺ g′ � g.
Recalling that f ′, g′ ∈ V(x), by definition of V̂(x), we obtain f = f ′ and g = g′ which concludes
the proof.
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3.2 Combining and intersecting constraints

The following characterization of the cones Conv(V) implies the announced hierarchy properties.

Proposition 3.9. For any family V of stencils on X one has

Conv(V) = {u ∈ Conv(X); P ex(u) ≥ 0 for all x ∈ X, e ∈ V(x)}. (17)

Before turning to the proof of this proposition, we use it to conclude the proof of Theorem
1.8. The sub-cone Conv(V), of Conv(Ω), is characterized by the non-negativity of a family of
linear forms indexed by Vmax \ V, with the convention (7). Observing that

Vmax \ (V ∪ V ′) = (Vmax \ V) ∩ (Vmax \ V ′), Vmax \ (V ∩ V ′) = (Vmax \ V) ∪ (Vmax \ V ′),

we find that Conv(V ∪ V ′) is characterized, as a subset of Conv(X), by the intersection of the
families of constraints defining Conv(V) and Conv(V ′), while Conv(V ∩ V ′) is defined by their
union. Hence we conclude as announced

Conv(V ∪ V ′) ⊇ Conv(V) ∪ Conv(V ′), Conv(V ∩ V ′) = Conv(V) ∩ Conv(V ′).

Proof of Proposition 3.9. We proceed by decreasing induction on the cardinality #(V).
Initialization. If #(V) = #(Vmax), then V = Vmax, and therefore Conv(V) = Conv(Vmax) =

Conv(X) and Vmax \ V = ∅. The result follows.
Induction. Assume that #(V) < #(Vmax), thus V ( Vmax. Let x ∈ X and e ∈ Vmax(x)\V(x)

be such that ‖e‖ is minimal. Since e /∈ Vmin(x) ⊆ V(x), the two parents f, g of e belong to
Vmax(x). Since ‖e‖ > max{‖f‖, ‖g‖}, and by minimality of the norm of e, we have f, g ∈ V(x).
Hence e is a candidate for refinement: e ∈ V̂(x).

Consider the extended stencils V ′ defined by V ′(x) := V(x) ∪ {e}, and V ′(y) := V(y) for all
y ∈ X \ {x}. Let L and L′ be the collections of linear forms enumerated in Definition 1.7, which
non-negativity respectively defines the cones Conv(V) and Conv(V ′) as subsets of F(X). Let
also L0 := L ∩ L′. Since e ∈ V̂(x) we have L = L0 ∪ {P ex}. Using Proposition 3.8 we obtain
V̂ ′(x)\ V̂(x) ⊆ {e+f, e+g}, hence L′ is the union of L0 and of those of the following constraints
which are supported on X:

Sex, T
e
x , P

e+f
x , P e+gx . (18)

We next show that Cone(L) = Cone(L′ ∪ {P ex}), by expressing the linear forms (18) in terms of
the elements of L.

• If Sex is supported on X, then −e ∈ Vmax(x). Assuming that −e ∈ V(x), we obtain
Sex = S−ex ∈ L. On the other hand, assuming that −e /∈ V(x), we obtain −f,−g ∈ Vmax(x)

by Proposition 3.7, since otherwise −e ∈ Vmin(x) ⊆ V(x). Therefore Sfx , Sgx are supported
on X, hence they belong to L. By minimality of the norm of e, we have −f,−g ∈ V(x),
hence −e ∈ V̂(x) and therefore P−ex ∈ L. As a result Sex = P ex +P−ex +Sfx +Sgx ∈ Cone(L).

• If T ex is supported on X, then −f,−g ∈ Vmax(x). Therefore Sfx , Sgx are supported on X,
hence they belong to L. As a result T ex = P ex + Sfx + Sgx ∈ Cone(L).

• If P e+fx is supported on X, then x + e + f ∈ X, thus f ∈ Vmax(x + e) and therefore
f ∈ V(x+ e) by minimality of ‖e‖. The linear form Sfx+e belongs to L, since it has support
{x + g, x + e, x + e + f} ⊆ X. Observing that the parents of e + f are e and f , we find
that P e+fx = P ex + Sfx+e ∈ Cone(L). The case of P e+gx is similar.
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Denoting by K∗ the dual cone of a cone K, we obtain

Conv(V) = Cone(L)∗ = Cone(L′ ∪ {P ex})∗ = {u ∈ Conv(V ′); P ex(u) ≥ 0}.

Applying the induction hypothesis to V ′, we conclude the proof.

4 Stencils and triangulations

Using the interplay between stencils V and triangulations T , we prove Proposition 1.10 and
Theorems 1.13, 1.15. By convention, all stencils V are on X, and all triangulations T have X as
vertices and cover Hull(X).

4.1 Minimal stencils containing a triangulation

We characterize in Proposition 4.4 the minimal stencils V containing a triangulation, in the sense
of Definition 1.12, and we estimate their cardinality, proving Proposition 1.10. In the way, we
establish in Proposition 4.3 “half” (one inclusion) of the decomposition of Conv(V) announced
in Theorem 1.13.

Lemma 4.1. Let T be a triangulation, and let u ∈ Conv(T ). Let p, q, r ∈ X. Assume that [p, q]
is an edge of T , and that s := p+ q − r ∈ X. Then u(r) + u(s) ≥ u(p) + u(q).

Proof. The interpolating function U := IT u is convex on Hull(X), and linear on the edge [p, q].
Introducing the edge midpoint m := (p + q)/2 = (r + s)/2 we obtain u(p) + u(q) = 2U(m) ≤
u(r) + u(s), as announced.

The inequalities u(r) + u(s) ≥ u(p) + u(q) identified in the previous lemma are closely tied
with the linear constraints P ex , since [p, q, r, s] is a parallelogram, and as shown in the next lemma.
The set Anc(e) of ancestors of an irreducible vector e ∈ Z2 was introduced Definition 3.2.

Lemma 4.2. Let e ∈ Z2 be irreducible, with ‖e‖ > 1, and let (f, g) be a direct basis such that
f ≺ e ≺ g and e /∈ Anc(f) ∪ Anc(g). Let x ∈ X be such that f, g, f + g, e ∈ Vmax(x). If
u ∈ Conv(X) satisfies u(x) + u(x+ f + g) ≥ (x+ f) + u(x+ g), then P ex(u) ≥ 0.

Proof. Without loss of generality, up to adding a global affine map to u, we may assume that
u(x+ e) = u(x+ f) = u(x+ g) = 0. Denoting by f ′, g′ the parents of e, we have by Lemma 3.3
(ii.b) f ′, g′, f+g ∈ [e, f, g], hence by convexity u(x+f ′), u(x+g′), u(x+f+g) ≤ 0. Our hypothesis
implies u(x) ≥ −u(x+f+g) ≥ 0, therefore P ex(u) = u(x)−u(x+f ′)−u(x+g′)+u(x+e) ≥ 0.

Proposition 4.3. If a triangulation T , and stencils V, satisfy T ≺ V, then Conv(T ) ⊆ Conv(V).

Proof. The inequalities Sex(u) ≥ 0, and T ex(u) ≥ 0, for x ∈ X, e ∈ V(x), hold by convexity of u.
We thus consider an arbitrary refinement candidate e ∈ V̂(x), x ∈ X, and establish below that
P ex(u) ≥ 0.

Since the triangulation T covers Hull(X), there exists a triangle T ∈ T , containing x, and
such that e ∈ Cone(T − x). Since T ≺ V and e /∈ V(x), the segment [x, x + e] is not an edge
of T . Denoting the vertices of T by [x, x + f, x + g] we have f ≺ e ≺ g. Since e ∈ V̂(x), one
has e /∈ (Anc(f) ∪ Anc(g)) ⊆ V(x). Applying Lemma 4.1 to the edge [x + f, x + g] we obtain
u(x)+u(x+f+g) ≥ u(x+f)+u(x+g). Finally, Lemma 4.2 implies P ex(u) ≥ 0 as announced.
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Proposition 4.4. Let T be a triangulation, and for all x ∈ X let Vx be the collection of all
e ∈ Z2 such that [x, x + e] is an edge of T . The minimal family of stencils satisfying T ≺ V is
given by

V(x) := Vmax(x) ∩
⋃
e∈Vx

Anc(e).

Proof. The family of sets V satisfies the (Stability) property by construction. Since the triangu-
lation T covers Hull(X), the sets (Vx)x∈X satisfy the (Visibility) property, hence also the larger
sets V(x) ⊇ Vx.

Minimality. Consider arbitrary stencils V such that T ≺ V. Let also x ∈ X, e ∈ Vx,
e′ ∈ Vmax(x)∩Anc(e), and let us assume for contradiction that e′ /∈ V(x). By property (Visibility)
there exists f, g, trigonometrically consecutive elements of V(x), such that f ≺ e ≺ g (where
≺ refers to the cyclic trigonometric order, see Definition 3.1). By Lemma 3.6, (f, g) is a direct
acute basis of Z2. By Corollary 3.5, and an immediate induction argument, we have f ≺ e ≺ g,
hence e /∈ V(x), which contradicts our assumption that T ≺ V.

Given a triangulation T , our next objective is to estimate the cardinality of the minimal
stencils V such that T ≺ V. We begin by counting the ancestors of an irreducible vector.

Lemma 4.5. 1. Let (f, g) be an acute basis of Z2. Then either (i) f is a parent of g, (ii) g
is a parent of f , or (iii) ‖f‖ = ‖g‖ = 1.

2. For any irreducible e ∈ Z2 one has #(Anc(e)) ≤ ‖e‖∞+2, where ‖(α, β)‖∞ := max{|α|, |β|}.

Proof. Point 1. If 〈f, g〉 > 0, then applying Corollary 2.4 to the non-acute basis (f,−g) we find
that either (i) (f, g− f) are the parents of g, or (ii) (f − g, g) are the parents of f . On the other
hand if 〈f, g〉 = 0, then 1 = | det(f, g)| = ‖f‖‖g‖, hence (iii) ‖f‖ = ‖g‖ = 1.

Before proving Point 2, we introduce the coneK generated by (1, 0), (1, 1), so that ‖(α, β)‖∞ =
α for any (α, β) ∈ K. If e ∈ Z2 irreducible belongs to the interior of K, then its parents f, g ∈ K,
and we have ‖e‖∞ = ‖f‖∞ + ‖g‖∞.

Point 2 is proved by induction on ‖e‖∞. It is immediate if ‖e‖∞ = 1, hence we may assume
that ‖e‖∞ ≥ 2, and denote its parents by f, g. We have ‖e‖∞ = ‖f‖∞ + ‖g‖∞, since without
loss of generality we may assume that e ∈ K. Applying Point 1 we find that either (i) Anc(e) =
Anc(g) ∪ {e}, (ii) Anc(e) = Anc(f) ∪ {e}, or (iii) ‖f‖ = ‖g‖ = 1, so that ‖e‖∞ = 1, a case
which we have excluded. Thus # Anc(e) ≤ max{# Anc(f),# Anc(g)} + 1, which implies the
announced result by induction.

Proposition 4.6. Let T be a triangulation, and let V be the minimal family of stencils such that
T ≺ V. Then #(V) ≤ 6(N − 2)(diam(Ω) + 2), with N := #(X). A sharper estimate holds for
(standard) Delaunay triangulations: #(V) ≤ 6(N − 2),

Proof. Let E,F be respectively the number of edges and faces of T , where faces refer to both
triangles and the infinite exterior face. By Euler’s theorem, N − E + F = 2. Since each edge is
shared by two faces, and each face has at least three edges, one gets 2E ≥ 3F , hence E ≤ 3(N−2),
and therefore, with the notation Vx of Proposition 4.4,∑

x∈X
#(Vx) = 2E ≤ 6(N − 2). (19)

Combining lemma 4.5, Proposition 4.4, and observing that any edge [x, x + e] of T satisfies
‖e‖∞ ≤ diam(Ω), we obtain #(V(x)) ≤ #(Vx)(diam(Ω) + 2), which in combination with (19)
implies the first estimate on #(V).
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In the case of a Delaunay triangulation, we claim that V(x) = Vx. Indeed, consider an edge
[x, x + e] of T , and a parent f ∈ Vmax(x) of e. Since T covers Hull(X), it contains a triangle
[x, x + e, x + f ′] with f and f ′ on the same side of the edge [x, x + e]. Thus the determinants
det(e, f) and det(e, f ′) have the same sign, and therefore the same value since their magnitude
is 1. As a result f ′ = ke+ f , for some integer k. Since T is Delaunay, the point x+ f is outside
of the circumcircle of [x, x + e, x + f ′]. This property is equivalent to the non-positivity of the
following determinant, called the in-circle predicate: assuming without loss of generality that
det(e, f) = 1 so that the vertices (x, x+ e, x+ f ′) are in trigonometric order

det

 e1 e2 ‖e‖2
f1 f2 ‖f‖2

ke1 + f1 ke2 + f1 ‖ke+ f‖2

 = det

 e1 e2 ‖e‖2
f1 f2 ‖f‖2
0 0 ‖ke+ f‖2 − k‖e‖2 − ‖f‖2

 ,

= ‖ke+ f‖2 − k‖e‖2 − ‖f‖2,
= k(k − 1)‖e‖2 + 2k〈e, f〉, (20)

where we denoted e = (e1, e2), f = (f1, f2). Observing that 0 < 〈e, f〉 ≤ ‖e‖‖f‖ < ‖e‖2, we find
that (20) is non-positive only for k = 0. Thus f = f ′, hence f ∈ Vx, and therefore V(x) = Vx as
announced. Finally, the announced estimate of #(V) immediately follows from (19).

Let us conclude the proof of Proposition 1.10. Let u ∈ Conv(X), and let Vu be the minimal
stencils such that u ∈ Conv(Vu). Let T be an u-Delaunay triangulation, and let VT be the
minimal stencils such that T ≺ V. By Proposition 4.3 we have u ∈ Conv(T ) ⊆ Conv(VT ),
hence Vu ⊆ VT . Estimating #(VT ) with Proposition 4.6, we obtain as announced #(Vu) ≤
6(N − 2)(diam(Ω) + 2).

4.2 Decomposition of the cone Conv(V), and edge-flipping distances

We conclude in this section the proof of Theorem 1.13, and establish the complexity result
Theorem 1.15 on the edge-flipping generation of u-Delaunay triangulations.

Definition 4.7. We say (abusively) that a discrete map u : X → R is generic iff, for all x ∈ X
and all e ∈ Z2 such that the linear form P ex is supported on X, one has P ex(u) 6= 0.

Generic elements are dense in Conv(X), since this set is convex, has non-empty interior, and
since non-generic elements lie on a union of hyperplanes. The quadratic function q(x) := 1

2‖x‖
2

is not generic however, since choosing e = (1, 1) one gets P ex(q) = 0.

Lemma 4.8. Consider stencils V, a generic u ∈ Conv(V), and an u-Delaunay triangulation T .
Then T ≺ V.

Proof. Consider an edge [x, x + e] of T . If the linear form P ex is not supported on T , then
e ∈ Vmin(x) ⊆ V(x) by Proposition 3.7. On the other hand if P ex is supported on X, then
P ex(u) ≤ 0 by Lemma 4.1. By genericity of u, we have P ex(u) < 0, hence e ∈ V(x) by Proposition
3.9. This concludes the proof.

We established in Proposition 4.3 that Conv(V) ⊇ ∪T ≺V Conv(T ). The next corollary, stating
the reverse inclusion, concludes the proof of Theorem 1.13.

Corollary 4.9. If Conv(V) has a non-empty interior, then Conv(V) ⊆ ∪T ≺V Conv(T ).
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Proof. The set K := ∪T ≺V Conv(T ) contains all generic elements of Conv(V), by Lemma 4.8.
Observing that K is closed, and recalling that generic elements are dense in Conv(V), we obtain
the announced inclusion.

The next lemma characterizes the obstructions to the convexity of the piecewise linear inter-
polant IT u of a convex function u ∈ Conv(X) on a triangulation T . See also Figure 4 (right).

Lemma 4.10. Consider u ∈ Conv(X), and a triangulation T which is not u-Delaunay. Then
there exists x ∈ X, and a direct basis (f, g) of Z2, such that the triangles [x, x + f, x + g] and
[x+ f, x+ g, x+ f + g] belong to T , and satisfy u(x) + u(x+ f + g) < u(x+ f) + u(x+ g).

Proof. Since convexity is a local property, there exists two triangles T, T ′ ∈ T , sharing an edge,
such that the interpolant IT u is not convex on T ∪ T ′ (i.e. convexity fails on the edge by T and
T ′). Up to a translation of the domain, we may assume that T = [0, f, g] and T ′ = [f, g, e], for
some e, f, g ∈ Z2. The pair (f, g) is a basis of Z2 because the triangle T contains no point of
Z2 except its vertices; up to exchanging f and g we may assume that it is a direct basis. Up to
adding an affine function to u, we may assume that u vanishes at the vertices 0, f, g of T .

If f lies in the triangle [0, e, g], then since u ∈ Conv(X), and recalling that u(0) = u(f) =
u(g) = 0, we obtain u(e) ≥ 0. This implies that IT u is convex on T ∪ T ′, which contradicts our
assumption. Likewise g /∈ [0, f, e], thus f ≺ e ≺ g and therefore det(f, e) > 0 and det(e, g) > 0.
We next observe that

det(f, g) + det(g − e, f − e) = det(f, e) + det(e, g).

The four members of this equation are integers, the two left being equal to 2|T | = 2|T ′| = 1,
and the two right being positive. Hence det(f, e) = det(e, g) = 1, and therefore e = f + g as
announced. From this point, the inequality u(x) + u(x+ f + g) < u(x+ f) + u(x+ g) is easily
checked to be equivalent to the non-convexity of IT u on T ∪ T ′.

Proposition 4.11. Consider stencils V, a triangulation T ≺ V, and u ∈ Conv(V). Define a
sequence of triangulations T0 := T , T1, T2 · · · as follows: if Ti is u-Delaunay, then the sequence
ends, otherwise Ti+1 is obtained by flipping an arbitrary edge of Ti satisfying Lemma 4.10. Then
the sequence is finite, contains at most #(V) elements, and Ti ≺ V for all 0 ≤ i ≤ n.

Proof. Proof that Ti ≺ V, by induction on i ≥ 0. Initialization: T0 := T ≺ V by assumption.
Induction: adopting the notations of Lemma 4.10, the “flipped” edge [x+f, x+g] of Ti is replaced
with [x, x+e] in Ti+1, with e := f+g. We only need to check that e ∈ V(x), and for that purpose
we distinguish two cases. If the basis (f, g) is acute, then f, g are the parents of e, and we have
P ex(u) < 0 by Lemma 4.10. This implies e ∈ V(x) by Proposition 3.9. On the other hand, if
the basis (f, g) is not acute, then by Corollary 2.4 the vector e is a parent of either f or g, thus
e ∈ V(x) by property (Stability) of stencils.

Bound on the number n of edge flips. For all 0 ≤ i < n one has ITi+1 u ≤ ITi u on Hull(X),
and this inequality is strict at the common midpoint of the flipped edges [xi + fi, xi + gi] and
[xi, xi + ei], with the above conventions. Hence the edge [xi, xi + ei] appears in the triangulation
Ti+1 but not in any of the Tj , for all 0 ≤ j ≤ i. It follows that i 7→ (xi, ei) is injective, and since
ei ∈ V(xi) this implies n ≤ #(V).

We finally prove Theorem 1.15. Consider a Delaunay triangulation T , and the minimal
stencils VT such that T ≺ V. Let also u ∈ Conv(X), and let Vu be the minimal stencils such
that u ∈ Conv(Vu). Then, by Proposition 4.11, T can be transformed into an u-Delaunay
triangulation via #(VT ∪ Vu) edge flips. Furthermore #(VT ) = O(#(X)) by Proposition 4.6
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and #(Vu) ≥ #(X), as follows e.g. from property (Visibility) of stencils. Thus #(VT ∪ Vu) =
O(#(Vu)), and the result follows.

5 Average case estimate of the cardinality of minimal stencils

The minimal stencils V, such that the cone Conv(V) contains a given discrete convex map, admit
a simple characterization described in the following proposition.

Proposition 5.1. Let u ∈ Conv(X), and let V be the minimal stencils on X such that u ∈
Conv(V). For any x ∈ X, and any irreducible e ∈ Z2 with ‖e‖ > 1, one has:

e ∈ V(x) ⇔ (P ex is not supported on X, or P ex(u) < 0).

Proof. Proof of implication ⇐. If P ex is not supported on X, then e ∈ Vmin(x) ⊆ V(x) by
Proposition 3.7. On the other hand if P ex(u) < 0, then e ∈ V(x) by Proposition 3.9.

Proof of implication ⇒. Consider x ∈ X, e ∈ V(x), with ‖e‖ > 1, and such that P ex is
supported on X. Assume for contradiction that P ex(u) ≥ 0, and denote by f, g the parents of e.
Let E := {e′ ∈ V(x); f ≺ e′ ≺ g}. The parents of any e′ ∈ E belong to E ∪ {f, g} by Lemma
3.3 (ii), and one has P e′z (u) ≥ 0 by Lemma 4.2. Defining new stencils by V ′(x) := V(x) \E, and
V ′(y) := V(y) for y 6= x, we contradict the minimality of V.

The rest of this section is devoted to the proof of Theorem 1.11, and for that purpose we
consider the rotated and translated grids Xξ

θ , defined in (10). For simplicity, but without loss
of generality, we assume a unit grid scale h := 1. For each rotation angle θ ∈ R, and each offset
ξ ∈ R2, we introduce an affine transform Aξθ: for all x ∈ R2

Aξθ(x) := Rθ(ξ + x).

For any set E ⊆ R2, and any affine transform A, we denote A(E) := {A(e); e ∈ E}. For instance,
the displaced grids (10) are given by Xξ

θ := Ω ∩Aξθ(Z
2).

The maximal stencils on the grid Xξ
θ are defined by: for all x ∈ Xξ

θ

Vθ,ξmax(x) := {e ∈ Z2 irreducible; x+Rθe ∈ Xξ
θ}.

A family Vξθ of stencils on Xξ
θ is a collection of sets Vξθ (x) ⊆ Vθ,ξmax(x), x ∈ Xξ

θ which satisfies the
usual (Stability) and (Visibility) properties of Definition 1.6 (replacing, obviously, instances of
Vmax with Vθ,ξmax). For x ∈ Xξ

θ , and e ∈ V
θ,ξ
max we consider the linear forms Sex,θ(u) := u(x+Rθe)−

2u(x)+u(x−Rθe), and likewise T ex,θ, P
e
x,θ, which are used to define cones Conv(Vξθ ) ⊆ Conv(Xξ

θ ).
In a nutshell, when embedding a stencil element e ∈ Vξθ (x) ⊆ Z2, where x ∈ Xξ

θ , into the physical
domain Ω (e.g. considering x+Rθe ∈ Xξ

θ ), one should never forget to apply the rotation Rθ.
Consistently with the notations of Theorem 1.11, we consider a fixed convex map U ∈

Conv(Ω), and study the smallest stencils Vξθ ⊆ Z2 on Xξ
θ such that the restriction of U to

Xξ
θ belongs to Conv(Vξθ ). The midpoints m = x+Rθe/2 of “stencil edges” [x, x+Rθe], x ∈ Xξ

θ ,
e ∈ Vξθ (x), play a central role in our proof.

Definition 5.2. For any m ∈ Ω, and any irreducible e ∈ Z2, let

Λem := {(θ, ξ) ∈ [0, π/2[×[0, 1[2; m = x+Rθe/2, for some x ∈ Xξ
θ such that e ∈ Vξθ (x)}.
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We introduce offsetted grids, of points with half-integer coordinates

Z := (1
2 , 0) + Z2, Z ′ := (0, 1

2) + Z2, Z ′′ := (1
2 ,

1
2) + Z2.

For any x, y ∈ Z2 with x− y irreducible, the midpoint (x+ y)/2 of the segment [x, y] belongs to
the disjoint union Z t Z ′ t Z ′′.

Lemma 5.3. For any m ∈ Ω and any (θ, ξ) ∈ Λem, one has m ∈ Aξθ(Z t Z
′ t Z ′′).

Proof. Let x ∈ Xξ
θ , and e ∈ V

ξ
θ (x), be such that m = x+Rθe/2. Observing that the coordinates

of e are not both even, since e is irreducible, we obtain e/2 ∈ Z t Z ′ t Z ′′. Adding Rθ(e/2) to
x ∈ Aξθ(Z

2) yields as announced a point m ∈ Aξθ(Z t Z
′ t Z ′′).

For any point m ∈ R2, and any angle θ, there exists exactly one offset ξ ∈ [0, 1[2 such that
m ∈ Aξθ(Z); and likewise for Z ′, Z ′′. Hence the set Λem contains redundant information, which
motivates the following definition: for any m ∈ Ω, and any irreducible e ∈ Z2

Θe
m := {θ ∈ [0, π/2[; ∃ξ ∈ [0, 1[2, (θ, ξ) ∈ Λem and m ∈ Aξθ(Z)}. (21)

and similarly we define Θ′em, Θ′′em , by replacing Z with Z ′, Z ′′ respectively in (21). By convention,
Θe
m = Θ′em = Θ′′em = ∅ for non irreducible vectors e ∈ Z2. The following lemma accounts in

analytical terms for a simple combinatorial identity: one can count stencil edges by looking at
their endpoints or their midpoints.

Lemma 5.4. The following integrals are equal:
ˆ

[0,1]2

ˆ π
2

0
#(Vξθ ) dθdξ =

∑
e∈Z2

ˆ
m∈Ω

(|Θe
m|+ |Θ′em|+ |Θ′′em |) dm, (22)

where |Θ| denotes the Lebesgue measure of a Borel set Θ ⊆ R.

Proof. Consider m ∈ Ω, e ∈ Z2, and θ ∈ Θe
m. Then there exists a unique ξ ∈ [0, 1[2 such that

m ∈ Aξθ(Z). This uniquely determines the point x := m − 1
2Rθe ∈ Xξ

θ such that e ∈ Vξθ (x).
Likewise for Θ′em, Θ′′em . Conversely, the data of θ, ξ, x ∈ Xξ

θ and e ∈ Vξθ (x) uniquely determines
m := x + Rθe/2, and also by Lemma 5.3 a unique set among Θe

m, Θ′em, Θ′′em containing θ. As a
result the left and right hand side of (22) are just two different expressions of the measure of

{(m, e, i, θ); θ ∈ Θ(i)e
m } ⊆ Ω× Z2 × {0, 1, 2} × [0, π/2[,

where Θ
(0)e
m := Θe

m, Θ
(1)e
m := Θ′em, and Θ

(2)e
m := Θ′′em . Implicitly, we equipped Z2 and {0, 1, 2}

with the counting measure, and [0, π/2[ and Ω with the Lebesgue measure (which in the latter
case is preserved by the rotations Rθ).

In order to estimate (22), we bound in the next lemma the size of the sets Θe
m, Θ′em, Θ′′em .

Lemma 5.5. Let e ∈ Z2 be irreducible, with ‖e‖ > 1, of parents f, g. Let also m ∈ Ω. Then for
any θ, ϕ ∈ Θe

m, one has sin |θ − ϕ| ≤ 2/min{〈e, f〉, 〈e, g〉}. Likewise for Θ′em, Θ′′em .

Proof. Without loss of generality, we may assume that m is the origin of R2. Let Q be the
parallelogram of vertices {±Rθe,±Rϕe}; note that 1

2Q ⊆ Ω. A point x ∈ R2 belongs to Q iff

| det(x,Rθe±Rϕe)| ≤ | det(Rθe,Rϕe)| = ‖e‖2 sin |θ − ϕ|. (23)
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Indeed sin |θ − ϕ| = | sin(θ − ϕ)|, since θ, ϕ ∈ [0, π/2[ by construction. We assume without loss
of generality that 〈e, f〉 ≤ 〈e, g〉. Introducing h := e − 2f = g − f we observe that 〈e, h〉 ≥ 0,
and compute

| det(Rθh,Rθe)| = | det(h, e)| = | det(e− 2f, e)| = 2.

|det(Rθh,Rϕe)| ≤ | det(h, e)| cos(ϕ− θ) + |〈h, e〉| sin |ϕ− θ| ≤ 2 + (‖e‖2 − 2〈e, f〉) sin |ϕ− θ|.

In the second line, we used the identity sin(a+ b) = sin(a) cos(b) + cos(a) sin(b), where a denotes
the angle between e and h, and b := ϕ − θ. Combining these two estimates with (23), and
assuming for contradiction that sin |θ − ϕ| ≥ 2/〈e, f〉, we obtain that Rθh ∈ Q. By symmetry,
−Rθh ∈ Q, and likewise ±Rϕh ∈ Q.

In the following, we denote x := −Rθe/2, y := −Rϕe/2, p := ±Rθh/2, q := ±Rϕh/2, where
the signs for p and q are chosen so that p, q ∈ [x,−x, y]. Denoting by α, β, γ (resp. α′, β′, γ′) the
barycentric coordinates of p (resp. q) in this triangle, convexity implies

U(p) ≤ αU(x) + βU(−x) + γU(y), (24)
U(q) ≤ α′U(x) + β′U(−x) + γ′U(y). (25)

Let ξ ∈ [0, 1[2 be such that m ∈ Aξθ(Z). Then x ∈ Xξ
θ , e ∈ V

ξ
θ (x), and m = x+Rθe/2 (recall that

we fixed m = 0). Using the characterization of minimal stencils of Proposition 5.1, we obtain

0 > P ex,θ(U) = U(x)− U(x+Rθf)− U(x+Rθg) + U(x+Rθe), (26)

provided this linear form is supported on Xξ
θ . Note that x+Rθe = −x ∈ Xξ

θ , that x+Rθf = εp,
and that x + Rθg = −εp for some ε ∈ {−1, 1}. Since ±p ∈ 1

2Q ⊆ Ω this confirms that (26)
is supported on Xξ

θ := Ω ∩ Aξθ(Z
2). Inserting in (26) the values of −x, p,−p, and proceeding

likewise for y and q, we obtain

U(x) + U(−x) < U(p) + U(−p) (27)
U(y) + U(−y) < U(q) + U(−q). (28)

Up to adding an affine map to U , we may assume that U(x) = U(−x) = 0, and U(p) = U(−p).
From (27) we obtain U(p) > 0. Hence also U(y) > 0 using (24), and therefore U(q) ≤ γ′U(y) ≤
U(y) using (25). Likewise U(−q) ≤ U(−y), which contradicts (28) and concludes the proof.

We finally conclude the proof of Theorem 1.11, by combining (22) with the next lemma.

Lemma 5.6. For any m ∈ Ω, with r := max{1,diam(Ω)}: (likewise for Θ′em, Θ′′em )∑
e∈Z2

|Θe
m| ≤ 2π + 4π2(1 + ln r)2. (29)

Proof. Note that Θe
m ⊆ [0, π/2[ for any e ∈ Z2, and that Θe

m = ∅ if the e is not irreducible, or
if ‖e‖ > r. For any two vectors e, e′ ∈ Z2, we write e′ � e iff e′ is a parent of e (which implies
that e, e′ are irreducible, and that ‖e‖ > 1). Isolating the contributions to (29) of the four unit
vectors, and applying Lemma 5.5 to other vectors, we thus obtain∑

e∈Z2

|Θe
m| ≤ 4× π

2
+
∑
‖e‖≤r

∑
e′� e

arcsin

(
2

〈e, e′〉

)
≤ 2π +

∑
e′∈Z2

∑
e�e′
‖e‖≤r

π

〈e, e′〉
, (30)
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where we used the concavity bound arcsin(x) ≤ π
2x for all x ∈ [0, 1] (and slightly abused notations

for arguments of arcsin larger than 1).
Consider a fixed irreducible e′ ∈ Z2, and denote by f, g its parents if ‖e′‖ > 1, or the two

orthogonal unit vectors if ‖e′‖ = 1, so that det(f, e′) = 1 = det(e′, g). If e ∈ Z2 is such that
e′ � e, then | det(e, e′)| = 1; assuming det(e, e′) = 1 (resp. −1) we obtain that e = f + ke′ (resp.
e = g+ke′) for some scalar k which must be (i) an integer since e′ is irreducible, (ii) non-negative
since 〈e, e′〉 ≥ 0, and (iii) positive since ‖e′‖ < ‖e‖. Assuming ‖e‖ ≤ r, we obtain in addition
k‖e′‖ ≤ r, thus k ≤ r and ‖e′‖ ≤ r. As a result∑

e�e′
‖e‖≤r

1

〈e, e′〉
≤
∑

1≤k≤r

(
1

〈f + ke′, e′〉
+

1

〈g + ke′, e′〉

)
≤ 2

‖e′‖2
∑

1≤k≤r

1

k
. (31)

Inserting (31) into (30) yields the product of the two following sums, which are easily bounded
via comparisons with integrals: isolating the terms for k = 1, and for all ‖e′‖ ≤

√
2∑

1≤k≤r

1

k
≤ 1 +

ˆ r

1

dt

t
= 1 + ln r,

∑
0<‖e′‖≤r
irreducible

1

‖e′‖2
≤ 4 + 4× 1

2
+

ˆ
1≤‖x‖≤r

dx

‖x‖2
≤ 6 + 2π ln r.

Noticing that 2π ≥ 6 we obtain (29) as announced.

6 Numerical experiments

Our numerical experiments cover the classical formulation [24] of the monopolist problem, as
well as several variants, including lotteries [17, 25], or the pricing of risky assets [4]. We choose
to emphasize this application in view of its appealing economical interpretation, and the often
surprising qualitative behavior. Our algorithm can also be applied in a straightforward manner
to the computation of projections onto the cone of convex functions defined on some square
domain, with respect to various norms as considered in [5, 18, 22, 21] (this amounts to denoising
under a convexity prior). It may however not be perfectly adequate for the investigation of
geometric conjectures [16, 26, 18], due to the use of a grid discretization.

The hierarchical cones of discrete convex functions introduced in this paper are combined
with a simple yet adaptive and anisotropic stencil refinement strategy, described in §6.1. The
monopolist model is introduced in §6.2, and illustrated with numerous experiments. We compare
in §6.3 our implementation of the constraint of convexity, with alternative methods proposed in
the literature, in terms of computation time, memory usage, and solution quality.

6.1 Stencil refinement strategy

We introduce two algorithms which purpose is to minimize a given lower semi-continuous proper
convex functional E : F(X) → R ∪ {+∞}, on the N -dimensional cone Conv(X), N := #(X),
without ever listing the O(N2) linear constraints which characterize this cone. They both gener-
ate an increasing sequence of stencils V0 ( V1 ( · · · ( Vn on X, and minimizers (ui)

n
i=0 of E on

cones defined by O(#(Vi)) linear constraints. The subscript i refers to the loop iteration count
in Algorithms 1 and 2, and the loop ends when the stencils are detected to stabilize: Vn = Vn+1.
The final map un is guaranteed to be the global minimum of E on Conv(X).

Our first algorithm is based on an increasing sequence Conv(V0) ⊆ · · · ⊆ Conv(Vn) of sub-
cones of Conv(X). If constraints of type P ex , x ∈ X, e ∈ Vi(x) are active for the minimizer ui
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Figure 5: Top: Algorithm 2, for the classical monopolist problem (1) on [1, 2]2 with a 20×20 grid,
converges in 2 stencils refinement steps (using the extended candidates V̂ρ, ρ := 1.5). Bottom: 4
refinement steps are needed with a different density of customers, uniform on the square [1, 2]2

rotated by π/12. Top right: u-Delaunay triangulations associated with the respective discrete
solutions, for illustration of Theorem 1.13.

of E on Conv(Vi) (i.e. the corresponding Lagrange multipliers are positive), then refined stencils
Vi+1 are adaptively generated from Vi; otherwise ui is the global minimizer of E on Conv(X),
and the method ends. Note that the optimization of E on Conv(Vi+1) can be hot-started from
the previous minimizer ui ∈ Conv(Vi) ⊆ Conv(Vi+1).

Algorithm 1 Sub-cones approach to stencil refinement
Start with the minimal stencils: V ← Vmin. (See Proposition 3.7)
Until the stencils V stabilize

Find a minimizer u of the energy E on Conv(V),
and extract the Lagrange multipliers λ associated to the constraints P ex , x ∈ X, e ∈ V̂(x).

Set V(x)← V(x) ∪ {e ∈ V̂(x); λ(P ex) > 0}, for all x ∈ X.

Definition 6.1. For any family V of stencils on X, we denote by Conv′(V) ⊆ F(X) the cone
defined by the non-negativity of: for all x ∈ X, and all e ∈ V(x), the linear forms Sex and T ex if
‖e‖ > 1, provided they are supported on X. Note that Conv(V) ⊆ Conv(X) ⊆ Conv′(V).

Algorithm 2 is based on a decreasing sequence Conv′(V0) ⊇ · · · ⊇ Conv′(Vn) of super-cones
of Conv(X). The minimizer ui of E on Conv′(Vi) may not belong to Conv(X), even less to
Conv(Vi), and in particular some of the values P ex(ui), x ∈ X, e ∈ V̂i(x), may be negative.
In that case, refined stencils Vi+1 are adaptively generated from Vi; otherwise, ui is the global
minimizer of E on Conv(X), and the method ends.

Algorithms 1 and 2 are provided “as is”, without any complexity guarantee. Our numerical
experiments are based on algorithm 2, because the numerical test “P ex(u) < 0” turned out to be
more robust than “λ(P ex) > 0”. In order to limit the number n of stencil refinement steps, we
use a slightly extended set V̂ρ(x) of candidates for refinement, with ρ := 1.5, see Definition 6.2
below (note that V̂1 = V̂). With this modification, n remained below 10 in all our experiments.
The constructed stencils were generally sparse, highly anisotropic, and almost minimal for the
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Algorithm 2 Super-cones approach to stencil refinement
Start with the minimal stencils V.
Until the stencils V stabilize

Find a minimizer u of the energy E on Conv′(V).
Set V(z)← V(z) ∪ {e ∈ V̂(z); P ez (u) < 0}, for all z ∈ X.

discrete problem solution u ∈ Conv(X) eventually found, see Figure 5. Observation of Figure 9
suggests that n grows logarithmically with the problem dimension N , and that the final stencils
cardinality #(Vn) depends quasi-linearly on N , as could be expected in view of Remark 1.9 and
Theorem 1.11. However, we could not mathematically establish such complexity estimates.

Definition 6.2 (Extended candidates). Let V be a family of stencils, let ρ ≥ 1, and let x ∈ X. A
vector e ∈ Vmax(x)\V(x), of parents f, g, belongs to the extended candidates V̂ρ(x) iff there exists
trigonometrically consecutive f ′, g′ ∈ V(x) such that f ′ � f ≺ g � g′ and ‖f‖‖g‖ ≤ ρ‖f ′‖‖g′‖.

6.2 The monopolist problem

A monopolist has the ability to produce goods, which have two characteristics and may thus be
represented by a point q ∈ R2. The manufacturing cost Cost(q) : R2 → R ∪ {+∞} is known
and fixed a-priori. Infinite costs account for products which are “meaningless”, or impossible to
build. The selling price π : R2 → R ∪ {+∞} is fixed unilaterally by the monopolist except for
the “null” product (0, 0), which must be available for free (π(0, 0) ≤ 0). The characteristics of
the consumers are also represented by a point z ∈ R2, and the utility of product q to consumer
z is modeled by the scalar product between their characteristics

U(q, z) := 〈q, z〉. (32)

More general utility pairings U are considered in [12], yet the numerical implementation of the
resulting optimization problems remains out of reach, see [18] for a discussion. All consumers
z are rational, “screen” the proposed price catalog π, and choose the product of maximal net
utility 〈q, z〉 − π(q) (i.e. raw utility minus price). Introducing the Legendre-Fenchel dual U of
the prices π: for all z ∈ R2

U(z) := π∗(z) := sup
q∈R2

〈q, z〉 − π(z),

we observe that the optimal product3 for consumer z is ∇U(z), which is sold at the price

π(∇U(z)) = 〈∇U(z), z〉 − U(z). (33)

The net utility function U is convex and non-negative by construction, and uniquely determines
the products bought and their prices. Conversely, any convex non-negative U defines prices
π = U∗ satisfying the admissibility condition π(0) ≤ 0, and such that π∗ = U∗∗ = U . The
distribution of the characteristics of the potential customers is known to the monopolist, under
the form of a bounded measure µ on R2. He aims to maximize his total profit: the integrated
difference (sales margin) between the selling price (33), and the production cost

sup

{ˆ
R2

(
〈∇U(z), z〉 − U(z)− Cost(∇U(z))

)
dµ(z); U ∈ Conv(R2), U ≥ 0

}
(34)

3Strictly speaking, the optimal product Q(z) is an element of the subgradient ∂zU , which (Lebesgue-)almost
surely is a singleton {∇U(z)}. Hence we may write (34) in terms of ∇U(z), provided the density µ of customers
is absolutely continuous with respect to the Lebesgue measure.
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If production costs are convex, then this amounts to maximizing a concave functional of U under
convex constraints; see [3] for precise existence results. If U maximizes (34), then an optimal
catalog of prices is given by U∗. Quantities of particular economic interest are the monopolist
margin, and the distribution of product sales:

Margin = U∗ − Cost, SalesDistribution = (∇U)#µ, (35)

where # denotes the push forward operator on measures. The regions defined by {U = 0} and
{det(Hessianu) = 0} are also important, as they correspond to different categories of customers,
see below. We present numerical results for three instances of the monopolist problem, associated
to different product costs. These three models are clearly simplistic idealizations of real economy.
Their interest lies in their, striking, qualitative properties, which are stable and are expected to
transfer to more complex models.

For implementation purposes, we observe that the maximum profit (34) is unchanged if one
considers U only defined on a convex set K ⊇ supp(µ), and imposes the additional constraint
Cost(∇U(x)) < ∞ for all x ∈ K. The chosen discrete domain is a square grid X, such that
supp(µ) ⊆ Hull(X). This density is represented by non-negative weights (µx)x∈X , set to zero
outside supp(µ). The integral appearing in (34) is discretized using finite differences, see [5]
for convergence results. The resulting convex program is solved by combining Mosek software’s
interior point (for linear problems) or conic (for quadratic4 problems) optimizer, with the stencil
refinement strategy of Algorithm 2, §6.1.

Classical model. The produced goods are cars (for concreteness), which characteristics q =
(q1, q2) are non-negative and account for the engine horsepower q1 and the upholstery quality
q2. Production cost is quadratic: Cost(q) := 1

2‖q‖
2 for all q ∈ R2

+, and Cost(q) = +∞ otherwise
(cars with negative characteristics are unfeasible). Consumer characteristics x = (x1, x2) are
their appetite x1 for car performance, and x2 for comfort, consistently with (32). The qualitative
properties of this model are the following [24]: denoting by U a solution of (34), and ignoring
regularity issues in this heuristic discussion

• (Desirability of exclusion) The optimal monopolist strategy often involves neglecting a
positive proportion of potential customers - which “buy” the null product 0 at price 0. In
other words, the solution of (34) satisfies U = 0 on an open subset of supp(µ), hence also
∇U = 0. The economical interpretation is that introducing (low end) products attractive
to this population would reduce overall profit, because other customers currently buying
expensive, high margin products, would change their minds and buy these instead.

• (Bunching) “Wealthy” customers z generally buy products which are specifically designed
for them, in the sense that ∇U is a local diffeomorphism close to z. “Poor” potential
customers are excluded from the trade: U = 0 close to z, see the previous point. There
also exists an intermediate category of customers characterized by det(HessianU) = 0
close to z, so that the same product q = ∇U(z) is bought by a one dimensional “bunch” of
customers (∇U)−1{q}. The image of this category of customers, by ∇U , is one dimensional
product line. From an economic point of view, the optimal strategy limits the variety of
intermediate range products in order, again, to avoid competing with high margin sales.

4Following the indications of Mosek’s user manual, quadratic functionals are implemented under the form of
linear functionals involving auxiliary variables subject to conic constraints.

25



0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 6: Left: domain [1, 2]2 (thick black), and rotated domains used in numerical experiments
for the classical principal agent problem, see Figure 11. We computed a minimizer u ∈ Conv(X)
of a discretization of the classical monopolist problem on [1, 2]2, see (1), on a 20 × 20 grid X,
and an u-Delaunay triangulation T , see Figure 4. Center left: subgradients cells ∂xU , x ∈ X,
with U := IT u. Center right: the gradients ∇ IT u, T ∈ T (vertices of the previous cells). Right:
the less precise numerical method OF3, see 6.3, thickens the product line and hides the bunching
phenomenon.

Considering, as in [24, 18], a uniform density of customers on the square [1, 2]2, we illustrate5

on Figure 1 the estimated solution U (left), det(HessianU) (center left), the sales distribution
(center right) and the monopolist margin (right), see (35). The phenomena of exclusion U = 0
and of bunching det(HessianU) = 0 are visible (center left subfigure) as a white triangle and
as the darkest level set of det(HessianU) respectively. The image by ∇U of customers subject
to bunching appears (center right subfigure) as a one dimensional red structure in the product
sales distribution.

We also consider variants where the density of customers is uniform on the square [1, 2]2

rotated by an angle θ ∈ [0, π/4] around its center, see Figures 6 (left) and 11. Our experiments
suggest that exclusion occurs iff θ ∈ [0, θ0], with θ0 ≈ 0.47 rad. Bunching is always present, yet
two regimes can be distinguished: the one dimensional product line, associated to the bunching
phenomenon, is included in the boundary of the two dimensional one iff θ ∈ [θ1, π/4], with
θ0 < θ1 ≈ 0.55 rad. Proving mathematically this qualitative behavior is an open problem.

Remark 6.3 (Subgradient measure). Studying the “bunching” phenomenon requires to estimate
the hessian determinant det(HessianU) ≥ 0 of the solution U of (34), and to visualize the
degenerate region det(HessianU) = 0. The hessian determinant also appears in the density of
product sales (35). These features need to be extracted from a minimizer u ∈ Conv(X) of a finite
differences discretization of (34), which is a delicate problem since (i) the hessian determinant is
a “high order” quantity, and (ii) equality to zero is a numerically unstable test. Naïvely computing
a discrete hessian Hu via second order finite differences, we obtain an oscillating, non-positive
and overall imprecise approximation det(Hu), see Figure 10 (right).

The following approach gave better results, see Figure 10 (left): compute the largest convex
U : Hull(X) → R such that U ≤ u on X (if u ∈ Conv(X), then U = IT u for any u-Delaunay
triangulation). Then for all x ∈ X \ ∂Hull(X)

h2 det(HessianU(x)) ≈ |{∇U(x+ e); ‖e‖∞ ≤ h/2}| ≈ |{∇Û(x+ e); ‖e‖∞ ≤ h/2}| = |∂xÛ |,

where ∂ denotes the sub-gradient, set-valued operator on convex functions, and | · | the two di-
mensional Lebesgue measure. The sub-gradient sets ∂xÛ are illustrated on Figure 6.

5With this customer density, [24] expected the bunching region to be triangular, and the image ∇U to be the
union of the segment [(0, 0), (1, 1)] and of the square [1, 2]2. After discussion with the author, and in view of the
numerical experiments, we believe that these predictions are erroneous.
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Product bundles and lottery tickets. Two types of products P1, P2 are considered, which
the consumer of characteristics x = (x1, x2) ∈ R2 respectively values x1 and x2. The two products
are indivisible, and consumers are not interested in buying more than one of each. The monopolist
sells them in bundles q = (q1, q2) ∈ {0, 1}2 which characteristics are the presence (qi = 1) of
product Pi, or its absence (qi = 0), for i ∈ {1, 2}. In order to maximize profit, the monopolist
also considers probabilistic bundles, or lottery tickets, q ∈ [0, 1]2 for which the product Pi has the
probability qi of being present. This is consistent with (32), provided consumers are risk neutral.
Production costs are neglected, so that Cost(q) = 0 if q ∈ [0, 1]2 and Cost(q) = +∞ otherwise.
Three different customer densities were considered, see below. The qualitative property of interest
is the presence, or not, of probabilistic bundles in the monopolist’s optimal strategy.

• Uniform customer density on [0, 1]2. We recover the known exact minimizer [17]:

U(x, y) := max{0, x− a, y − a, x+ y − b}, with a := 2/3, and b := (4−
√

3)/2,

up to numerical accuracy, see Figure 7 (left). This optimal strategy does not involve lottery
tickets: ∇U(x, y) ∈ {0, 1}2, wherever this gradient is defined. The uselessness of lottery
tickets is known for similar 1D problems and was thought to extend to higher dimension,
until the following two counter-examples were independently found [17, 25].

• Uniform customer density on the triangle T := {(x, y) ∈ [0, 1]2; x + y/2 ≥ 1}. The
monopolist strategy associated to

U(x, y) := max{0, x+ y/2− 1, x+ y − b}, with b = 1 + 1/(2
√

3), (36)

which involves the lottery ticket (1, 1/2), yields better profits that any strategy restricted
to deterministic bundles [17]. The triangle T , and the numerical best U , are illustrated on
Figure 7 (center). These experiments suggest that (36) is a6 globally optimal solution.

• Uniform customer density on the kite shaped domain {(x, y) ∈ [0, 1]2; x+y/2 ≥ 1 or x/2+
y ≥ 1}, see Figure 7 (right). The optimal monopolist strategy is proved in [25] to involve
probabilistic bundles, but it is not identified. Our numerical experiments suggest that it
has the form

U(x, y) := max{0, x+ y/2− 1, x/2 + y − 1, x+ y − b},

which involves the lottery tickets (1, 1/2) and (1/2, 1). Under this assumption, the optimal
value b = 1 + 1/(3

√
2) is easily computed.

Numerous qualitative questions remain open. Is there a distribution of customers for which the
optimal strategy involves a continuum of distinct lottery tickets {(1, α); α0 ≤ α ≤ α1} ?

Pricing of risky assets. A more complex economic model is considered in [4], where financial
products, characterized by their expectancy of gain and their variability, are sold to agents
characterized by their risk aversion and their initial risk exposure. We do not give the details of
this model here, but simply point out that it fits in the general framework of (34) with the cost
function Cost(a, b) := −α(ξa+

√
−(a2 + b)), if a2 + b ≤ 0, and +∞ otherwise, where ξ ∈ R and

α ≥ 0 are parameters, see Example 3.2 in [4]. Observing that, for a2 + b < 0

det(Hessian Cost(a, b)) =
1

4(a2 + b)2
,

6Optimal solutions of (34) are not uniquely determined outside the customer density support T = supp(µ).
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Figure 7: Three dimensional plot of the optimal U for the product-bundles variant of the mo-
nopolist problem, with respect to various customer distributions. Left : uniform distribution on
[0, 1]2. Center, and right: distribution uniform on the illustrated black polygon.

Figure 8: Optimal pricing of risky assets, with the parameters α = 1, ξ = 1, and a uniform
customer density on [1, 2]2. Left: level sets of the estimated solution U of (37), with exclusion
region U = 0 in white. Center left: level sets of det(HessianU), the darkest one is the estimated
bunching region det(HessianU) = 0. Center right, and right (detail): optimal product line,
colored with the monopolist margin.

we easily obtain that this cost is convex7. The lack of smoothness of the square-root appearing
in the cost function is a potential issue for numerical implementation, hence the problem (34) is
reformulated using an additional variable V subject to a (optimizer friendly) conic constraint

max

{ˆ
(〈∇U, z〉 − U + αξ ∂xU + αV ) dµ; U ∈ Conv0(R2), V 2 + (∂xU)2 + ∂yU ≤ 0

}
. (37)

A numerical solution, presented Figure 8, displays the same qualitative properties (Desirability
of exclusion, Bunching) as the classical monopolist problem with quadratic cost.

6.3 Comparison with alternative methods

We compare our implementation of the constraint of convexity with alternative methods that
have been proposed in the literature. The compared algorithms are the following:

• (Adaptive constraints) The optimization strategy (Conv) described in Algorithm 2 section
§6.1, based on the hierarchy of cones Conv(V), and used in our numerical experiments
§6.2. The adaptation (DConv) of this strategy to the hierarchy DConv(V) of cones of
“directionally convex” functions, see Appendix A.

7This property was not noticed in the original work [4].
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• (Local constraints) The approach of Aguilera and Morin (AM, [1]) based on semi-definite
programming. A method of Oberman and Friedlander (OF2, OF3, [22]), where OFk refers
to minimization over the cone DConv(Vk) associated to the fixed stencil Vk(x) := {e ∈
Vmax(x); ‖e‖ ≤ k}. A modification of OF3 by Oberman (Ob3, [21]), with additional
constraints ensuring that the output is truly convex.

• (Global constraints) Direct minimization over the full cone Conv(X), as proposed by Car-
lier, Lachand-Robert and Maury (CLRM, [5]). Minimization over GradConv(X), see (4),
following8 Ekeland and Moreno (EM, [10]).

The numerical test chosen is the classical model of the monopolist problem, with quadratic
cost, on the domain [1, 2]2, see Figure 1 and §6.2. This numerical test case is classical and also
considered in [10, 18, 22]. It is discretized on a n× n grid, for different values of n ranging from
10 to 100 (10 to 50 for global constraint methods due to memory limitations).

The number of linear constraints of the optimization problems assembled by the methods is
shown on Figure 9 (center left). For adaptive strategies, this number corresponds to the final
iteration. The semi-definite approach AM is obviously excluded from this comparison. Two
groups are clearly separated: Adaptive and Local methods on one side, with quasi-linear growth,
and Global methods on the other side, with quadratic growth. Let us emphasize that, despite
the similar cardinalities, many constraints of the adaptive methods are not local, see Figure 5.
The method DConv generally uses the least number of constraints, followed by OF2 and then
Conv.

Definition 6.4. The convexity defect of a discrete map u : X → R, is the smallest ε ≥ 0 such
that u + εq ∈ Conv(X). The directional convexity defect of u is the smallest ε ≥ 0 such that
u+ εq ∈ DConv(X), see Appendix A.

Figure 9 displays the convexity defect of the discrete solutions produced by the different
algorithms, at several resolutions. This quantity stabilizes at a positive value for the methods
OF2 and OF3, which betrays their non-convergence as n→∞. We expect the convexity defect
of the method AM to tend to zero, as the resolution increases, since this method benefits from
a convergence guarantee [1]; for practical resolutions, it remains rather high however. Other
methods, except DConv, have a convexity defect several orders of magnitude smaller, and which
only reflects the numerical precision of the optimizer (some of the prescribed linear constraints
are slightly violated by the optimizer’s output). Finally, the method DConv has a special status
since it often exhibits a large convexity defect, but its directional convexity defect vanishes (up
to numerical precision).

We attempt on figure 10 to extract, with the different numerical methods, the regions of
economical interest: potential customers excluded from the trade {U = 0}, and of customers
subject to bunching {det(HessianU) = 0}. While the features extracted from the method Conv
are (hopefully) convincing, the coordinate bias of the method OF2 is apparent, whereas the
method AM does not recover the predicted triangular shape of the set of excluded customers
[24]. The other methods DConv, CLRM, EM, (not shown) perform similarly to Conv; the
method OF3 (not shown) works slightly better than OF2, but still suffers from coordinate bias.
The method Ob3 (not shown) seems severely inaccurate9: indeed the hessian matrix condition

8We use the description of GradConv(X) by O(N2) linear constraints given in [10], but (for simplicity) not
their energy discretization, nor their method for globally extending elements u ∈ GradConv(X).

9The methods (Obk)k≥1 are closely related to our approach since they produce outputs with zero convexity
defect (up to numerical precision), and the number of linear constraints only grows linearly with the domain
cardinality: O(k2N), with N := #(X). We suspect that better results could be obtained with these methods by
selecting adaptively and locally the integer k.
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number with Obk, k ≥ 1, cannot drop below ≈ 1/k2, see [21], which is incompatible with the
bunching phenomenon, see the solution gradients on Figure 6.

For each method we compute exactly the monopolist profit (34), associated with the largest
global map U ∈ Conv(Ω) satisfying U ≤ u on X, where u ∈ F(X) is the method’s discrete
output. It is compared on Figure 9 with the best possible profit (which is not known, but was
extrapolated from the numerical results). Convergence rate is numerically estimated to n−1.1 for
all methods10 except (i) the semi-definite approach AM for which we find n−0.75, and (ii) the
method Ob3, for which energy does not seem to decrease.

In terms of computation time11, three groups of methods can be distinguished. Global
methods suffer from a huge memory cost in addition to their long run times. Methods using a
(quasi)-linear number of constraints have comparable run times, thanks to the limited number of
stencil refinement steps of the adaptive ones (their computation time might be further reduced
by the use of appropriate hot starts for the consecutive subproblems). Finally, the semi-definite
programming based method AM is surprisingly fast12, although this is at the expense of accuracy,
see above. For n = 100, the method CLRM would use 27 × 106 linear constraints, which with
our equipment simply do not fit in memory. The proposed method Conv selects in 5 refinement
steps a subset containing ≈ 0.4% of these constraints (100× 103), and which is by construction
guaranteed to include all the active ones; it completes in 6 minutes on a standard laptop.

In summary, adaptive methods combine the accuracy and convergence guarantees of methods
based on global constraints, with the speed and low memory usage of those based on local
constraints.

Conclusion and perspectives

We in this paper introduced a new hierarchy of discrete spaces, used to adaptively solve optimiza-
tion problems posed on the cone of convex functions. The comparison with existing hierarchies
of spaces, such as wavelets or finite element spaces on adaptively refined triangulations, is strik-
ing by its similarities as much as by its differences. The cones Conv(V) (resp. adaptive wavelet
or finite element spaces) are defined through linear inequalities (resp. bases), which become in-
creasingly global (resp. local) as the adaptation loop proceeds. Future directions of research
include improving the algorithmic guarantees, developing more applications of the method such
as optimal transport, and generalizing the constructed cones of discrete convex functions to
unstructured or three dimensional point sets.
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A Directional convexity

We introduce and discuss a weak notion of discrete convexity, which involves slightly fewer linear
constraints than (3) and seems sufficient to obtain convincing numerical results, see §6.3.

Definition A.1. We denote by DConv(X) the collection of elements in F(X) on which all the
linear forms Sex, x ∈ X, e ∈ Z2 irreducible, supported on X, take non-negative values.

Some elements of DConv(X) cannot be extended into global convex maps on Hull(X). Their
existence follows from the second point of Theorem 1.4 (minimality of the collection of constraints
Sex, T ex), but for completeness we give (without proof) a concrete example.

Proposition A.2. Let u ∈ F(Z2) be defined by u(1, 1) = 1, u(−1, 0) = u(0,−1) = −1, and
u(x) := 2‖x‖2 for other x ∈ Z2. Then for all x ∈ Z2, and all irreducible e ∈ Z2, one has
Sex(u) ≥ 1, and T ex(u) ≥ 2 if ‖e‖ > 1, with the exception T (1,1)

0 (u) = −1.

Elements of DConv(Z2) are nevertheless “almost” convex, in the sense that their restriction
to a coarsened grid is convex.

Proposition A.3. If u ∈ DConv(X), then u|X′ ∈ Conv(X ′), with X ′ := X ∩ 2Z.

Proof. Let x ∈ X, and let e ∈ Z2, ‖e‖ > 1, be irreducible and of parents f, g. Assuming that
x+ 2e, x− 2f, x− 2g ∈ X, and observing that x± e ∈ X by convexity, we obtain

u(x+ 2e) + u(x− 2f) + u(x− 2g)− 3u(x) = 2Sex(u) + Sex+e(u) + Sf−gx−e (u) ≥ 0.

Likewise u(x+ 2e)− 2u(x) + u(x− 2e) = Sex−e(u) + 2Sex(u) + Sex+e(u) ≥ 0.

The cone DConv(X) of directionally convex functions admits, just like Conv(X), a hierarchy
of sub-cones DConv(V) associated to stencils.

Definition A.4. Let V be a family of stencils on X, and let u ∈ F(X). The cone DConv(V) is
defined by the non-negativity of the following linear forms: for all x ∈ X

• For all e ∈ V(x), the linear form Sex, if supported on X.
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• For all e ∈ V̂(x), the linear form He
x := P ex + P−ex , if supported on X.

Proposition A.5. • For any stencils V,V ′, one has DConv(V) ⊆ DConv(X), DConv(V) ∩
DConv(V ′) = DConv(V ∩ V ′), and DConv(V) ∪DConv(V ′) ⊆ DConv(V ∪ V ′).

• For any stencils V, one has

DConv(V) = {u ∈ DConv(X); He
x(u) ≥ 0 for all x ∈ X, e ∈ Vmax(x) \ V(x)}. (38)

Proof. As observed in §3.2, the second point of this proposition implies the first one. We denote
by P(V) the identity (38), and prove it by decreasing induction over #(V). Since P(Vmax) clearly
holds, we consider stencils V ( Vmax.

Let x ∈ X, e ∈ Vmax(x) \ V(x), be such that ‖e‖ is minimal. Similarly to Proposition 3.9
we find that e belongs to the set V̂(x) of candidates for refinement at x, and define stencils V ′
by V(x) := V(x) ∪ {e}, and V ′(y) := V(y) for y 6= x. The cones DConv(V) and DConv(V ′) are
defined by a common collection of constraints, with the addition respectively ofHe

x for DConv(V),
and Sex, H

e+f
x , He+g

x for DConv(V ′). Expressing the latter linear forms as combinations of those
defining DConv(V)

Sex = He
x + Sfx + Sgx, He+f

x = He
x + Sfx+e + Sfx−e, He+g

x = He
x + Sgx+e + Sgx−e,

and observing that P(V ′) holds by induction, we conclude the proof of P(V).
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