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Abstract

Gradient schemes is a framework that enables the unified convergence analysis of many
numerical methods for elliptic and parabolic partial differential equations: conforming and
non-conforming Finite Element, Mixed Finite Element and Finite Volume methods. We show
here that this framework can be applied to a family of degenerate non-linear parabolic equa-
tions (which contain in particular the Richards’, Stefan’s and Leray–Lions’ models), and we
prove a uniform-in-time strong-in-space convergence result for the gradient scheme approxi-
mations of these equations. In order to establish this convergence, we develop several discrete
compactness tools for numerical approximations of parabolic models, including a discontinu-
ous Ascoli-Arzelà theorem and a uniform-in-time weak-in-space discrete Aubin-Simon theorem.
The model’s degeneracies, which occur both in the time and space derivatives, also requires
us to develop a discrete compensated compactness result.

AMS Subject Classification: 65M12, 35K65, 46N40.

Keywords: gradient schemes, convergence analysis, degenerate parabolic equations, uniform con-
vergence, discontinuous Ascoli-Arzelà theorem, discrete Aubin-Simon theorem, compensated com-
pactness.

1 Introduction

1.1 Motivation

The following generic nonlinear parabolic model

∂tβ(u)− div (a(x, ν(u),∇ζ(u))) = f in Ω× (0, T ),
β(u)(x, 0) = β(uini)(x) in Ω,
ζ(u) = 0 on ∂Ω× (0, T ),

(1)

where β and ζ are non-decreasing, ν is such that ν′ = β′ζ′ and a is a Leray–Lions operator, arises
in various frameworks (see next section for precise hypotheses on the data). This model includes

1. The Richards model, setting ζ(s) = s, ν = β and a(x, ν(u),∇ζ(u)) = K(x, β(u))∇u, which
describes the flow of water in a heterogeneous anisotropic underground medium,
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2. The Stefan model [8], setting β(s) = s, ν = ζ, a(x, ν(u),∇ζ(u)) = K(x, ζ(u))∇ζ(u), which
arises in the study of a simplified heat diffusion process in a melting medium,

3. The p−Laplace problem, setting β(s) = ζ(s) = ν(s) = s and a(x, ν(u),∇ζ(u)) = |∇u|p−2∇u,
which is involved in the motion of glaciers [37] or flows of incompressible turbulent fluids
through porous media [16].

General Leray–Lions operators a(x, s, ξ) have growth, monotony and coercivity properties
(see (2f)–(2h) below) which ensure that −div(a(x, w,∇·)) maps W 1,p

0 (Ω) into W−1,p′

(Ω),
and thanks to which this differential operator is viewed as a generalisation of the p-Laplace
operator.

The numerical approximation of these models has been extensively studied in the literature –
see the fundamental work on the Stefan’s problem [48] and [51, 30] for some of its numerical
approximations, [46, 33] for the Richards’ problem, and [19, 23] and references therein for some
studies of convergence of numerical methods for the Leray–Lions’ problem. In [52], fully discrete
implicit schemes are considered in 2D domains for the problem ∂te −∆u = f , e ∈ β(u) with β a
maximal monotone operator; error estimates are obtained and the results are relevant, e.g., for the
Stefan problem and the porous medium equation.
More generally, studies have been carried out on numerical time-stepping approximations of non-
linear abstract parabolic equations. In [43] the authors study the stability and convergence prop-
erties of linearised implicit methods for the time discretization of nonlinear parabolic equations in
the general framework of Hilbert spaces. The time discretisation of nonlinear evolution equations
in an abstract Banach space setting of analytic semigroups is studied in [38]; this setting covers
fully nonlinear parabolic initial-boundary value problems with smooth coefficients. [3] deals with
a general formulation for semi-discretisations of linear parabolic evolution problems in Hilbert
spaces; this time-stepping formulation encompasses continuous and discontinuous Galerkin meth-
ods, as well as Runge Kutta methods. The study in [3] has been extended in [2] to semi-linear
equations, i.e. with the addition of a right-hand side which is locally Lipschitz-continuous with
respect to the unknown. In the same directions, we also quote [42, 44, 45, 49, 39] for Runge-Kutta
time discretizations of linear and quasilinear parabolic equations (reaction-diffusion, Navier-Stokes
equations, etc.). Multisteps methods have also been considered, see e.g. [50].
However, most of these studies are only applicable under regularity assumptions on the solution
or data, and to semi-linear equations or semi-discretised schemes. None deals with as many non-
linearities and degeneracies as in (1). Moreover, the results in these works mostly yield space-time
averaged convergences, e.g. in L2(Ω × (0, T )). Yet, the quantity of interest is often not u on
Ω× (0, T ) but u at a given time, for example t = T . Current numerical analyses therefore do not
ensure that this quantity of interest is properly approximated by numerical methods.
The usual way to obtain pointwise-in-time approximation results for numerical schemes is to prove
estimates in L∞(0, T ;L2(Ω)) on u − u, where u is the approximated solution. Establishing such
error estimates is however only feasible when uniqueness of the solution u to (1) can be proved,
which is the case for Richards’ and Stefan’s problems (with K only depending on x), but not
for more complex non-linear parabolic problems as (1) or even p-Laplace problems. It moreover
requires some regularity assumptions on u, which clearly fail to hold for (1) (and simpler p-Laplace
problems); indeed, because of the possible plateaux of β and ζ, the solution’s gradient can develop
jumps.
The purpose of this article is to prove that, using Discrete Functional Analysis techniques (i.e. the
translation to numerical analysis of nonlinear analysis techniques), an L∞(0, T ;L2(Ω)) convergence
result can be established for numerical approximations of (1), without having to assume non-
physical regularity assumptions on the data. Note that, although Richards’ and Stefan’s models
are formally equivalent when β and ζ are strictly increasing (consider β = ζ−1 to pass from
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one model to the other), they change nature when these functions are allowed to have plateaux.
Stefan’s model can degenerate to an ODE (if ζ is constant on the range of the solution) and
Richards’ model can become a non-transient elliptic equation (if β is constant on this range). The
innovative technique we develop in this paper is nonetheless generic enough to work directly on
(1) and with a vast number of numerical methods.
That being said, a particular numerical framework must be selected to write precise equations and
estimates. The framework we choose is that of gradient schemes, which has the double benefit
of covering a vast number of numerical methods, and of having already been studied for many
models – elliptic, parabolic, linear or non-linear, possibly degenerate, etc. – with various boundary
conditions. The schemes or family of schemes included in the gradient schemes framework, and to
which our results therefore directly apply, currently are:

• Galerkin methods, including conforming Finite Element schemes,

• finite element with mass lumping [12],

• the Crouzeix-Raviart non-conforming finite element, with or without mass lumping [14, 27],

• the Raviart-Thomas mixed finite elements [9],

• the vertex approximate gradient scheme [31],

• the hybrid mimetic mixed family [22], which includes mimetic finite differences [10], mixed
finite volume [20] and the SUSHI scheme [29],

• the discrete duality finite volume scheme in dimension 2 [40, 5], and the CeVeFE-discrete
duality finite volume scheme in dimension 3 [13],

• the multi-point flux approximation O-method [1, 25].

We refer the reader to [21, 23, 28, 34, 32] for more details. Let us finally emphasize that the
unified convergence study of numerical schemes for Problem (1), which combines a general Leray–
Lions operator and nonlinear functions β or ζ, seems to be new even without the uniform-in-time
convergence result.

The paper is organised as follows. In Section 1.2, we present the assumptions and the notion of
weak solution for (1) and, in Section 1.3, we give an overview of the ideas involved in the proof
of uniform-in-time convergence. This overview is given not in a numerical analysis context but in
the context of a pure stability analysis of (1) with very little regularity on the data, for which the
uniform-in-time convergence result also seems to be new. Section 2 presents the gradient schemes
for our generic model (1). We give in Section 3 some preliminaries to the convergence study, in par-
ticular a crucial uniform-in-time weak-in-space discrete Aubin-Simon compactness result. Section
4 contains the complete convergence proof of gradient schemes for (1), including the uniform-in-
time convergence result. This proof is initially conducted under a simplifying assumption on β
and ζ. We demonstrate in Section 5 that, in the case p ≥ 2, this assumption can be removed
thanks to a discrete compensated compactness result. We also remark in this section that our
results apply to the model considered in [52]. An appendix, Section 6, concludes the article with
technical results, in particular a generalisation of the Ascoli-Arzelà compactness result to discon-
tinuous functions and a characterisation of the uniform convergence of a sequence of functions;
these results are critical to establishing our uniform-in-time convergence result. We believe that
the Discrete Functional Analysis results we establish in order to study the approximations of (1)
– in particular the discrete compensated compactness theorem (Theorem 5.4) – could be critical
to the numerical analysis of other degenerate or coupled models of physical importance.
Note that the main results and their proofs have been sketched and illustrated by some numerical
examples in [24], for a(x, ν(u),∇ζ(u)) = ∇ζ(u) and β = Id or ζ = Id.

3



1.2 Hypotheses and weak sense for the continuous problem

We consider the evolution problem (1) under the following hypotheses.

Ω is an open bounded subset of Rd (d ∈ N
⋆) and T > 0, (2a)

ζ ∈ C0(R) is non–decreasing, Lipschitz continuous with Lipschitz constant Lζ > 0,
ζ(0) = 0 and, for some M0,M1 > 0, |ζ(s)| ≥M0|s| −M1 for all s ∈ R.

(2b)

β ∈ C0(R) is non–decreasing, Lipschitz continuous with Lipschitz constant Lβ > 0,
and β(0) = 0.

(2c)

∀s ∈ R , ν(s) =

∫ s

0

ζ′(q)β′(q)dq. (2d)

a : Ω× R× R
d → R

d is a Carathéodory function (2e)

(i.e. a function such that, for a.e. x ∈ Ω, (s, ξ) 7→ a(x, s, ξ) is continuous and, for any (s, ξ) ∈
R× R

d, x 7→ a(x, s, ξ) is measurable) and, for some p ∈ (1,+∞),

∃a ∈ (0,+∞) : a(x, s, ξ) · ξ ≥ a|ξ|p, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ R
d, (2f)

(a(x, s, ξ)− a(x, s,χ)) · (ξ − χ) ≥ 0, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ,χ ∈ R
d, (2g)

∃a ∈ Lp′

(Ω) , ∃µ ∈ (0,+∞) :
|a(x, s, ξ)| ≤ a(x) + µ|ξ|p−1, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ R

d.
(2h)

We also assume, setting p′ = p
p−1 the dual exponent of the p previously introduced,

uini ∈ L2(Ω), f ∈ Lp′

(Ω× (0, T )). (2i)

We denote by Rβ the range of β and define the pseudo-inverse function βr : Rβ → R of β by

∀s ∈ Rβ , βr(s) =





inf{t ∈ R |β(t) = s} if s > 0,
0 if s = 0,
sup{t ∈ R |β(t) = s} if s < 0,

= closest t to 0 such that β(t) = s.

(3)

Since β(t) has the same sign as t, we have βr ≥ 0 on Rβ ∩ R
+ and βr ≤ 0 on Rβ ∩ R

−. We then
define B : Rβ → [0,∞] by

B(z) =

∫ z

0

ζ(βr(s)) ds.

Since βr is non-decreasing, this expression is always well-defined in [0,∞). The signs of βr and ζ
ensure that B is non-decreasing on Rβ ∩ R

+ and non-increasing on Rβ ∩ R
−, and therefore has

limits (possibly +∞) at the endpoints of Rβ . We can thus extend B as a function defined on Rβ

with values in [0,+∞].
The precise notion of solution to (1) that we consider is the following:





u ∈ Lp(0, T ;Lp(Ω)) , ζ(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) ,

B(β(u)) ∈ L∞(0, T ;L1(Ω)), β(u) ∈ C([0, T ];L2(Ω)-w), ∂tβ(u) ∈ Lp′

(0, T ;W−1,p′

(Ω)),
β(u)(·, 0) = β(uini) in L

2(Ω),∫ T

0

〈∂tβ(u)(·, t), v(·, t)〉W−1,p′ ,W 1,p
0

dt

+

∫ T

0

∫

Ω

a(x, ν(u(x, t)),∇ζ(u)(x, t)) · ∇v(x, t)dxdt =

∫ T

0

∫

Ω

f(x, t)v(x, t)dxdt ,

∀v ∈ Lp(0;T ;W 1,p
0 (Ω)).

(4)
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where C([0, T ];L2(Ω)-w) denotes the space of continuous functions [0, T ] 7→ L2(Ω) for the weak-∗
topology of L2(Ω). Here and in the following, we remove the mention of Ω in the duality bracket
〈·, ·〉W−1,p′ ,W 1,p

0
= 〈·, ·〉W−1,p′ (Ω),W 1,p

0 (Ω).

Remark 1.1 The derivative ∂tβ(u) is to be understood in the usual sense of distributions on
Ω× (0, T ). Since the set T = {

∑q
i=1 ϕi(t)γi(x) : q ∈ N, ϕi ∈ C∞

c (0, T ), γi ∈ C∞
c (Ω)} of tensorial

functions in C∞
c (Ω × (0, T )) is dense in Lp(0, T ;W 1,p

0 (Ω)), one can ensure that this distribution

derivative ∂tβ(u) belongs to L
p′

(0, T ;W−1,p′

(Ω)) = (Lp(0, T ;W 1,p
0 (Ω)))′ by checking that the linear

form

ϕ ∈ T 7→ 〈∂tβ(u), ϕ〉D′,D = −

∫ T

0

∫

Ω

β(u)(x, t)∂tϕ(x, t)dxdt

is continuous for the norm of Lp(0, T ;W 1,p
0 (Ω)).

Note that the continuity property of β(u) in (4) is natural. Indeed, since β(u) ∈ L∞(0, T ;L2(Ω))
(this comes from B(β(u)) ∈ L∞(0, T ;L1(Ω)) and (26)), the PDE in the sense of distributions shows
that for any ϕ ∈ C∞

c (Ω) the mapping Tϕ : t 7→ 〈β(u)(t), ϕ〉L2 belongs toW 1,1(0, T ) ⊂ C([0, T ]). By
density of C∞

c (Ω) in L2(Ω) and the integrability properties of β(u), we deduce that Tϕ ∈ C([0, T ])
for any ϕ ∈ L2(Ω), which precisely establishes the continuity of β(u) : [0, T ] → L2(Ω)-w.
This notion of β(u) as a function continuous in time is nevertheless a subtle one. It is to be
understood in the sense that the function (x, t) 7→ β(u(x, t)) has an a.e. representative which
is continuous [0, T ] 7→ L2(Ω)-w. In other words, there is a function Z ∈ C([0, T ];L2(Ω)-w) such
that Z(t)(x) = β(u(x, t)) for a.e. (x, t) ∈ Ω × (0, T ). We must however make sure, when dealing
with pointwise values in time, to separate Z from β(u(·, ·)) as β(u(·, t1)) may not make sense for
a particular t1 ∈ [0, T ]. That being said, in order to adopt a simple notation, we will denote
by β(u)(·, ·) the function Z, and by β(u(·, ·)) the a.e.-defined composition of β and u. Hence,
it will make sense to talk about β(u)(·, t) for a particular t1 ∈ [0, T ], and we will only write
β(u)(x, t) = β(u(x, t)) for a.e. (x, t) ∈ Ω× (0, T ). Note that from this a.e. equality we can ensure
that β(u)(·, ·) takes its values in the closure Rβ of the range of β.

1.3 General ideas for the uniform-in-time convergence result

As explained in the introduction, the main innovative result of this article is the uniform-in-
time convergence result (Theorem 2.16 below). Although it’s stated and proved in the context
of numerical approximations of (1), we emphasize that the ideas underlying its proof are also
applicable to theoretical analysis of PDEs. Let us informally present these ideas on the following
continuous approximation of (1):

∂tβ(uε)− div (aε(x, ν(uε),∇ζ(uε))) = f in Ω× (0, T ),
β(uε)(x, 0) = β(uini)(x) in Ω,
ζ(uε) = 0 on ∂Ω× (0, T )

(5)

where aε satisfies Assumptions (2e)–(2h) with constants not depending on ε and, as ε→ 0, aε → a

locally uniformly with respect to (s, ξ).
We want to show here how to deduce from averaged convergences a strong uniform-in-time conver-
gence result. We therefore assume the following convergences (up to a subsequence as ε→ 0), which
are compatible with basic compactness results that can be obtained on (uε)ε and also correspond
to the initial convergences (18) on numerical approximations of (1):

β(uε) → β(u) in C([0, T ];L2(Ω)-w) , ν(uε) → ν(u) strongly in L1(Ω× (0, T )),

ζ(uε) → ζ(u) weakly in Lp(0, T ;W 1,p
0 (Ω)) ,

aε(·, ν(uε),∇ζ(uε)) → a(·, ν(u),∇ζ(u)) weakly in Lp′

(Ω× (0, T ))d.

(6)
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We will prove from these convergences that, along the same subsequence, ν(uε) → ν(u) strongly
in C([0, T ];L2(Ω)), which is our uniform-in-time convergence result.
We start by noticing that the weak-in-space uniform-in-time convergence of β(uε) gives, for any
T0 ∈ [0, T ] and any family (Tε)ε>0 converging to T0 as ε→ 0, β(uε)(Tε, ·) → β(u)(T0, ·) weakly in
L2(Ω). Classical strong-weak semi-continuity properties of convex functions (see Lemma 3.4) and
the convexity of B (see Lemma 3.3) then ensure that

∫

Ω

B(β(u)(x, T0))dx ≤ lim inf
ε→0

∫

Ω

B(β(uε)(x, Tε))dx. (7)

The second step is to notice that, by (2g) for aε,

∫ Tε

0

∫

Ω

[aε(·, ν(uε),∇ζ(uε))− aε(·, ν(uε),∇ζ(u))] · [∇ζ(uε)−∇ζ(u)] dxdt ≥ 0.

Developing this expression and using the convergences (6), we find that

lim inf
ε→0

∫ Tε

0

∫

Ω

aε(·, ν(uε),∇ζ(uε)) ·∇ζ(uε)(x, t)dxdt ≥

∫ T0

0

∫

Ω

a(·, ν(u),∇ζ(u)) ·∇ζ(u)dxdt. (8)

We then establish the following formula:

∫

Ω

B(β(uε(x, Tε)))dx +

∫ Tε

0

∫

Ω

aε(x, ν(uε(x, t)),∇ζ(uε)(x, t)) · ∇ζ(uε)(x, t)dxdt

=

∫

Ω

B(β(uini(x)))dx+

∫ Tε

0

∫

Ω

f(x, t)ζ(uε)(x, t)dxdt. (9)

This energy equation is formally obtained by multiplying (5) by ζ(uε) and integrating by parts,
using (B ◦ β)′ = ζβ′ (see Lemma 3.3); the rigorous justification of (9) is however quite technical –
see Lemma 3.6 and Corollary 3.8. Thanks to (8), we can pass to the lim sup in (9) and we find,
using the same energy equality with (u,a, T0) instead of (uε,aε, Tε),

lim sup
ε→0

∫

Ω

B(β(uε(x, Tε)))dx ≤

∫

Ω

B(β(u(x, T0)))dx. (10)

Combined with (7), this shows that
∫
Ω
B(β(uε(x, Tε)))dx →

∫
Ω
B(β(u(x, T0)))dx. A uniform

convexity property of B (see (28)) then allows us to deduce that ν(uε(·, Tε)) → ν(u(·, T0)) strongly
in L2(Ω) and thus that ν(uε) → ν(u) strongly in C([0, T ];L2(Ω)) (see Lemma 6.4).

Remark 1.2 A close examination of this proof indicates that equality in the energy relation (9)
is not required for uε. An inequality ≤ would be sufficient. This is particularly important in the
context of numerical methods which may introduce additional numerical diffusion (for example due
to an implicit-in-time discretisation) and therefore only provide an upper bound in this energy
estimate, see (42). It is however essential that the limit solution u satisfies the equivalent of (9)
with an equal sign (or ≥).

2 Gradient discretisations and gradient schemes

2.1 Definitions

We give here a minimal presentation of gradient discretisations and gradient schemes, limiting
ourselves to what is necessary to study the discretisation of (1). We refer the reader to [21, 31, 23]
for more details.
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A gradient scheme can be viewed as a general formulation of several discretisations of (1), that are
based on a nonconforming approximation of the weak formulation of the problem. This approxi-
mation is constructed by using discrete space and mappings, the set of which are called a gradient
discretisation.

Definition 2.1 (Space-Time gradient discretisation for homogeneous Dirichlet bound-
ary conditions)
We say that D = (XD,0,ΠD,∇D, ID, (t

(n))n=0,...,N) is a space-time gradient discretisation for
homogeneous Dirichlet boundary conditions if

1. the set of discrete unknowns XD,0 is a finite dimensional real vector space,

2. the linear mapping ΠD : XD,0 → L∞(Ω) is a piecewise constant reconstruction operator in
the following sense: there exists a set I of degrees of freedom and a family (Ωi)i∈I of disjoint
subsets of Ω such that XD,0 = R

I , Ω =
⋃

i∈I Ωi and, for all u = (ui)i∈I ∈ XD,0 and all i ∈ I,
ΠDu = ui on Ωi,

3. the linear mapping ∇D : XD,0 → Lp(Ω)d gives a reconstructed discrete gradient. It must be
chosen such that ‖∇D · ‖Lp(Ω)d is a norm on XD,0,

4. ID : L2(Ω) → XD,0 is a linear interpolation operator,

5. t(0) = 0 < t(1) < t(2) < . . . < t(N) = T .

We then set δt(n+
1
2 ) = t(n+1) − t(n) for n = 0, . . . , N − 1, and δtD = maxn=0,...,N−1 δt

(n+ 1
2 ). We

define the dual semi-norm |w|⋆,D of w ∈ XD,0 by

|w|⋆,D = sup

{∫

Ω

ΠDw(x)ΠDz(x)dx : z ∈ XD,0 , ||∇Dz||Lp(Ω)d = 1

}
. (11)

Remark 2.2 (Boundary conditions) Other boundary conditions can be seamlessly handled by
gradient schemes, see [21].

Remark 2.3 (Nonlinear function of the elements of XD,0) Let D be a gradient discretisa-
tion in the sense of Definition 2.1. For any χ : R 7→ R and any u = (ui)i∈I ∈ XD,0, we define
χI(u) ∈ XD,0 by χI(u) = (χ(ui))i∈I . As indicated by the subscript I, this definition depends on the
choice of the degrees of freedom in XD,0. That said, these degrees of freedom are usually canonical
and the index I can be dropped. An important consequence of the fact that ΠD is a piecewise
constant reconstruction is the following:

∀χ : R 7→ R , ∀u ∈ XD,0 , ΠDχ(u) = χ(ΠDu). (12)

It is customary to use the notations ΠD and∇D also for space-time dependent functions. Moreover,
we will need a notation for the jump-in-time of piecewise constant functions in time. Hence, if
(v(n))n=0,...,N ⊂ XD,0, we set

for a.e. x ∈ Ω, ΠDv(x, 0) = ΠDv
(0)(x) and, ∀n = 0, . . . , N − 1 , ∀t ∈ (t(n), t(n+1)],

ΠDv(x, t) = ΠDv
(n+1)(x) , ∇Dv(x, t) = ∇Dv

(n+1)(x)

and δDv(t) = δ
(n+ 1

2 )

D v :=
v(n+1) − v(n)

δt(n+
1
2 )

∈ XD,0.

(13)

If D = (XD,0,ΠD,∇D, ID, (t
(n))n=0,...,N) is a space-time gradient discretisation in the sense of Def-

inition 2.1, the associated gradient scheme for Problem (1) is obtained by replacing in this problem
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the continuous space and mappings with their discrete ones. Using the notations in Remark 2.3, the
implicit-in-time gradient scheme therefore consists in considering a sequence (u(n))n=0,...,N ⊂ XD,0

such that




u(0) = IDuini and, for all v = (v(n))n=1,...,N ⊂ XD,0,∫ T

0

∫

Ω

[ΠDδDβ(u)(x, t)ΠDv(x, t) + a(x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dv(x, t)] dxdt

=

∫ T

0

∫

Ω

f(x, t)ΠDv(x, t)dxdt.

(14)

Remark 2.4 (Time-stepping) Scheme (14) is implicit-in-time because of the choice, in the def-
initions of ΠD and ∇D in (13), of v(n+1) when t ∈ (t(n), t(n+1)]. As a consequence, u(n+1) appears
in a(x, ·, ·) in (14) for t ∈ (t(n), t(n+1)]. Instead of a fully implicit method, we could as well con-
sider a Crank-Nicolson scheme or any scheme between those two (θ-scheme). This would consist
in choosing θ ∈ [ 12 , 1] and in replacing these terms u(n+1) with u(n+θ) = θu(n+1) + (1− θ)u(n). All
results established here for (14) would hold for such a scheme. We refer the reader to the treatment
done in [23] for the details.

2.2 Properties of gradient discretisations

In order to establish the convergence of the associated gradient schemes, sequences of space-
time gradient discretisations are required to satisfy four properties: coercivity, consistency, limit-
conformity and compactness.

Definition 2.5 (Coercivity) If D is a space-time gradient discretisation in the sense of Defini-
tion 2.1, the norm of ΠD is denoted by

CD = max
v∈XD,0\{0}

||ΠDv||Lp(Ω)

||∇Dv||Lp(Ω)d
.

A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition 2.1 is said
to be coercive if there exists CP ≥ 0 such that, for any m ∈ N, CDm

≤ CP .

Definition 2.6 (Consistency) If D is a space-time gradient discretisation in the sense of Defi-
nition 2.1, we define

∀ϕ ∈ L2(Ω) ∩W 1,p
0 (Ω), ŜD(ϕ) = min

w∈XD,0

(
||ΠDw − ϕ||Lmax(p,2)(Ω) + ||∇Dw −∇ϕ||Lp(Ω)d

)
. (15)

A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition 2.1 is said
to be consistent if

• for all ϕ ∈ L2(Ω) ∩W 1,p
0 (Ω), ŜDm

(ϕ) → 0 as m→ ∞,

• for all ϕ ∈ L2(Ω), ΠDm
IDm

ϕ→ ϕ in L2(Ω) as m→ ∞, and

• δtDm
→ 0 as m→ ∞.

Definition 2.7 (Limit-conformity) If D is a space-time gradient discretisation in the sense of
Definition 2.1 and W div,p′

(Ω) = {ϕ ∈ Lp′

(Ω)d : divϕ ∈ Lp′

(Ω)}, we define

∀ϕ ∈ W div,p′

(Ω) , WD(ϕ) = max
u∈XD,0\{0}

∣∣∣∣
∫

Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣
‖∇Du‖Lp(Ω)d

.
(16)

A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition 2.1 is said
to be limit-conforming if, for all ϕ ∈ W div,p′

(Ω), WDm
(ϕ) → 0 as m→ ∞.
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Remark 2.8 The convergences ŜDm
→ 0 on L2(Ω) ∩W 1,p

0 (Ω) and WDm
→ 0 on W div,p′

(Ω) only
need to be checked on dense subsets of these spaces [21, 31].

Definition 2.9 (Compactness) If D is a space-time gradient discretisation in the sense of Def-
inition 2.1, we define

∀ξ ∈ R
d , TD(ξ) = max

v∈XD,0\{0}

||ΠDv(·+ ξ)−ΠDv||Lp(Rd)

||∇Dv||Lp(Ω)d
,

where ΠDv has been extended by 0 outside Ω.
A sequence (Dm)m∈N of space-time gradient discretisations is said to be compact if

lim
ξ→0

sup
m∈N

TDm
(ξ) = 0.

We refer the reader to [23, 21] for a proof of the following lemma.

Lemma 2.10 (Regularity of the limit) Let (Dm)m∈N be a sequence of space-time gradient dis-
cretisations, in the sense of Definition 2.1, that is coercive and limit-conforming in the sense of

Definitions 2.5 and 2.7. Let, for any m ∈ N, vm = (v
(n)
m )n=0,...,Nm

⊂ XDm,0 be such that, with the
notations in (13), (∇Dm

vm)m∈N is bounded in Lp(Ω× (0, T ))d.
Then there exists v ∈ Lp(0, T ;W 1,p

0 (Ω)) such that, up to a subsequence as m → ∞, ΠDm
vm → v

weakly in Lp(Ω× (0, T )) and ∇Dm
vm → ∇v weakly in Lp(Ω× (0, T ))d.

2.3 Main results

Uniform-in-time convergence of numerical solutions to schemes for parabolic equations starts with
a weak convergence with respect to the space variable. This weak convergence is then used to prove
a stronger convergence. We therefore first recall a standard definition related to the weak topology
of L2(Ω) (we also refer the reader to Proposition 6.5 in the appendix for a classical characterisation
of the weak topology of bounded sets in L2(Ω)).

Definition 2.11 (Uniform-in-time L2(Ω)-weak convergence) Let 〈·, ·〉L2(Ω) denote the inner
product in L2(Ω), let (um)m∈N be a sequence of functions [0, T ] → L2(Ω) and let u : [0, T ] 7→ L2(Ω).
We say that (um)m∈N converges weakly in L2(Ω) uniformly on [0, T ] to u if, for all ϕ ∈ L2(Ω), as
m→ ∞ the sequence of functions t ∈ [0, T ] → 〈um(t), ϕ〉L2(Ω) converges uniformly on [0, T ] to the
function t ∈ [0, T ] → 〈u(t), ϕ〉L2(Ω).

Our first theorem states weak or space-time averaged convergence properties of gradient schemes for
(1). These results have already been established for Leray–Lions’, Richards’ and Stefan’s models,
see [23, 28, 32]. The convergence proof we provide afterwards however covers more non-linear
model and is more compact than the previous proofs.

Theorem 2.12 (Convergence of gradient schemes) We assume (2) and we take a sequence
(Dm)m∈N of space-time gradient discretisations, in the sense of Definition 2.1, that is coercive,
consistent, limit-conforming and compact (see Section 2.2). Then for any m ∈ N there exists a
solution um to (14) with D = Dm.
Moreover, if we assume that

(∀s ∈ R , β(s) = s) or (∀s ∈ R , ζ(s) = s), (17)
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then there exists a solution u to (4) such that, up to a subsequence, the following convergences hold
as m→ ∞:

ΠDm
β(um) → β(u) weakly in L2(Ω) uniformly on [0, T ] (see Definition 2.11),

ΠDm
ν(um) → ν(u) strongly in L1(Ω× (0, T )),

ΠDm
ζ(um) → ζ(u) weakly in Lp(Ω× (0, T )),

∇Dm
ζ(um) → ∇ζ(u) weakly in Lp(Ω× (0, T ))d.

(18)

Remark 2.13 Since |ν| ≤ Lζ|β| and |ν| ≤ Lβ|ζ|, the L
∞(0, T ;L2(Ω)) bound on ΠDm

β(um) and
the Lp(Ω× (0, T )) bound on ΠDm

ζ(um) (see Lemma 4.1 and Definition 2.5) shows that the strong
convergence of ΠDm

ν(um) is also valid in Lq(0, T ;Lr(Ω)) for any (q, r) ∈ [1,∞) × [1, 2), any
(q, r) ∈ [1, p)2 and, of course, any space interpolated between these two cases.

Remark 2.14 We do not assume the existence of a solution u to the continuous problem, our
convergence analysis will establish this existence.

Remark 2.15 Assumption (17) covers Richards’ and Stefan’s models, as well as many other non-
linear parabolic equations. As we prove in Section 5, this assumption is actually not required
if p ≥ 2. However, we first state and prove Theorem 2.12 under (17) in order to simplify the
presentation. See also Remark 2.19.

The main innovation of this paper is the following theorem, which states the uniform-in-time
strong-in-space convergence of numerical methods for fully non-linear degenerate parabolic equa-
tions with no regularity assumptions on the data.

Theorem 2.16 (Uniform-in-time convergence) Under Assumptions (2), let (Dm)m∈N be a
sequence of space-time gradient discretisations, in the sense of Definition 2.1, that is coercive,
consistent, limit-conforming and compact (see Section 2.2). We assume that um is a solution to
(14) with D = Dm that converges as m→ ∞ to a solution u of (4) in the sense (18).
Then, as m→ ∞, ΠDm

ν(um) → ν(u) strongly in L∞(0, T ;L2(Ω)).

Remark 2.17 Since the functions ΠDm
ν(um) are piecewise constant in time, their convergence

in L∞(0, T ;L2(Ω)) is actually a uniform-in-time convergence (not “uniform a.e. in time”).

The last theorem completes our convergence result by stating the strong space-time averaged
convergence of the discrete gradients. Its proof is inspired by the study of gradient schemes for
Leray–Lions operators made in [23].

Theorem 2.18 (Strong convergence of gradients) Under Assumptions (2), let (Dm)m∈N be
a sequence of space-time gradient discretisations, in the sense of Definition 2.1, that is coercive,
consistent, limit-conforming and compact (see Section 2.2). We assume that um is a solution to
(14) with D = Dm that converges as m → ∞ to a solution u of (4) in the sense (18). We also
assume that a is strictly monotone in the sense:

(a(x, s, ξ)− a(x, s,χ)) · (ξ − χ) > 0, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ 6= χ ∈ R
d. (19)

Then, as m→ ∞, ΠDm
ζ(um) → ζ(u) strongly in Lp(Ω× (0, T )) and ∇Dm

ζ(um) → ∇ζ(u) strongly
in Lp(Ω× (0, T ))d.

Remark 2.19 Theorems 2.16 and 2.18 do not require the structural assumption (17); they only
require that the convergences (18) hold.
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3 Preliminaries

We establish here a few results which will be used in the analysis of the gradient scheme (14).

3.1 Uniform-in-time compactness for space-time gradient discretisations

Aubin-Simon compactness results roughly consist in establishing the compactness of a sequence of
space-time functions from some strong bounds on the functions with respect to the space variable
(typically, bounds in a Sobolev space with positive exponent) and some weaker bounds on their
time derivatives (typically, bounds in a Sobolev space with a negative exponent, i.e. the dual of
a Sobolev space with positive exponent). Several variants exist, including for piecewise constant-
in-time functions appearing in the numerical approximation of parabolic equations [17, 11, 4, 36].
Although quite strong in space, the convergence results provided by these discrete versions of
Aubin-Simon theorems are only averaged-in-time – i.e. in an Lp(0, T ;E) space where E is a
normed space.
Theorem 3.1 can be considered as a discrete form of an Aubin-Simon theorem, that establishes a
uniform-in-time but weak-in-space compactness result. The corresponding convergence is therefore
weaker than in Theorem 2.16, but it is a critical initial step for establishing the uniform-in-time
strong-in-space convergence result. Given that the functions considered here are piecewise constant
in time, it might be surprising to obtain a uniform-in-time convergence result; everything hinges on
the fact that the jumps in time tend to vanish as the time step goes to zero. The proof of Theorem
3.1 is based on the results in Section 6, and in particular on the discontinuous Ascoli-Arzelà theorem
stated and proved there.

Theorem 3.1 (Uniform-in-time weak-in-space discrete Aubin-Simon theorem)

Let T > 0 and take a sequence (Dm)m∈N = (XDm,0,ΠDm
,∇Dm

, IDm
, (t

(n)
m )n=0,...,Nm

)m∈N of space-
time gradient discretisations, in the sense of Definition 2.1, that is consistent in the sense of
Definition 2.6.

For any m ∈ N, let vm = (v
(n)
m )n=0,...,Nm

⊂ XDm,0. If there exists q > 1 and C > 0 such that, for
any m ∈ N,

||ΠDm
vm||L∞(0,T ;L2(Ω)) ≤ C and

∫ T

0

|δmvm(t)|q⋆,Dm
dt ≤ C, (20)

then the sequence (ΠDm
vm)m∈N is relatively compact uniformly-in-time and weakly in L2(Ω), i.e.

it has a subsequence that converges in the sense of Definition 2.11.
Moreover, any limit of such a subsequence is continuous [0, T ] → L2(Ω) for the weak topology of
L2(Ω).

Remark 3.2 The bound on |δmvm|⋆,Dm
is often a consequence of a numerical scheme satisfied by

vm and of a bound on ||∇Dm
vm||Lp(Ω×(0,T ))d , see the proof of Lemma 4.3 for example.

Proof. This result is a consequence of the discontinuous Ascoli-Arzelà theorem (Theorem 6.2)
with K = [0, T ] and E the ball of radius C in L2(Ω) endowed with the weak topology. We let
(ϕl)l∈N ⊂ C∞

c (Ω) be a dense sequence in L2(Ω) and equipp E with the metric (82) from these
ϕl (see Proposition 6.5). The set E is metric compact and therefore complete, and the functions
ΠDm

vm take their values in E. It remains to estimate dE(vm(s), vm(s′)). In what follows, we drop
the index m in Dm for the sake of legibility.
Let us define the interpolant PDϕl ∈ XD,0 by

PDϕl = argmin
w∈XD,0

(
||ΠDw − ϕl||Lmax(p,2)(Ω) + ||∇Dw −∇ϕl||Lp(Ω)d

)
. (21)
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For 0 ≤ s ≤ s′ ≤ T , by writing ΠDvm(s′)−ΠDvm(s) as the sum of its jumps δt(n+
1
2 )ΠDδ

(n+ 1
2 )

D vm
at the points (t(n))n=n1,...,n2 between s and s′, the definition of | · |⋆,D, Hölder’s inequality and
Estimate (20) give

∣∣∣∣
∫

Ω

(ΠDvm(x, s′)−ΠDvm(x, s))ΠDPDϕl(x)dx

∣∣∣∣

=

∣∣∣∣∣

∫ t(n2+1)

t(n1)

∫

Ω

ΠDδDv(t)(x)ΠDPDϕl(x)dxdt

∣∣∣∣∣ ≤ C1/q(t(n2+1) − t(n1))1/q
′

||∇DPDϕl||Lp(Ω)d . (22)

By definition of PD, we have

||ΠDPDϕl − ϕl||L2(Ω) ≤ ŜD(ϕl)

and
||∇DPDϕl||Lp(Ω)d ≤ ŜD(ϕl) + ||∇ϕl||Lp(Ω)d ≤ Cϕl

with Cϕl
not depending on D (and therefore on m). Since t(n2+1) − t(n1) ≤ |s′ − s| + δt and

(ΠDvm)m∈N is bounded in L∞(0, T ;L2(Ω)), we deduce from (22) that

∣∣∣∣
∫

Ω

(ΠDvm(x, s′)−ΠDvm(x, s))ϕl(x)dx

∣∣∣∣

≤

∣∣∣∣
∫

Ω

(ΠDvm(x, s′)−ΠDvm(x, s)) ΠDPDϕl(x)dx

∣∣∣∣ + 2||ΠDvm||L∞(0,T ;L2(Ω))||ΠDPDϕl − ϕl||L2(Ω)

≤ 2CŜD(ϕl) + C1/qCϕl
|s′ − s|1/q

′

+ C1/qCϕl
δt1/q

′

.

Plugged into the definition (82) of the distance in E, this shows that

dE

(
ΠDvm(s′),ΠDvm(s)

)

≤
∑

l∈N

min(1, C1/q′Cϕl
|s′ − s|1/q

′

)

2l
+
∑

l∈N

min(1, 2CŜDm
(ϕl) + C1/q′Cϕl

δt1/q
′

m )

2l

=: ω(s, s′) + δm.

Using the dominated convergence theorem for series, we see that ω(s, s′) → 0 as s − s′ → 0 and

that δm → 0 as m → ∞ (we invoke the consistency to establish that limm→∞ ŜDm
(ϕl) → 0 for

any l). Hence, the assumptions of Theorem 6.2 are satisfied and the proof is complete.

3.2 Technical results

We state here a family of technical lemmas, starting with a few properties on ν and B.

Lemma 3.3 Under Assumptions (2) there holds

|ν(a)− ν(b)| ≤ Lβ|ζ(a)− ζ(b)|, (23)

(ν(a) − ν(b))2 ≤ LβLζ(ζ(a) − ζ(b))(β(a) − β(b)). (24)

The function B is convex continuous on Rβ, the function B ◦ β : R → [0,∞) is continuous,

∀s ∈ R , B(β(s)) =

∫ s

0

ζ(q)β′(q)dq , (25)
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∃K0,K1,K2 > 0 such that, ∀s ∈ R , K0β(s)
2 −K1 ≤ B(β(s)) ≤ K2s

2 , (26)

∀a ∈ R , ∀S ∈ Rβ , ζ(a)(S − β(a)) ≤ B(S)−B(β(a)), (27)

and

∀s, s′ ∈ R , (ν(s)− ν(s′))2 ≤ 4LβLζ

[
B(β(s)) +B(β(s′))− 2B

(
β(s) + β(s′)

2

)]
. (28)

Proof.
Inequality (23) is a straightforward consequence of the estimate ν′ = ζ′β′ ≤ Lβζ

′. Note that
the same inequality also holds with β and ζ swapped. Since these functions are non-decreasing,
Inequality (24) follows from (23) and the similar inequality with β and ζ swapped.
Since β is non-decreasing, βr is also non-decreasing on Rβ and therefore locally bounded on Rβ .
Hence, B is locally Lipschitz-continuous on Rβ , with an a.e. derivative B′ = ζ(βr). B

′ is therefore
non-decreasing and B is convex continuous on Rβ , and thus also on Rβ by choice of its values at
the endpoints of Rβ .
To prove (25), we denote by P ⊂ Rβ the countable set of plateaux values of β, i.e. the y ∈ R

such that β−1({y}) is not reduced to a singleton. If s 6∈ β−1(P ) then β−1({β(s)}) is the singleton
{s} and therefore βr(β(s)) = s. Moreover, βr is continuous at β(s) and thus B is differentiable
at β(s) with B′(β(s)) = ζ(βr(β(s))) = ζ(s). Since β is differentiable a.e., we deduce that, for
a.e. s 6∈ β−1(P ), (B(β))′(s) = B′(β(s))β′(s) = ζ(s)β′(s). The set β−1(P ) is a union of intervals
on which β and thus B(β) are locally constant; hence, for a.e. s in this set, (B(β))′(s) = 0 and
ζ(s)β′(s) = 0. Hence, the locally Lipschitz-continuous functions B(β) and s→

∫ s

0
ζ(q)β′(q)dq have

identical derivatives a.e. on R and take the same value at s = 0. They are thus equal on R and
the proof of (25) is complete.
The continuity of B ◦ β is an obvious consequence of (25). The second inequality in (26) can also

be easily deduced from (25) by noticing that |ζ(s)β′(s)| ≤ LζLβ|s| (we can take K2 =
LζLβ

2 ). To
prove the first inequality in (26), we start by inferring from (2b) the existence of S > 0 such that
|ζ(q)| ≥ M0

2 |q| ≥ M0

2Lβ
|β(q)| whenever |q| ≥ S. We then write, for s ≥ S,

B(β(s)) =

∫ S

0

ζ(q)β′(q)dq +

∫ s

S

ζ(q)β′(q)dq ≥
M0

2Lβ

∫ s

S

β(q)β′(q)dq =
M0

4Lβ

(
β(s)2 − β(S)2

)
.

A similar inequality holds for s ≤ −S (with β(−S) instead of β(S)) and the first inequality in (26)
therefore holds with K0 = M0

4Lβ
and K1 = M0

4Lβ
max[−S,S] β

2.

We now prove (27), which states that ζ(a) belongs to the convex sub-differential of B at β(a). We
first start with the case S ∈ Rβ, that is S = β(b) for some b ∈ R. If βr is continuous at β(a) then
this inequality is an obvious consequence of the convexity of B since B is then differentiable at
β(a) with B′(β(a)) = ζ(βr(β(a))) = ζ(a). Otherwise, a plain reasoning also does the job:

B(S)−B(β(a)) = B(β(b)) −B(β(a))

=

∫ b

a

ζ(q)β′(q)dq =

∫ b

a

(ζ(q) − ζ(a))β′(q)dq + ζ(a)(β(b) − β(a)) ≥ ζ(a)(S − β(a)),

the inequality coming from the fact that β′ ≥ 0 and that ζ(q) − ζ(a) has the same sign as b − a
when q is between a and b. The general case S ∈ Rβ is obtained by passing to the limit on bn such
that β(bn) → S and by using the fact that B has limits (possibly +∞) at the endpoints of Rβ .

Let us now take s, s′ ∈ R. Let s̄ ∈ R be such that β(s̄) = β(s)+β(s′)
2 . We notice that

B(β(s)) +B(β(s′))− 2B(β(s̄)) =

∫ s

s̄

(ζ(q) − ζ(s̄))β′(q)dq +

∫ s′

s̄

(ζ(q) − ζ(s̄))β′(q)dq. (29)
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We then notice that |ζ(q) − ζ(s̄)| ≥ 1
Lβ

|ν(q) − ν(s̄)| and β′(q) ≥ β′(q) ζ
′(q)
Lζ

= ν′(q)
Lζ

. If s̃ = s or s′,

since ζ(q) − ζ(s̄) has the same sign as s̃− s̄ for all q between s̄ and s̃, we can write

∫ s̃

s̄

(ζ(q) − ζ(s̄))β′(q)dq ≥
1

LβLζ

∫ s̃

s̄

ν′(q)(ν(q) − ν(s̄))dq =
1

2LβLζ
(ν(s̃)− ν(s̄))2. (30)

Estimate (28) follows from (29), (30) and the inequality (ν(s)−ν(s′))2 ≤ 2(ν(s)−ν(s̄))2+2(ν(s′)−
ν(s̄))2.

The next lemma is an easy consequence of Fatou’s lemma and the fact that strongly lower semi-
continuous convex functions are also weakly lower semi-continuous. We all the same provide its
short proof.

Lemma 3.4 Let I be a closed interval of R and let H : I → (−∞,∞] be a convex continuous
function (continuity for possible infinite values, at the endpoints of I, corresponding to H having
limits at these endpoints). We denote by L2(Ω; I) the convex set of functions in L2(Ω) with values
in I. Let v ∈ L2(Ω; I) and let (vm)m∈N be a sequence of functions in L2(Ω; I) that converges weakly
to v in L2(Ω). Then ∫

Ω

H(v(x))dx ≤ lim inf
m→∞

∫

Ω

H(vm(x))dx.

Proof.
For w ∈ L2(Ω; I) we set Φ(w) =

∫
ΩH(w(x))dx. Since H is convex, it is greater than a linear

functional and Φ(w) is thus well defined in (−∞,∞]. Moreover, if wk → w strongly in L2(Ω; I)
then, up to a subsequence, wk → w a.e. on Ω and therefore H(wk) → H(w) a.e. on Ω. Thanks to
the linear lower bound of H , we can apply Fatou’s lemma to see that Φ(w) ≤ lim infk→∞ Φ(wk).
Hence, Φ is lower semi-continuous for the strong topology of L2(Ω; I). Since Φ (like H) is convex,
we deduce that this lower semi-continuity property is also valid for the weak topology of L2(Ω; I),
see [26]. The result of the lemma is just the translation of this weak lower semi-continuity of
Φ.

The last technical result is a consequence of the Minty trick. It has been proved and used in the
L2 case in [28, 21], but we need here an extension to the non-Hilbertian case.

Lemma 3.5 (Minty’s trick) Let H ∈ C0(R) be a nondecreasing function. Let (X,µ) be a mea-
surable set with finite measure and let (un)n∈N ⊂ Lp(X), with p > 1, satisfy

1. there exists u ∈ Lp(X) such that (un)n∈N converges weakly to u in Lp(X);

2. (H(un))n∈N ⊂ L1(X) and there exists w ∈ L1(X) such that (H(un))n∈N converges strongly
to w in L1(X);

Then w = H(u) a.e. on X.

Proof.
For k, l > 0 we define the truncation at levels −l and k by Tk,l(s) = max(−l,min(s, k)) and we let
Tk = Tk,k. Since H is non-decreasing, there exists sequences (hk)k∈N and (mk)k∈N that tend to
+∞ as k → ∞ and such that H(Tk(s)) = Thk,mk

(H(s)). Thus, H(Tk(un)) → Thk,mk
(w) in L1(X)

as n→ ∞. Given that (H(Tk(un)))n∈N remains bounded in L∞(X), its convergence to Thk,mk
(w)

also holds in Lp′

(X).
Using fact that H ◦ Tk is non-decreasing, we write for any g ∈ Lp(X)

∫

X

(H(Tk(un))−H(Tk(g)))(un − g)dµ ≥ 0.
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By strong convergence of H(Tk(un)) in Lp′

(X) and weak convergence of un in Lp(X), as well as
the fact that H ◦ Tk is bounded, we can take the limit of this expression as n→ ∞ and we find

∫

X

(Thk,mk
(w)−H(Tk(g)))(u − g)dµ ≥ 0. (31)

We then use Minty’s trick. We pick a generic ϕ ∈ Lp(X), apply (31) to g = u − tϕ, divide by t
and let t→ ±0 (using the dominated convergence theorem and the fact that H ◦ Tk is continuous
and bounded) to find ∫

X

(Thk,mk
(w) −H(Tk(u)))ϕdµ = 0.

Selecting ϕ = sign(Thk,mk
(w) − H(Tk(u))), we deduce that Thk,mk

(w) = H(Tk(u)) a.e. on X .
Letting k → ∞, we conclude that w = H(u) a.e. on X .

3.3 Integration-by-parts for the continuous solution

The last series of preliminary results are properties on the solution to (4), all based on the following
integration-by-parts property. This property, used in the proof of Theorems 2.12 and 2.16, enables
us to compute the value of the linear form ∂tβ(u) ∈ Lp′

(0, T ;W−1,p′

(Ω)) on the function ζ(u) ∈
Lp(0, T ;W 1,p

0 (Ω)). Because of the lack of regularity on u and the double non-linearity (β and ζ),
justifying this integration-by-parts is however not straightforward at all...

Lemma 3.6 Let us assume (2b) and (2c). Let v : Ω × (0, T ) 7→ R be measurable such that
ζ(v) ∈ Lp(0, T ;W 1,p

0 (Ω)), B(β(v)) ∈ L∞(0, T ;L1(Ω)), β(v) ∈ C([0, T ];L2(Ω)-w) and ∂tβ(v) ∈

Lp′

(0, T ;W−1,p′

(Ω)). Then t ∈ [0, T ] →
∫
ΩB(β(v)(x, t))dx ∈ [0,∞) is continuous and, for all

t1, t2 ∈ [0, T ],

∫ t2

t1

〈∂tβ(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0

dt =

∫

Ω

B(β(v)(x, t2))dx−

∫

Ω

B(β(v)(x, t1))dx. (32)

Remark 3.7 Similarly to the discussion at the end of Section 1.2, we notice that it is important
to keep in mind the separation between β(v(·, ·)) and its continuous representative β(v)(·, ·).

Proof.
Without loss of generality, we assume that 0 ≤ t1 < t2 ≤ T .
Step 1: truncation, extension and approximation of β(v).
We define β(v) : R → L2(Ω) by setting

β(v)(t) =





β(v)(t) if t ∈ [t1, t2],
β(v)(t1) if t ≤ t1,
β(v)(t2) if t ≥ t2.

By the continuity property of β(v), this definition makes sense and gives β(v) ∈ C(R;L2(Ω)-w)
such that ∂tβ(v) = 1(t1,t2)∂tβ(v) ∈ Lp′

(R;W−1,p′

(Ω)) where 1 is the characteristic function (no

Dirac masses have been introduced at t = t1 or t = t2). This regularity of ∂tβ(v) ensures that the
function Dhβ(v) : R 7→W−1,p′

(Ω) defined by

∀t ∈ R , Dhβ(v)(t) =
1

h

∫ t+h

t

∂tβ(v)(s)ds =
β(v)(t+ h)− β(v)(t)

h
(33)

tends to ∂tβ(v) in L
p′

(R;W−1,p′

(Ω)) as h→ 0.
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Step 2: we prove that ||B(β(v)(t))||L1(Ω) ≤ ||B(β(v))||L∞(0,T ;L1(Ω)) for all t ∈ R (not only for a.e.
t).
Let t ∈ [t1, t2]. Since β(v)(·, ·) = β(v(·, ·)) a.e. on Ω× (t1, t2), there exists a sequence tn → t such
that β(v)(·, tn) = β(v(·, tn)) in L2(Ω) and ||B(β(v)(·, tn))||L1(Ω) ≤ ||B(β(v))||L∞(0,T ;L1(Ω)) for all
n. As β(v) ∈ C([0, T ];L2(Ω)-w), we have β(v)(·, tn) → β(v)(·, t) weakly in L2(Ω). We then use
the convexity of B and Lemma 3.4 to write, thanks to our choice of tn,

∫

Ω

B(β(v)(x, t))dx ≤ lim inf
n→∞

∫

Ω

B(β(v)(x, tn))dx ≤ ||B(β(v))||L∞(0,T ;L1(Ω))

and the proof is complete for t ∈ [t1, t2]. The result for t ≤ t1 or t ≥ t2 is obvious since β(v)(t) is
then either β(v)(t1) or β(v)(t2).

Step 3: We prove that for all τ ∈ R and a.e. t ∈ (t1, t2),

〈β(v)(τ) − β(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0

≤

∫

Ω

B(β(v)(x, τ)) −B(β(v)(x, t))dx. (34)

If we could just replace the duality product W−1,p′

–W 1,p
0 with an L2 inner product, this formula

would be a straightforward consequence of (27). The problem is that nothing ensures that ζ(v)(t) ∈
L2(Ω) for a.e. t.
We first notice that β(v)(τ)− β(v)(t) =

∫ τ

t
∂tβ(v)(s)ds belongs to W

−1,p′

(Ω) so the left-hand side

of (34) makes sense provided that t is chosen such that ζ(v(·, t)) ∈ W 1,p
0 (Ω) (which we do from

here on). To deal with the fact that ζ(v(·, t)) does not necessarily belong to L2(Ω), we replace
it with a truncation. As in the proof of Lemma 3.5, we introduce Tk,l(s) = max(−l,min(s, k))
and we let Tk = Tk,k. By the monotony assumption (2b) on ζ we see that there exists sequences
(rk)k∈N and (lk)k∈N that tend to +∞ as k → +∞ and such that ζ(Tk(v(·, t))) = Trk,lk(ζ(v(·, t))).

Hence, ζ(Tk(v(·, t))) ∈W 1,p
0 (Ω) and converges, as k → ∞, to ζ(v(·, t)) in W 1,p

0 (Ω).
We can therefore write

〈β(v)(τ) − β(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0

= lim
k→∞

〈β(v)(τ) − β(v)(t), ζ(Tk(v(·, t)))〉W−1,p′ ,W 1,p
0

= lim
k→∞

∫

Ω

[
β(v)(x, τ)− β(v(x, t))

]
ζ(Tk(v(x, t)))dx, (35)

the replacement of the duality product by an L2(Ω) inner product being justified since β(v)(τ) −
β(v)(t) and ζ(Tk(v(·, t))) both belong to L2(Ω). We also used that, for a.e. t ∈ (t1, t2), β(v)(·, t) =
β(v(·, t)) a.e. on Ω; hence (35) is valid for a.e. t ∈ (t1, t2).
We then write β(v(x, t)) = β(Tk(v(x, t))) + [β(v(x, t)) − β(Tk(v(x, t)))] and apply (27) with S =
β(v)(x, τ) and a = Tk(v(x, t)) to find

∫

Ω

[
β(v)(x, τ)− β(v(x, t))

]
ζ(Tk(v(x, t)))dx

=

∫

Ω

[
β(v)(x, τ)− β(Tk(v(x, t)))

]
ζ(Tk(v(x, t)))dx

−

∫

Ω

[β(v(x, t))− β(Tk(v(x, t)))] ζ(Tk(v(x, t)))dx

≤

∫

Ω

B(β(v)(x, τ))−B(β(Tk(v(x, t))))dx −

∫

Ω

[β(v(x, t)) − β(Tk(v(x, t)))] ζ(Tk(v(x, t)))dx.
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By the monotony of β, the sign of ζ and by studying the cases v(x, t) ≥ k, −k ≤ v(x, t) ≤ k and
v(x, t) ≤ −k, we notice that the last integrand is everywhere non-negative. We can therefore write

∫

Ω

[
β(v)(x, τ)− β(v(x, t))

]
ζ(Tk(v(x, t)))dx ≤

∫

Ω

B(β(v)(x, τ)) −B(β(Tk(v(x, t))))dx.

We then use the continuity of B ◦ β and Fatou’s lemma to deduce

lim sup
k→∞

∫

Ω

[
β(v)(x, τ)− β(v(x, t))

]
ζ(Tk(v(x, t)))dx

≤

∫

Ω

B(β(v)(x, τ))dx − lim inf
k→∞

∫

Ω

B(β(Tk(v(x, t))))dx

≤

∫

Ω

B(β(v)(x, τ))dx −

∫

Ω

B(β(v(x, t)))dx

which, combined with (35), concludes the proof of (34) (recall that t has been chosen such that
β(v(·, t)) = β(v)(·, t) a.e. on Ω).

Step 4: proof of the formula
Since 1(t1,t2)ζ(v) ∈ Lp(R;W 1,p

0 (Ω)) and Dhβ(v) → ∂tβ(v) in L
p′

(R;W−1,p′

(Ω)) as h→ 0, we have

∫ t2

t1

〈∂tβ(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0

dt =

∫

R

〈∂tβ(v)(t),1(t1,t2)(t)ζ(v(·, t))〉W−1,p′ ,W 1,p
0

dt

= lim
h→0

∫

R

〈Dhβ(v)(t),1(t1,t2)(t)ζ(v(·, t))〉W−1,p′ ,W 1,p
0

dt

= lim
h→0

1

h

∫ t2

t1

〈β(v)(t+ h)− β(v)(t), ζ(v(·, t)〉W−1,p′ ,W 1,p
0

dt. (36)

We then use (34) for a.e. t ∈ (t1, t2) to obtain, for h small enough such that t1 + h < t2,

1

h

∫ t2

t1

〈β(v)(t+ h)− β(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0

dt

≤
1

h

∫ t2

t1

∫

Ω

B(β(v)(x, t+ h))−B(β(v)(x, t))dxdt

=
1

h

∫ t2+h

t2

∫

Ω

B(β(v)(x, t))dxdt−
1

h

∫ t1+h

t1

∫

Ω

B(β(v)(x, t))dxdt (37)

=

∫

Ω

B(β(v)(x, t2))dx−
1

h

∫ t1+h

t1

∫

Ω

B(β(v)(x, t))dxdt.

We used the estimate in Step 2 to justify the separation of the integrals in (37). We now take the
lim sup as h → 0 of this inequality, using again Step 2 to see that B(β(v)(·, t2)) is integrable and
therefore take its integral out of the lim sup. Coming back to (36) we obtain

∫ t2

t1

〈∂tβ(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0

dt

≤

∫

Ω

B(β(v)(x, t2))dx− lim inf
h→0

1

h

∫ t1+h

t1

∫

Ω

B(β(v)(x, t))dxdt. (38)
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Since β(v) ∈ C([0, T ];L2(Ω)-w), as h → 0 we have 1
h

∫ t1+h

t1
β(v)(t)dt → β(v)(t1) weakly in L2(Ω).

Hence, the convexity of B, Lemma 3.4 and Jensen’s inequality give

∫

Ω

B(β(v)(x, t1))dx ≤ lim inf
h→0

∫

Ω

B

(
1

h

∫ t1+h

t1

β(v)(x, t)dt

)
dx

≤ lim inf
h→0

∫

Ω

1

h

∫ t1+h

t1

B(β(v)(x, t))dtdx.

Plugged into (38), this inequality shows that (32) holds with ≤ instead of =. The reverse inequality
is obtained by reversing the time. We consider ṽ(t) = v(t1 + t2 − t). Then ζ(ṽ), B(β(ṽ)) and β(ṽ)
have the same properties as ζ(v), B(β(v)) and β(v), and β(ṽ) takes values β(v)(t1) at t = t2
and β(v)(t2) at t = t1. Applying (32) with “≤” instead of “=” to ṽ and using the fact that
∂tβ(ṽ)(t) = −∂tβ(v)(t1 + t2 − t), we obtain (32) with “≥” instead of “=” and the proof of (32) is
complete.
The continuity of t ∈ [0, T ] 7→

∫
Ω
B(β(v)(x, t))dx is straightforward from (32) as the left-hand side

of this relation is continuous with respect to t1 and t2.

The following corollary states continuity properties and an essential formula on the solution to (4).

Corollary 3.8 Under Assumptions (2a)–(2i), if u is a solution of (4) then:

1. the function t ∈ [0, T ] 7→
∫
Ω
B(β(u)(x, t))dx ∈ [0,∞) is continuous and bounded,

2. for any T0 ∈ [0, T ],

∫

Ω

B(β(u)(x, T0))dx+

∫ T0

0

∫

Ω

a(x, ν(u(x, t)),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt

=

∫

Ω

B(β(uini(x)))dx+

∫ T0

0

∫

Ω

f(x, t)ζ(u)(x, t)dxdt, (39)

3. ν(u) is continuous [0, T ] → L2(Ω).

Remark 3.9 The continuity of ν(u) has to be understood in the same sense as the continuity of
β(u), that is ν(u) is a.e. on Ω× (0, T ) equal to a continuous function [0, T ] → L2(Ω). We use in
particular the notation ν(u)(·, ·) for the continuous-in-time representative of ν(u(·, ·)), similarly to
the way we denote the continuous-in-time representative of β(u(·, ·)).

Proof.
The continuity of t ∈ [0, T ] 7→

∫
ΩB(β(u)(x, t))dx ∈ [0,∞) and Formula (39) are straightforward

consequences of Lemma 3.6 with v = u and using (4) with v = ζ(u). Note that the bound on∫
Ω
B(β(u)(x, t))dx can be seen as a consequence of (39), or from Step 2 in the proof of Lemma

3.6.
Let us prove the strong continuity of ν(u) : [0, T ] 7→ L2(Ω). Let T be the set of τ ∈ [0, T ] such that
β(u(·, τ)) = β(u)(·, τ) a.e. on Ω, and let (sl)l∈N and (tk)k∈N be two sequences in T that converge
to the same value s. Invoking (28) we can write

∫

Ω

(ν(u(x, sl))− ν(u(x, tk)))
2dx ≤ 4LβLζ

(∫

Ω

B(β(u)(x, sl))dx+

∫

Ω

B(β(u)(x, tk))dx

)

− 8LβLζ

∫

Ω

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx. (40)
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Since β(u)(·,sl)+β(u)(·,tk)
2 → β(u)(·, s) weakly in L2(Ω) as l, k → ∞, Lemma 3.4 gives

∫

Ω

B (β(u)(x, s)) dx ≤ lim inf
l,k→∞

∫

Ω

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx.

Taking the lim sup as l, k → ∞ of (40) and using the continuity of t 7→
∫
ΩB(β(u)(x, t))dx thus

shows that
||ν(u(·, sl))− ν(u(·, tk))||L2(Ω) → 0 as l, k → ∞. (41)

The existence of an a.e. representative of ν(u(·, ·)) which is continuous [0, T ] 7→ L2(Ω) is a direct
consequence of this convergence. Let s ∈ [0, T ] and (sl)l∈N ⊂ T that converges to s. Applied
with tk = sk, (41) shows that (ν(u(·, sl)))l∈N is a Cauchy sequence in L2(Ω) and therefore that
liml→∞ ν(u(·, sl)) exists in L

2(Ω). Moreover, (41) shows that this limit, that we denote by ν(u)(·, s),
does not depend on the sequence in T that converges to s. Whenever s ∈ T , the choice tk = s in
(41) shows that ν(u)(·, s) = ν(u(·, s)) a.e. on Ω, and ν(u)(·, ·) is therefore equal to ν(u(·, ·)) a.e.
on Ω× (0, T ).
It remains to establish that ν(u) thus defined is continuous [0, T ] 7→ L2(Ω). For any (τr)r∈N ⊂ [0, T ]
that converges to τ ∈ [0, T ], we can pick sr ∈ T ∩ (τr −

1
r , τr +

1
r ) and tr ∈ T ∩ (τ − 1

r , τ +
1
r ) such

that

||ν(u)(·, τr)− ν(u(·, sr))||L2(Ω) ≤
1

r
, ||ν(u)(·, τ) − ν(u(·, tr))||L2(Ω) ≤

1

r
.

We therefore have

||ν(u)(·, τr)− ν(u)(·, τ)||L2(Ω) ≤
2

r
+ ||ν(u(·, sr))− ν(u(·, tr))||L2(Ω).

This proves by (41) with l = k = r that ν(u)(·, τr) → ν(u)(·, τ) in L2(Ω) as r → ∞, and the proof
is complete.

4 Proof of the convergence theorems

4.1 Estimates on the approximate solution

As usual in the study of numerical methods for PDE with strong non-linearities or without regu-
larity assumptions on the data, everything starts with a priori estimates.

Lemma 4.1 (L∞(0, T ;L2(Ω)) estimate and discrete Lp(0, T ;W 1,p
0 (Ω)) estimate) Under As-

sumptions (2), let D be a space-time gradient discretisation in the sense of Definition 2.1. Let u
be a solution to Scheme (14).
Then, for any T0 ∈ (0, T ], denoting by k = 1, . . . , N the index such that T0 ∈ (t(k−1), t(k)] we have

∫

Ω

B(ΠDβ(u)(x, T0))dx+

∫ T0

0

∫

Ω

a(x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dζ(u)(x, t)dxdt

≤

∫

Ω

B(ΠDβ(IDuini)(x))dx+

∫ t(k)

0

∫

Ω

f(x, t)ΠDζ(u)(x, t)dxdt. (42)

Consequently, there exists C1 > 0 only depending on p, Lβ, CP ≥ CD (see Definition 2.5), Cini ≥
‖ΠDIDuini‖L2(Ω), f , a and the constants K0, K1 and K2 in (26) such that

‖ΠDB(β(u))‖L∞(0,T ;L1(Ω)) ≤ C1 , ‖∇Dζ(u)‖Lp(Ω×(0,T ))d ≤ C1

and ‖ΠDβ(u)‖L∞(0,T ;L2(Ω)) ≤ C1.
(43)
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Proof. By using (12) and (27) we notice that for any n = 0, . . . , N − 1 and any t ∈ (t(n), t(n+1)]

ΠDδDβ(u)(t)ΠDζ(u
(n+1)) =

1

δt(n+
1
2 )

(
β(ΠDu

(n+1))− β(u(n))
)
ζ(ΠDu

(n+1))

≥
1

δt(n+
1
2 )

(
B(ΠDβ(u

(n+1)))−B(ΠDβ(u
(n)))

)
.

Hence, with v = (ζ(u(1)), . . . , ζ(u(k)), 0, . . . , 0) ⊂ XD,0 in (14) we find

∫

Ω

B(ΠDβ(u)(x, t
(k)))dx+

∫ t(k)

0

∫

Ω

a(x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dζ(u)(x, t)dxdt

≤

∫

Ω

B(ΠDβ(u
(0))(x))dx+

∫ t(k)

0

f(x, t)ΠDζ(u)(x, t)dxdt. (44)

Equation (42) is a straightforward consequence of this estimate, of the relation β(u)(·, T0) =
β(u)(·, t(k)) (see (13)) and of the fact that the integrand involving a is nonnegative on [T0, t

(k)].
By using Young’s inequality ab ≤ 1

pa
p + 1

p′ b
p′

, we can write

∫ t(k)

0

∫

Ω

f(x, t)ΠDζ(u)(x, t)dxdt

≤
21/(p−1)Cp′

D

(pa)1/(p−1) p′
‖f‖p

′

Lp′(Ω×(0,t(k)))
+

a

2Cp
D

‖ΠDζ(u)‖
p

Lp(Ω×(0,t(k)))

and the first two estimates in (43) therefore follow from (44), (26), the coercivity assumption (2f)
on a and the definition 2.5 of CD. The estimate on ΠDβ(u) = β(ΠDu) in L∞(0, T ;L2(Ω)) is a
consequence of the estimate on B(β(ΠDu)) in L

∞(0, T ;L1(Ω)) and of (26).

Corollary 4.2 (Existence of a solution to the gradient scheme) Under Assumptions (2), if
D is a gradient discretisation in the sense of Definition 2.1 then there exists at least a solution to
the gradient scheme (14).

Proof. We endow E = {(u(n))n=1,...,N : u(n) ∈ XD,0 for all n} with the dot product “·” coming
from the degrees of freedom I (see Remark 2.3), and we denote by | · | the corresponding norm.
Let T : E 7→ E be such that, for all u, v ∈ E,

T (u) · v =

∫ T

0

∫

Ω

[ΠDδDβ(u)(x, t)ΠDv(x, t) + a(x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dv(x, t)] dxdt,

where δ
( 1
2 )

D β(u) is defined by setting u(0) = IDuini. Set fE ∈ E such that, for all v ∈ E, fE ·

v =
∫ T

0

∫
Ω
f(x, t)ΠDv(x, t)dxdt. A solution to (14) is an element u ∈ E such that T (u) = fE.

The continuity and growth properties of β, ζ and a clearly show that T is continuous E 7→ E,
so we can prove that T (u) = fE has has a solution by establishing that, for R large enough,
d(T,B(R), fE) 6= 0 where d is the Brouwer topological degree [15] and B(R) is the open ball of
radius R in E.
Following the reasoning used to prove (42), the coercivity property (2f) on a and the equivalence
of all norms on E give C2 and C3 not depending on u ∈ E such that

T (u) · ζ(u) ≥ a||∇Dζ(u)||
p
Lp(Ω)d

− ||B(ΠDβ(IDuini))||L1(Ω) ≥ C2|u|
p − C3.
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From the choice of the dot product on E and Assumption (2b) on ζ, we have |ζ(v)| ≤ Lζ |v| and
ζ(v) · v ≥ C4|v|

2−C5, with C4 > 0 and C5 not depending on v ∈ E. Let us consider the homotopy
h(ρ, u) = ρT (u) + (1− ρ)u between T and Id, and assume that u is a solution to h(ρ, u) = fE for
some ρ ∈ [0, 1]. We have if |u| ≥ 1

|fE |Lζ |u| ≥ fE · ζ(u) = ρT (u) · ζ(u) + (1− ρ)u · ζ(u)

≥ ρC2|u|
p − ρC3 + (1− ρ)C4|u|

2 − (1− ρ)C5 ≥ min(C2, C4)|u|
min(p,2) − C3 − C5.

Hence, if we select R > 1 such that |fE |LζR < min(C2, C4)R
min(p,2) − C3 − C5, which is possible

since min(p, 2) > 1, no solution to h(ρ, u) = fE can lie on ∂B(R). The invariance by homotopy of
the topological degree then gives d(T,B(R), fE) = d(Id, B(R), fE), and this last degree is equal to
1 if we select R such that fE ∈ B(R). The proof is complete.

Lemma 4.3 (Estimate on the dual semi-norm of the discrete time derivative)
Under Assumptions (2), let D be a space-time gradient discretisation in the sense of Definition
2.1. Let u be a solution to Scheme (14). Then there exists C6 only depending on p, Lβ, CP ≥ CD,
Cini ≥ ‖ΠDIDuini‖L2(Ω), f , a, µ, a, T and the constants K0, K1 and K2 in (26) such that

∫ T

0

|δDβ(u)(t)|
p′

⋆,Ddt ≤ C6. (45)

Proof. Let us take a generic v = (v(n))n=1,...,N ⊂ XD,0 as a test function in Scheme (14). We
have, thanks to Assumption (2h) on a,

∫ T

0

∫

Ω

ΠDδDβ(u)(x, t)ΠDv(x, t)dxdt ≤

∫ T

0

∫

Ω

(a(x) + µ|∇Dζ(u)(x, t)|
p−1)|∇Dv(x, t)|dxdt

+

∫ T

0

∫

Ω

f(x, t)ΠDv(x, t)dxdt.

Using Hölder’s inequality, Definition 2.5 and Estimates (43), this leads to the existence of C7 > 0
only depending on p, Lβ, CP , Cini, f , a, a, µ and K0, K1 and K2 such that

∫ T

0

∫

Ω

ΠDδDβ(u)(x, t)ΠDv(x, t)dxdt ≤ C7‖∇Dv‖Lp(0,T ;Lp(Ω))d .

The proof of (45) is completed by selecting v = (|δ
(n+ 1

2 )

D β(u)|p
′−1

⋆,D z(n))n=1,...,N with (z(n))n=1,...,N ⊂

XD,0 such that, for any n = 1, . . . , N , z(n) realises the supremum in (11) with w = δ
(n+ 1

2 )

D β(u).

Lemma 4.4 (Estimate on the time translates of ν(u))
Under Assumptions (2), let D be a space-time gradient discretisation in the sense of Definition 2.1.
Let u be a solution to Scheme (14). Then there exists C8 only depending on p, Lβ, Lζ, CP ≥ CD,
Cini ≥ ‖ΠDIDuini‖L2(Ω), f , a, µ, a, T and K0, K1 and K2 in (26) such that

‖ΠDν(u)(·, ·+ τ)−ΠDν(u)(·, ·)‖
2
L2(Ω×(0,T−τ)) ≤ C8(τ + δt), ∀τ ∈ (0, T ). (46)

Proof. Let τ ∈ (0, T ). Thanks to (24), we can write

∫

Ω×(0,T−τ)

(
ΠDν(u)(x, t+ τ)−ΠDν(u)(x, t)

)2
dxdt ≤ LβLζ

∫ T−τ

0

A(t)dt, (47)
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where

A(t) =

∫

Ω

(
ΠDζ(u)(x, t+ τ)−ΠDζ(u)(x, t)

)(
ΠDβ(u)(x, t+ τ)−ΠDβ(u)(x, t)

)
dx.

For s ∈ (0, T ), we define n(s) ∈ {0, . . . , N−1} such that t(n(s)) < s ≤ t(n(s)+1). Taking t ∈ (0, T−τ),
we may write

A(t) =

∫

Ω

(
ΠDζ(u

(n(t+τ)+1))(x)−ΠDζ(u
(n(t)+1))(x)

)( n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )ΠDδ

(n+ 1
2 )

D β(u)(x)
)
dx.

We then use the definition (11) of the discrete dual semi-norm to infer

A(t) ≤

n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )
∣∣∣
∣∣∣∇D

[
ζ(u(n(t+τ)+1))− ζ(u(n(t)+1))

]∣∣∣
∣∣∣
Lp(Ω)d

|δ
(n+ 1

2 )

D β(u)|⋆,D. (48)

We apply the triangular inequality on the first norm in this right-hand side, Young’s inequality
and we integrate over t ∈ (0, T − τ) to get

∫ T−τ

0

A(t)dt ≤ Aτ +A0 + B (49)

with, for s = 0 or s = τ ,

As =
1

p

∫ T−τ

0

n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )||∇Dζ(u

(n(t+s)+1))||p
Lp(Ω)d

dt ≤
Cp

1

p
(τ + δt) (50)

and

B =
2

p′

∫ T−τ

0

n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )|δ

(n+ 1
2 )

D β(u)|p
′

⋆,Ddt ≤
2C6

p′
τ. (51)

In (50), the quantity As has been estimated by using (84) in Lemma 6.6 and the estimate on
∇Dζ(u) in (43). In (51), B has been estimated by applying (83) in Lemma 6.6 and by using

the bound (45) on
∫ T

0
|δDβ(u)(t)|

p′

⋆,Ddt. The proof is completed by gathering (47), (49), (50) and
(51).

4.2 Proof of Theorem 2.12

Step 1 Application of compactness results.
Thanks to Theorem 3.1 and Estimates (43) and (45), we first extract a subsequence such that
(ΠDm

β(um))m∈N converges weakly in L2(Ω) uniformly on [0, T ] (in the sense of Definition 2.11)
to some function β ∈ C([0, T ];L2(Ω)-w) which satisfies β(·, 0) = β(uini) in L2(Ω). Using again
Estimates (43) and applying Lemma 2.10, we extract a further subsequence such that, for some
ζ ∈ Lp(0, T ;W 1,p

0 (Ω)), ΠDm
ζ(um) → ζ weakly in Lp(Ω× (0, T )) and ∇Dm

ζ(um) → ∇ζ weakly in
Lp(Ω × (0, T ))d. Estimates (43), Definition 2.5 and the growth assumption (2b) on ζ show that
(ΠDm

um)m∈N is bounded in Lp(Ω × (0, T )) and we can therefore assume, up to a subsequence,
that it converges weakly to some u in this space.
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We then prove, by means of the Kolmogorov theorem, that (ΠDm
ν(um))m∈N is relatively compact

in L1(Ω × (0, T )). We first remark that |ν(a) − ν(b)| ≤ Lβ|ζ(a) − ζ(b)|, which implies, using
Estimate (43) and Definition 2.9 with v = ζ(um),

||ΠDm
ν(um)(·+ ξ, ·)−ΠDm

ν(um)(·, ·)||Lp(Rd×(0,T )) ≤ LβC1TDm
(ξ) (52)

where ΠDm
ν(um) has been extended by 0 outside Ω, and limξ→0 supm∈N TDm

(ξ) = 0. This takes
care of the space translates. Let us now turn to the time translates. Invoking Lemma 4.4 and,
to control the time translates at both ends of [0, T ], the fact that ΠDm

β(um) – and therefore also
ΠDm

ν(um) since |ν| ≤ Lζ |β| – remains bounded in L∞(0, T ;L2(Ω)), we can write for any M ∈ N

sup
m∈N

||ΠDm
ν(um)(·, ·+ τ)−ΠDm

ν(um)(·, ·)||2L2(Ω×(0,T ))

≤ max

(
max
m≤M

||ΠDm
ν(um)(·, · + τ)−ΠDm

ν(um)(·, ·)||2L2(Ω×(0,T ));C9

(
τ + sup

m>M
δtm

))
, (53)

where C9 does not depend on m or τ , and the functions have been extended by 0 outside (0, T ).
Since each ||ΠDm

ν(um)(·, ·+ τ)−ΠDm
ν(um)||2L2(Ω×(0,T )) tends to 0 as τ → 0 and since δtm → 0 as

m→ ∞, taking in that order the limsup as τ → 0 and the limit as M → ∞ of (53) shows that the
left-hand side of this inequality tends to 0 as τ → 0, as required. Hence, Kolmogorov’s theorem
shows that, up to extraction of another subsequence, ΠDm

ν(um) → ν in L1(Ω× (0, T )).
Let us now identify these limits β, ζ and ν. Under the first case in the structural hypothesis
(17), we have β = Id, and therefore β = u = β(u) and ν = ζ. The strong convergence of
ΠDm

ν(um) = ΠDm
ζ(um) to ν = ζ allows us to apply Lemma 3.5 to see that ζ = ζ(u) and

ν = ν(u). Exchanging the roles of β and ζ, we see that β = β(u), ζ = ζ(u) and ν = ν(u) still
hold in the second case of (17). We notice that this is the only place where we use this structural
assumption (17) on β, ζ.
Using the growth assumption (2h) on a and Estimates (43), upon extraction of another subsequence
we can also assume that a (·,ΠDm

ν(um),∇Dm
ζ(um)) has a weak limit in Lp′

(Ω × (0, T ))d, which
we denote by A.
Finally, for any T0 ∈ [0, T ], since ΠDm

β(um(·, T0)) → β(u)(·, T0) weakly in L2(Ω), Lemma 3.4 gives

∫

Ω

B(β(u)(x, T0))dx ≤ lim inf
m→∞

∫

Ω

B(β(ΠDm
um)(x, T0))dx. (54)

With (43), this shows that B(β(u)) ∈ L∞(0, T ;L1(Ω)).

Step 2 Passing to the limit in the scheme.
We drop the indices m for legibility reasons. Let ϕ ∈ C1

c (−∞, T ) and let w ∈ W 1,p
0 (Ω) ∩ L2(Ω).

We introduce v = (ϕ(t(n−1))PDw)n=1,...,N as a test function in (14), with PD defined by (21). We

get T
(m)
1 + T

(m)
2 = T

(m)
3 with

T
(m)
1 =

N−1∑

n=0

ϕ(t(n))δt(n+
1
2 )

∫

Ω

ΠDδ
(n+ 1

2 )

D β(u)(x)ΠDPDw(x)dx,

T
(m)
2 =

N−1∑

n=0

ϕ(t(n))δt(n+
1
2 )

∫

Ω

a
(
x,ΠDν(u

(n+1)),∇Dζ(u
(n+1))(x)

)
· ∇DPDw(x)dx,

and

T
(m)
3 =

N−1∑

n=0

ϕ(t(n))

∫ t(n+1)

t(n)

∫

Ω

f(x, t)ΠDPDw(x)dxdt.
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Using discrete integrate-by-parts to transform the terms ϕ(t(n))(ΠDβ(u
(n+1)) − ΠDβ(u

(n))) ap-

pearing in T
(m)
1 into (ϕ(t(n))− ϕ(t(n+1)))ΠDβ(u

(n+1)), we have

T
(m)
1 = −

∫ T

0

ϕ′(t)

∫

Ω

ΠDβ(u)(x, t)ΠDPDw(x)dxdt− ϕ(0)

∫

Ω

ΠDβ(u
(0))(x)ΠDPDw(x)dx.

Setting ϕD(t) = ϕ(t(n)) for t ∈ (t(n), t(n+1)), we have

T
(m)
2 =

∫ T

0

ϕD(t)

∫

Ω

a (x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇DPDw(x)dxdt

T
(m)
3 =

∫ T

0

ϕD(t)

∫

Ω

f(x, t)ΠDPDw(x)dxdt.

Since ϕD → ϕ uniformly on [0, T ], ΠDPDw → w in Lp(Ω)∩L2(Ω) and ∇DPDw → ∇w in Lp(Ω)d,

we may let m→ ∞ in T
(m)
1 + T

(m)
2 = T

(m)
3 to see that u satisfies





u ∈ Lp(Ω× (0, T )) , ζ(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) , B(β(u)) ∈ L∞(0, T ;L1(Ω)),

β(u) ∈ C([0, T ];L2(Ω)-w) , β(u)(·, 0) = β(uini) ,

−

∫ T

0

ϕ′(t)

∫

Ω

β(u(x, t))w(x)dxdt − ϕ(0)

∫

Ω

β(uini(x))w(x)dx

+

∫ T

0

ϕ(t)

∫

Ω

A(x, t) · ∇w(x)dxdt =

∫ T

0

ϕ(t)

∫

Ω

f(x, t)w(x)dxdt,

∀w ∈W 1,p
0 (Ω) ∩ L2(Ω), ∀ϕ ∈ C∞

c (−∞, T ).

(55)

Note that the regularity properties on u, ζ(u), β(u) and B(β(u)) have been established in Step 1.
Linear combinations of this relation show that (55) also holds with ϕ(t)w(x) replaced by a tensorial
functions in C∞

c (Ω × (0, T )). This proves that ∂tβ(u) ∈ Lp′

(0, T ;W−1,p′

(Ω)) (see Remark 1.1).
Using the density of tensorial functions in Lp(0, T ;W 1,p

0 (Ω)) [18], we then see that u satisfies

∫ T

0

〈∂tβ(u)(·, t), v(·, t)〉W−1,p′ ,W 1,p
0

dt

+

∫ T

0

∫

Ω

A(x, t) · ∇v(x, t)dxdt =

∫ T

0

∫

Ω

f(x, t)v(x, t)dxdt , ∀v ∈ Lp(0, T ;W 1,p
0 (Ω)).

(56)

Step 3 Proof that u is a solution to (4).

It only remains to show that

A(x, t) = a(x, ν(u)(x, t),∇ζ(u)(x, t)) for a.e. (x, t) ∈ Ω× (0, T ). (57)

We take T0 ∈ [0, T ], write (42) with D = Dm and take the lim sup as m → ∞. We notice that
the t(k) =: Tm from Lemma 4.1 converges to T0 as m → ∞. Hence, by using the convergence
ΠDm

IDm
uini → uini in L

2(Ω) (consistency of (Dm)m∈N), and the continuity and quadratic growth
of B ◦ β (upper bound in (26)), we obtain

lim sup
m→∞

∫ T0

0

∫

Ω

a(x,ΠDm
ν(um)(x, t),∇Dm

ζ(um)(x, t)) · ∇Dm
ζ(um)(x, t)dxdt

≤

∫

Ω

B(β(uini)(x))dx+

∫ T0

0

∫

Ω

f(x, t)ζ(u)(x, t)dxdt− lim inf
m→∞

∫

Ω

B(β(ΠDm
um)(x, T0))dx. (58)
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We take v = ζ(u)1[0,T0] in (56) and apply Lemma 3.6 to get

∫

Ω

B(β(u)(x, T0))dx−

∫

Ω

B(β(u)(x, 0))dx

+

∫ T0

0

∫

Ω

A(x, t) · ∇ζ(u)(x, t)dxdt =

∫ T0

0

∫

Ω

f(x, t)ζ(u)(x, t)dxdt.

This relation, combined with (58) and using (54), shows that

lim sup
m→∞

∫ T0

0

∫

Ω

a(x,ΠDm
ν(um)(x, t),∇Dm

ζ(um)(x, t)) · ∇Dm
ζ(um)(x, t)dxdt

≤

∫ T0

0

∫

Ω

A(x, t) · ∇ζ(u)(x, t)dxdt. (59)

It is now possible to apply Minty’s trick. Consider for G ∈ Lp(Ω× (0, T ))d the following relation,
stemming from the monotony (2g) of a:

∫ T0

0

∫

Ω

[a(·,ΠDm
ν(um),∇Dm

ζ(um))− a(·,ΠDm
ν(um),G)] · [∇Dm

ζ(um)−G] dxdt ≥ 0. (60)

By strong convergence of ΠDm
ν(um) to ν(u) in L1(Ω × (0, T )) and Assumptions (2e), (2h) on a,

we see that a(·,ΠDm
ν(um),G) → a(·, ν(u),G) strongly in Lp′

(Ω × (0, T ))d. The development of
(60) gives a sum of four terms, the first one being the integral in the left-hand side of (59) and the
other three being integrals of products of weakly and strongly converging sequences. We can thus
take the lim sup of (60) with T0 = T to find

∫ T

0

∫

Ω

[A(x, t)− a(x, ν(u)(x, t),G(x, t))] · [∇ζ(u)(x, t)−G(x, t)] dxdt ≥ 0.

Application of Minty’s method [47] (i.e. taking G = ∇ζ(u) + rϕ for ϕ ∈ Lp(Ω × (0, T ))d and
letting r → 0) then shows that (57) holds and concludes the proof that u satisfies (4).

4.3 Proof of Theorem 2.16

Let T0 ∈ [0, T ] and (Tm)m≥1 be a sequence in [0, T ] that converges to T0. By setting T0 = Tm
and G = ∇ζ(u) in the developed form of (60), by taking the infimum limit (thanks to the strong
convergence of a(·,ΠDm

ν(um),∇ζ(u))) and by using (57), we find

lim inf
m→∞

∫ Tm

0

∫

Ω

a(x,ΠDm
ν(um)(x, t),∇Dm

ζ(um)(x, t)) · ∇Dm
ζ(um)(x, t)dxdt

≥

∫ T0

0

∫

Ω

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt. (61)

We then write (42) with Tm instead of T0 and we take the lim sup as m→ ∞. We notice that the
t(k) such that Tm ∈ (t(k−1), t(k)] converges to T0 as m→ ∞. Thanks to (61) and (39) we obtain

lim sup
m→∞

∫

Ω

B(β(ΠDm
um(x, Tm)))dx ≤

∫

Ω

B(β(u)(x, T0))dx. (62)

By Lemma 6.4, the uniform-in-time weak convergence of β(ΠDm
um) to β(ū) and the continuity

of β(ū) : [0, T ] → L2(Ω)-w, we have β(ΠDm
um)(Tm) → β(ū)(T0) weakly in L2(Ω) as m → ∞.
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Therefore, for any (sm)m∈N converging to T0,
1
2 (β(ΠDm

um(Tm)) + β(u)(sm)) → β(u)(T0) weakly
in L2(Ω) as m→ ∞ and Lemma 3.4 gives, by convexity of B,

∫

Ω

B(β(u)(x, T0))dx ≤ lim inf
m→∞

∫

Ω

B

(
β(ΠDm

um(x, Tm)) + β(u)(x, sm)

2

)
dx. (63)

Property (28) of B and the two inequalities (62) and (63) allow us to conclude the proof. Let
(sm)m∈N be a sequence in T (see proof of Corollary 3.8) that converges to T0. Then ν(u(·, sm)) →
ν(u)(·, T0) in L

2(Ω) as m→ ∞. Using (28), we get

‖ν(ΠDm
um(·, Tm))− ν(u)(·, T0)‖

2
L2(Ω)

≤ 2‖ν(ΠDm
um(·, Tm)) − ν(u(·, sm))‖2L2(Ω) + 2‖ν(u(·, sm))− ν(u)(·, T0)‖

2
L2(Ω)

≤ 8LβLζ

∫

Ω

[B(β(ΠDm
um(x, Tm))) +B(β(u(x, sm)))] dx

− 16LβLζ

∫

Ω

B

(
β(ΠDm

um(x, Tm)) + β(u(x, sm))

2

)
dx

+ 2‖ν(u(·, sm))− ν(u)(·, T0)‖
2
L2(Ω).

We then take the lim sup as m → ∞ of this expression. Thanks to (62) and the continuity of
t ∈ [0, T ] 7→

∫
ΩB(β(u)(x, t))dx ∈ [0,∞) (see Corollary 3.8), the first term in the right-hand side

has a finite lim sup, bounded above by 16LβLζ

∫
Ω
B(β(u)(x, T0))dx. We can therefore split the

lim sup of this right-hand side without risking writing ∞−∞ and we get, thanks to (63),

lim sup
m→∞

‖ν(ΠDm
um(·, Tm))− ν(u)(·, T0)‖

2
L2(Ω) ≤ 0.

Thus, ν(ΠDm
um(·, Tm)) → ν(u)(T0) strongly in L2(Ω). By Lemma 6.4 and the continuity of

ν(u) : [0, T ] 7→ L2(Ω) stated in Corollary 3.8, this concludes the proof of the convergence of
ν(ΠDm

um) to ν(u) in L∞(0, T ;L2(Ω)).

Remark 4.5 Since β(ΠDm
um)(Tm) → β(ū)(T0) weakly in L2(Ω) as m → ∞, Lemma 3.4 shows

that
∫
Ω
B(β(u)(x, T0))dx ≤ lim infm→∞

∫
Ω
B(β(ΠDm

um)(x, Tm))dx. Combined with (62), this
gives

lim
m→∞

∫

Ω

B(β(ΠDm
um(x, Tm)))dx =

∫

Ω

B(β(u)(x, T0))dx. (64)

Item 1 in Corollary 3.8 and Lemma 6.4 therefore show that the functions
∫
Ω
B(β(ΠDm

um(x, ·)))dx
converges uniformly on [0, T ] to

∫
Ω
B(β(u)(x, ·))dx.

4.4 Proof of Theorem 2.18

By taking the lim sup as m → ∞ of (42) for um with T0 = T , and by using (64) (with Tm ≡ T )
and the continuous integration-by-parts formula (39), we find

lim sup
m→∞

∫ T

0

∫

Ω

a(x,ΠDm
ν(um)(x, t),∇Dm

ζ(um)(x, t)) · ∇Dm
ζ(um)(x, t)dxdt

≤

∫ T0

0

∫

Ω

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt.

Combined with (61), this shows that
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lim
m→∞

∫ T

0

∫

Ω

a(x,ΠDm
ν(um)(x, t),∇Dm

ζ(um)(x, t)) · ∇Dm
ζ(um)(x, t)dxdt

=

∫ T0

0

∫

Ω

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt. (65)

Let us define

fm = [a(x,ΠDm
ν(um),∇Dm

ζ(um))− a(x,ΠDm
ν(um)(·, t),∇ζ(u))] · [∇Dm

ζ(um)−∇ζ(u)] ≥ 0.

By developing this expression and using (65), (57) and (18), we see that
∫ T

0

∫
Ω fm(x, t)dxdt → 0

as m→ ∞. This shows that fm → 0 in L1(Ω× (0, T )) and therefore a.e. up to a subsequence. We
can then reason as in [23], using the strict monotony (19) of a, the coercivity assumption (2f) and
Vitali’s theorem, to deduce that ∇Dm

ζ(um) → ∇ζ(u) strongly in Lp(Ω× (0, T ))d as m→ ∞.

5 Removal of the assumption “β = Id or ζ = Id”

We show here that all previous results are actually true without the structural assumption (17) –
i.e. without assuming that β = Id or ζ = Id – provided that the range of p is slightly restricted.
The main theorem in this section is the following convergence result.

Theorem 5.1 Under Assumptions (2), let (Dm)m∈N be a sequence of space-time gradient discreti-
sations, in the sense of Definition 2.1, that is coercive, consistent, limit-conforming and compact
(see Section 2.2). Let, for any m ∈ N, um be a solution to (14) with D = Dm, provided by Theorem
2.12.
If p ≥ 2 then there exists a solution u to (4) such that, up to a subsequence,

• the convergences in (18) hold,

• ΠDm
ν(um) → ν(u) strongly in L∞(0, T ;L2(Ω)) as m→ ∞,

• under the strict monotony assumption on a (i.e. (19)), as m → ∞ we have ΠDm
ζ(um) →

ζ(u) strongly in Lp(Ω× (0, T )) and ∇Dm
ζ(um) → ∇ζ(u) strongly in Lp(Ω× (0, T ))d.

Proof.
We only need to prove the first conclusion of the theorem, i.e. that the convergences (18) hold.
Theorems 2.16 and 2.18 then provide the last two conclusions. The difference with respect to
Theorem 2.12 is the removal, here, of the structural assumption (17). The only place in the proof
of Theorem 2.12 where this assumption was used is in Step 1, to identify the limits β, ζ and ν
of ΠDm

β(um), ΠDm
ζ(um) and ΠDm

ν(um). We will show that these limits can still be identified
without assuming (17).
Set µ = β + ζ, let µ = β + ζ and fix a measurable u such that (µ+ ν)(u) = µ+ ν. The existence
of such a u is ensured by Assumptions (2b) and (2c). Indeed, these assumptions show that the
range of µ + ν is R and therefore that the pseudo-reciprocal (µ + ν)r of µ+ ν (defined as in (3))
has domain R; this allows us to set, for example, u = (µ+ ν)r(µ+ ν). Let us now prove that, for
such a function u, we have β = β(u), ζ = ζ(u) and ν = ν(u).
By using estimates (52) and (53), Kolmogorov’s compactness theorem shows that the convergence
of ΠDm

ν(um) towards ν is actually strong in L2(Ω×(0, T )) (we use p ≥ 2 here). Since µ(ΠDm
um) =

β(ΠDm
um) + ζ(ΠDm

um) → β + ζ = µ weakly in L2(Ω × (0, T )), we can apply Lemma 5.6 with
ϕ ≡ 1, wm = ΠDm

um, w = u and (µ, ν) instead of (β, ζ) to deduce that ν = ν(u) and µ = µ(u).
The second of these relations translates into β + ζ = (β + ζ)(u).
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We now turn to identifying β and ζ. Lemmas 4.1 and 4.3 show that βm = β(um) and ζm = ζ(um)
satisfy the assumptions of the discrete compensated compactness theorem 5.4 below (we use p ≥ 2
here). Hence, ΠDm

β(um)ΠDm
ζ(um) → β ζ in the sense of measures on Ω×(0, T ). Since we already

established that (β + ζ)(u) = β+ ζ, we can therefore apply Lemma 5.6 with ϕ ≡ 1, wm = ΠDm
um

and w = u. This gives β = β(u) and ζ = ζ(u) a.e. on Ω× (0, T ), as required.
To summarise, the limits of ΠDm

β(um), ΠDm
ζ(um) and ΠDm

ν(um) have been identified as β(u),
ζ(u) and ν(u) for some u. Since ζ(u) = ζ ∈ Lp(Ω × (0, T )), the growth assumptions (2b) on ζ
ensure that u ∈ Lp(Ω × (0, T )). We can then take over the proof of Theorem 2.12 from after the
usage of (17), using the u we just found instead of the one defined as the weak limit of ΠDm

um.
This allows us to conclude that u is a solution to (4), and that the convergences in (18) hold.

Remark 5.2 It is not proved that u is a weak limit of ΠDm
um. Such a limit is not stated in (18)

and is not necessarily expected for the model (1), in which the quantities of interest (physically
relevant when this PDE models a natural phenomenon) are β(u), ζ(u) and ν(u).

Remark 5.3 (Maximal monotone operator) Hypotheses (2b) and (2c) imply that the oper-
ator T defined by the graph G(T ) = {(ζ(s), β(s)), s ∈ R} is a maximal monotone operator with
domain R, such that 0 ∈ T (0). Indeed, assume that x, y satisfy (ζ(s) − x)(β(s) − y) ≥ 0 for all
s ∈ R. Then, letting w ∈ R be such that

β(w) + ζ(w)

2
=
x+ y

2
, (66)

we have (ζ(w) − x)(β(w) − y) = −( ζ(w)−β(w)
2 − x−y

2 )2 ≥ 0. This implies ζ(w)−β(w)
2 = x−y

2 which,
combined with (66), gives x = ζ(w) and y = β(w) and hence (x, y) ∈ G(T ).
Reciprocally, for any maximal monotone operator T from R to R such that 0 ∈ T (0), one can
find ζ and β satisfying (2b) and (2c), and such that G(T ) = {(ζ(s), β(s)), s ∈ R}. Indeed, for
all (x, y) ∈ G(T ) and (x′, y′) ∈ G(T ) satisfying x + y = x′ + y′, since (x − x′)(y − y′) ≥ 0 we
have x = x′ and y = y′. We can therefore define ζ and β by: for all (x, y) ∈ G(T ), x = ζ(x+y

2 )

and y = β(x+y
2 ). We observe that these functions are nondecreasing and Lipschitz-continuous with

constant 2, and that ζ + β = 2Id.
Hence, Theorem 5.1 applies to the model considered in [52], but provides convergence results for
much more general equations and various numerical methods in any space dimension.

We now state the two key results that allowed us to remove Assumption (17) if p ≥ 2. The first
one is a discrete version of a compensated compactness result in [41]. The second is a Minty-like
result, useful to identify weak non-linear limits.
We note that Theorem 5.4 states a more general convergence result than needed for the proof of
Theorem 5.1 (which only requires ϕ ≡ 1). We nevertheless state the general form in order to obtain
the genuine discrete equivalent of the result in [41]. We also believe that this discrete compensated
compactness theorem will find many more applications in the numerical analysis of degenerate or
coupled parabolic models. We also refer to [6] for another transposition to the discrete setting of
a compensated compactness result.

Theorem 5.4 (Discrete compensated compactness) We take T > 0, p ≥ 2 and a sequence

(Dm)m∈N = (XDm,0,ΠDm
,∇Dm

, IDm
, (t

(n)
m )n=0,...,Nm

)m∈N of space-time gradient discretisations,
in the sense of Definition 2.1, that is consistent and compact in the sense of Definitions 2.6 and
2.9.
For any m ∈ N, let βm = (β

(n)
m )n=0,...,Nm

⊂ XDm,0 and ζm = (ζ
(n)
m )n=0,...,Nm

⊂ XDm,0 be such that
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• the sequences (
∫ T

0
|δmβm(t)|⋆,Dm

)m∈N and (||∇Dm
ζm||L2(0,T ;Lp(Ω)d))m∈N are bounded,

• as m→ ∞, ΠDm
βm → β and ΠDm

ζm → ζ weakly in L2(Ω× (0, T )).

Then (ΠDm
βm)(ΠDm

ζm) → β ζ in the sense of measures on Ω × (0, T ), that is, for all ϕ ∈
C(Ω× [0, T ]),

lim
m→∞

∫ T

0

∫

Ω

ΠDm
βm(x, t)ΠDm

ζm(x, t)ϕ(x, t)dxdt =

∫ T

0

∫

Ω

β(x, t) ζ(x, t)ϕ(x, t)dxdt. (67)

Proof.
The idea is to reduce to the case where ΠDm

ζm is a tensorial function, in order to separate the
space and time variables and make use of the compactness of ΠDm

ζm and ΠDm
βm with respect to

each of these variables. Note that the technique we use here apparently provides a new proof for
the continuous equivalent of this compensated compactness result.

Step 1: reduction of ΠDm
ζm to tensorial functions.

Let us take δ > 0 and let us consider a covering (Aδ
k)k=1,...,K of Ω in disjoint cubes of length δ.

Let Rδ : L
2(Ω) → L2(Ω) be the operator defined by:

∀g ∈ L2(Ω) , ∀k = 1, . . . ,K , ∀x ∈ Aδ
k ∩Ω : Rδg(x) =

1

meas(Aδ
k)

∫

Ak
δ

g(y)dy,

where g has been extended by 0 outside Ω. Let x ∈ Aδ
k ∩ Ω. Using Jensen’s inequality, the fact

that meas(Aδ
k) = δd and the change of variable y ∈ Aδ

k 7→ ξ = y − x ∈ (−δ, δ)d, we can write

|Rδg(x)− g(x)|2 ≤ δ−d

∫

Aδ
k

|g(y)− g(x)|2dy ≤ δ−d

∫

(−δ,δ)d
|g(x+ ξ)− g(x)|2dξ.

Integrating over x ∈ Aδ
k and summing over k = 1, . . . ,K gives

||Rδg − g||2L2(Ω) ≤ δ−d

∫

(−δ,δ)d

∫

Rd

|g(x+ ξ)− g(x)|2dxdξ

≤ 2d sup
ξ∈(−δ,δ)d

∫

Rd

|g(x+ ξ)− g(x)|2dx. (68)

The compactness of (Dm)m∈N (Definition 2.9) and the fact that p ≥ 2 give ǫ(ξ) such that ǫ(ξ) → 0
as ξ → 0 and, for all m ∈ N and all v ∈ XDm,0,

||ΠDm
v(·+ ξ)−ΠDm

v||2L2(Rd) ≤ ǫ(ξ)||∇Dm
v||2Lp(Ω)d .

Combining this with (68) and using the bound on ||∇Dm
ζm||L2(0,T ;Lp(Ω)d) shows that

||RδΠDm
ζm −ΠDm

ζm||L2(Ω×(0,T )) ≤ C sup
|ξ|∞≤δ

√
ǫ(ξ) =: ω(δ) (69)

where C does not depend on m, and ω(δ) → 0 as δ → 0. Note that a similar estimate holds with
ΠDm

ζm replaced with ζ since ζ ∈ L2(Ω× (0, T )).
If we respectively denote by Am(ΠDm

ζm) and A(ζ) the integrals in the left-hand side and right-
hand side (67), then since (ΠDm

βm)m∈N is bounded in L2(Ω× (0, T )) we have by (69)

|Am(ΠDm
ζm)−A(ζ)| ≤ Cω(δ) + |Am(RδΠDm

ζm)−A(Rδζ)|. (70)
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Let us assume that we can prove that, for a fixed δ,

Am(RδΠDm
ζm) → A(Rδζ) as m→ ∞. (71)

Then (70) gives lim supm→∞ |Am(ΠDm
ζm)−A(ζ)| ≤ Cω(δ). Letting δ → 0 in this inequality gives

Am(ΠDm
ζm) → A(ζ) as wanted. Hence, we only need to prove (71).

The definition of Rδ shows that

Rδg =
K∑

k=1

1

meas(Aδ
k)
1Aδ

k
[g]Aδ

k
,

where 1Aδ
k
is the characteristic function of Aδ

k and [g]A =
∫
A
g(x)dx. Hence, (71) follows if we can

prove that for any measurable set A

lim
m→∞

∫ T

0

∫

Ω

ΠDm
βm(x, t)[ΠDm

ζm]A(t)ϕ(t,x)1A(x)dxdt

=

∫ T

0

∫

Ω

β(x, t)[ ζ ]A(t)ϕ(t,x)1A(x)dxdt (72)

where for g ∈ L2(Ω× (0, T )) we set [g]A(t) =
∫
A
g(t,y)dy.

Step 2: further reductions.
We now reduce ϕ to a tensorial function and 1A to a smooth function. It is well-known that there
exists tensorial functions ϕr =

∑Lr

l=1 θl,r(t)γl,r(x), with θl,r ∈ C∞([0, T ]) and γl,r ∈ C∞(Ω), such
that ϕr → ϕ uniformly on Ω × (0, T ) as r → ∞. Moreover, there exists ρr ∈ C∞

c (Ω) such that
ρr → 1A in L2(Ω) as r → ∞.
Hence, as r → ∞ the function (t,x) 7→ ϕr(t,x)ρr(x) converges in L

∞(0, T ;L2(Ω)) to the function
(t,x) 7→ ϕ(t,x)1A(x). Since the sequence of functions (t,x) 7→ ΠDm

βm(t,x)[ΠDm
ζm]A(t) is

bounded in L1(0, T ;L2(Ω)) (notice that ([ΠDm
ζm]A)m∈N is bounded in L2(0, T ) since (ΠDm

ζm)m∈N

is bounded in L2(Ω × (0, T ))), a reasoning similar to the one used in Step 1 shows that we only
need to prove (72) with ϕ(t,x)1A(x) replaced with ϕr(t,x)ρr(x) for a fixed r.

We have ϕr(t,x)ρr(x) =
∑Lr

l=1 θl,r(t)(γl,rρr)(x) and γl,rρr ∈ C∞
c (Ω). Hence, (72) with ϕ(t,x)1A(x)

replaced with ϕr(t,x)ρr(x) will follow if we can establish that for any θ ∈ C∞([0, T ]), any
ψ ∈ C∞

c (Ω) and any measurable set A

lim
m→∞

∫ T

0

∫

Ω

θ(t)ΠDm
βm(x, t)[ΠDm

ζm]A(t)ψ(x)dxdt =

∫ T

0

∫

Ω

θ(t)β(x, t)[ ζ ]A(t)ψ(x)dxdt. (73)

Step 3: proof of (73).
We now use the estimate on δmβm to conclude. We write

∫ T

0

∫

Ω

θ(t)ΠDm
βm(x, t)[ΠDm

ζm]A(t)ψ(x)dxdt =

∫ T

0

θ(t)[ΠDm
ζm]A(t)Fm(t) (74)

with Fm(t) =
∫
ΩΠDm

βm(x, t)ψ(x)dx. It is clear from the weak convergence of ΠDm
ζm that

[ΠDm
ζm]A → [ ζ ]A weakly in L2(0, T ). Hence, if we can prove that Fm → F :=

∫
Ω β(x, ·)ψ(x)dx

strongly in L2(0, T ), we can pass to the limit in (74) and obtain (73). Since Fm weakly converges
to F in L2(0, T ) (thanks to the weak convergence of ΠDm

βm in L2(Ω × (0, T ))), we only have to
prove that (Fm)m∈N is relatively compact in L2(0, T ).

30



We introduce the interpolant PDm
defined by (21) and we define Gm as Fm with ψ replaced with

ΠDm
PDm

ψ. We then have

|Fm(t)−Gm(t)| ≤ ||ΠDm
βm(·, t)||L2(Ω)SDm

(ψ).

The consistency of (Dm)m∈N thus shows that

Fm −Gm → 0 strongly in L2(0, T ) as m→ ∞. (75)

We now study the strong convergence of Gm. This function is, like ΠDm
βm, piecewise constant on

(0, T ) and, by definition of | · |⋆,Dm
, its discrete derivative satisfies

|δmGm(t)| ≤ |δmβm(t)|⋆,Dm
||∇Dm

PDm
ψ||Lp(Ω)d .

Since ||∇Dm
PDm

ψ||Lp(Ω)d ≤ SDm
(ψ) + ||∇ψ||Lp(Ω)d is bounded uniformly with respect to m, the

assumption on δmβm proves that (||δmGm||L1(0,T ))m∈N is bounded. We have ||δmGm||L1(0,T ) =
|Gm|BV (0,T ), and (ΠDm

βm)m∈N is bounded in L2(Ω × (0, T )); hence, (Gm)m∈N is bounded in
BV (0, T ) ∩ L2(0, T ) and therefore relatively compact in L2(0, T ) (see [7, Theorem 10.1.4]). Com-
bined with (75), this shows that (Fm)m∈N is relatively compact in L2(0, T ) and concludes the
proof.

Remark 5.5 If we assume that (ΠDm
βm)m∈N is bounded in L∞(0, T ;L2(Ω)) and that, for some

q > 1, (
∫ T

0
|δmβm(t)|q⋆,Dm

)m∈N is bounded, then Step 3 becomes a trivial consequence of Theorem
3.1. Indeed, this theorem shows that (ΠDm

βm)m∈N is relatively compact uniformly-in-time and
weakly in L2(Ω), which translates into the relative compactness of (Fm)m∈N in L∞(0, T ).

Lemma 5.6 Let V be a non-empty measurable subset of RN , N ≥ 1. Let β, ζ ∈ C0(R) be two
nondecreasing functions such that β(0) = ζ(0) = 0. We assume that there exists a sequence
(wm)m∈N of measurable functions on V , and two functions β, ζ ∈ L2(V ) such that:

• β(wm) → β and ζ(wm) → ζ weakly in L2(V ),

• there exists ϕ ∈ L∞(V ) such that ϕ > 0 a.e. on V and

lim
m→∞

∫

V

ϕ(z)β(wm(z))ζ(wm(z))dz =

∫

V

ϕ(z)β(z) ζ(z)dz. (76)

Then, for any measurable function w such that (β + ζ)(w) = β + ζ a.e. in V , we have

β = β(w) and ζ = ζ(w) a.e. in V . (77)

Proof. We first notice that β(w) and ζ(w) belong to L2(V ) since they have the same sign and
therefore verify |β(w)|+ |ζ(w)| = |β+ ζ| ∈ L2(V ). Using the fact that β and ζ are non-decreasing,
we can write ∫

V

ϕ(z) [β(wm(z))− β(w(z))] [ζ(wm(z)) − ζ(w(z))] dz ≥ 0.

Letting m → ∞ in the above inequality, and using the convergences of β(wm), ζ(wm) and (76),
we obtain ∫

V

ϕ(z)
[
β(z) − β(w(z))

] [
ζ(z) − ζ(w(z))

]
dz ≥ 0. (78)
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We then remark that β + ζ = β(w) + ζ(w) gives β(w) = β+ζ
2 +

(
β−ζ
2

)
(w) and ζ(w) = β+ζ

2 −
(

β−ζ
2

)
(w). Hence, (78) leads to

−

∫

V

ϕ(z)

[
β − ζ

2
(z)−

(
β − ζ

2

)
(w(z))

]2
dz ≥ 0.

Since ϕ is almost everywhere strictly positive on V , we deduce that β−ζ
2 = β(w)−ζ(w)

2 a.e. in V ,

and (77) follows from β+ζ
2 = β(w)+ζ(w)

2 .

6 Appendix: uniform-in-time compactness results for time-

dependent problems

We establish in this appendix some generic results, unrelated to the framework of gradient schemes,
that form the starting point for our uniform-in-time convergence results.

Solutions of numerical schemes for parabolic equations are usually piecewise constant, and therefore
not continous, in time. As their jumps nevertheless tend to become small as the time step goes
to 0, it is possible to establish uniform-in-time convergence properties using a generalisation to
non-continuous functions of the classical Ascoli-Arzelà theorem.

Definition 6.1 If (K, dK) and (E, dE) are metric spaces, we denote by F(K,E) the space of
functions K → E endowed with the uniform metric dF(v, w) = sups∈K dE(v(s), w(s)) (note that
this metric may take infinite values).

Theorem 6.2 (discontinuous Ascoli-Arzelà’s theorem) Let (K, dK) be a compact metric spa-
ce, (E, dE) be a complete metric space and (F(K,E), dF ) be as in Definition 6.1.
Let (vm)m∈N be a sequence in F(K,E) such that there exists a function ω : K ×K → [0,∞] and
a sequence (δm)m∈N ⊂ [0,∞) satisfying

lim
dK(s,s′)→0

ω(s, s′) = 0 , lim
m→∞

δm = 0 ,

∀(s, s′) ∈ K2 , ∀m ∈ N , dE(vm(s), vm(s′)) ≤ ω(s, s′) + δm.
(79)

We also assume that, for all s ∈ K, {vm(s) : m ∈ N} is relatively compact in (E, dE).
Then (vm)m∈N is relatively compact in (F(K,E), dF ) and any adherence value of (vm)m∈N in this
space is continuous K → E.

Proof. Let us first notice that the last conclusion of the theorem, i.e. that any adherence value
v of (vm)m∈N in F(K,E) is continuous, is trivially obtained by passing to the limit in (79), which
shows that the modulus of continuity of v is bounded above by ω.
The proof of the compactness result is an easy generalisation of the proof of the classical Ascoli-
Arzelà theorem. We start by taking a countable dense subset {sl : l ∈ N} in K (the existence
of this set is ensured since K is compact metric). Since each set {vm(sl) : m ∈ N} is relatively
compact in E, by diagonal extraction we can select a subsequence of (vm)m∈N, denoted the same
way, such that, for any l ∈ N, (vm(sl))m∈N converges in E. We then proceed to show that (vm)m∈N

is a Cauchy sequence in (F(K,E), dF ). Since this space is complete, this will prove that this
sequence converges in this space, which will complete the proof.
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Let ε > 0 and, using (79), take ρ > 0 and M ∈ N such that ω(s, s′) ≤ ε whenever dK(s, s′) ≤ ρ
and δm ≤ ε whenever m ≥ M . Select a finite set {sl1 , . . . , slN} such that any s ∈ K is within
distance ρ of a sli . Then for any m,m′ ≥M

dE(vm(s), vm′(s)) ≤ dE(vm(s), vm(sli)) + dE(vm(sli), vm′(sli)) + dE(vm′(sli), vm′(s))

≤ ω(s, sli) + δm + dE(vm(sli), vm′(sli)) + ω(s, sli) + δm′

≤ 4ε+ dE(vm(sli), vm′(sli)).

Since {(vm(sli))m∈N : i = 1, . . . , N} forms a finite number of converging sequences in E, we can
find M ′ ≥ M such that, for all m,m′ ≥ M ′ and all i = 1, . . . , N , dE(vm(sli), vm′(sli)) ≤ ε. This
shows that, for all m,m′ ≥M ′ and all s ∈ K, dE(vm(s), vm′(s)) ≤ 5ε and concludes the proof that
(vm)m∈N is a Cauchy sequence in (F(K,E), dF ).

Remark 6.3 Conditions (79) are usually the most practical when (vm)m∈N are piecewise constant-
in-time solutions to numerical schemes (see e.g. the proof of Theorem 3.1). Here, ω is expected
to measure the size of the cumulated jumps of vm between s and s′, and δm accounts for boundary
effects which may occur in the small time intervals containing s and s′.
It is easy to see that (79) can be replaced with

dE(vm(s), vm(s′)) → 0 , as m→ ∞ and dK(s, s′) → 0 (80)

(under this condition, the proof can be carried out by selecting M ∈ N and ρ > 0 such that
dE(vm(s), vm(s′)) ≤ ε whenever m ≥ M and dK(s, s′) ≤ ρ). It turns out that (80) is actually a
necessary and sufficient condition for the theorem’s conclusions to hold true.

The following lemma states an equivalent condition for the uniform convergence of functions, which
proves extremely useful to establish uniform-in-time convergence of numerical schemes for parabolic
equations when no smoothness is assumed on the data.

Lemma 6.4 Let (K, dK) be a compact metric space, (E, dE) be a metric space and (F(K,E), dF )
as in Definition 6.1. Let (vm)m∈N be a sequence in F(K,E) and v : K 7→ E be continuous.
Then vm → v for dF if and only if, for any s ∈ K and any sequence (sm)m∈N ⊂ K converging to
s for dK , we have vm(sm) → v(s) for dE.

Proof. If vm → v for dF then for any sequence (sm)m∈N converging to s

dE(vm(sm), v(s)) ≤ dE(vm(sm), v(sm)) + dE(v(sm), v(s)) ≤ dF (vm, v) + dE(v(sm), v(s)).

The right-hand side tends to 0 by definition of vm → v for dF and by continuity of v, which shows
that vm(sm) → v(s) for dE .
Let us now prove the converse by contradiction. If (vm)m∈N does not converge to v for dF then there
exists ε > 0 and a subsequence (vmk

)k∈N, such that, for any k ∈ N, sups∈K dE(vmk
(s), v(s)) ≥ ε.

We can then find a sequence (rk)k∈N ⊂ K such that, for any k ∈ N,

dE(vmk
(rk), v(rk)) ≥ ε/2. (81)

K being compact, up to another subsequence denoted the same way, we can assume that rk
converges as k → ∞ to some s in K. It is then trivial to construct a sequence (sm)m∈N converging
to s and such that smk

= rk (just take sm = s when m is not anmk). We then have vm(sm) → v(s)
in E and, by continuity of v, v(sm) → v(s) in E. This shows that dE(vm(sm), v(sm)) → 0, which
contradicts (81) and concludes the proof.

The next result is classical. Its short proof is recalled for the reader’s convenience.
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Proposition 6.5 Let E be a closed bounded ball in L2(Ω) and let (ϕl)l∈N be a dense sequence in
L2(Ω). Then, on E, the weak topology of L2(Ω) is the topology given by the metric

dE(v, w) =
∑

l∈N

min(1, |〈v − w,ϕl〉L2(Ω)|)

2l
. (82)

Moreover, a sequence of functions um : [0, T ] → E converges uniformly-in-time to u : [0, T ] → E
for the weak topology of L2(Ω) (see Definition 2.11) if and only if, as m→ ∞, dE(um, u) : [0, T ] →
[0,∞) converges uniformly to 0.

Proof. The sets Eϕ,ε = {v ∈ E : |〈v, ϕ〉L2(Ω)| < ε}, for ϕ ∈ L2(Ω) and ε > 0, define a basis of
neighborhoods of 0 for the weak L2(Ω) topology on E, and a basis of neighborhoods of any other
point is obtained by translation. If R is the radius of the ball E then for any ϕ ∈ L2(Ω), l ∈ N

and v ∈ E we have
|〈v, ϕ〉L2(Ω)| ≤ R||ϕ− ϕl||L2(Ω) + |〈v, ϕl〉L2(Ω)|.

By density of (ϕl)l∈N we can select l ∈ N such that ||ϕ − ϕl||L2(Ω) < ε/(2R) and we then see that
Eϕl,ε/2 ⊂ Eϕ,ε. Hence, a basis of neighborhoods of 0 in E for the weak L2(Ω) is also given by
(Eϕl,ε)l∈N, ε>0.
From the definition of dE we see that, for any l ∈ N, min(1, |〈v, ϕl〉L2(Ω)|) ≤ 2ldE(0, v). If dE(0, v) <

2−l this shows that |〈v, ϕl〉L2(Ω)| ≤ 2ldE(0, v) and therefore that

BdE
(0,min(2−l, ε2−l)) ⊂ Eϕl,ε.

Hence, any neighborhood of 0 in E for the L2(Ω) weak topology is a neighborhood of 0 for dE .
Conversely, for any ε > 0, selecting N ∈ N such that

∑
l≥N+1 2

−l < ε/2 gives, from the definition
(82) of dE ,

N⋂

l=1

Eϕl,ε/4 ⊂ BdE
(0, ε).

Hence, any ball for dE centered at 0 is a neighborhood of 0 for the L2(Ω) weak topology. Since dE
and the L2(Ω) weak neighborhoods are invariant by translation, this concludes the proof that this
weak topology is identical to the topology generated by dE .
The conclusion on weak uniform convergence of sequences of functions follows from the preceding
result, and more precisely by noticing that all previous inclusions are, when applied to um(t)−u(t),
uniform with respect to t ∈ [0, T ].

The following lemma has been initially established in [35, Proposition 9.3].

Lemma 6.6
Let (t(n))n∈Z be a stricly increasing sequence of real values such that δt(n+

1
2 ) := t(n+1) − t(n) is

uniformly bounded by δt > 0, lim
n→−∞

t(n) = −∞ and lim
n→∞

t(n) = ∞. For all t ∈ R, we denote by

n(t) the element n ∈ Z such that t ∈ (t(n), t(n+1)]. Let (a(n))n∈Z be a family of non negative real
numbers with a finite number of non zero values. Then

∫

R

n(t+τ)∑

n=n(t)+1

(δt(n+
1
2 )a(n+1))dt = τ

∑

n∈Z

(δt(n+
1
2 )a(n+1)), ∀τ > 0, (83)

and

∫

R




n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )


 an(t+s)+1dt ≤ (τ + δt)

∑

n∈Z

δt(n+
1
2 )a(n+1), ∀τ > 0, ∀s ∈ R. (84)
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Proof.
Let us define χ by χ(t, n, τ) = 1 if t(n) ∈ [t, t+ τ), otherwise χ(t, n, τ) = 0. We have

∫

R

n(t+τ)∑

n=n(t)+1

(δt(n+
1
2 )a(n+1))dt =

∫

R

∑

n∈Z

(δt(n+
1
2 )a(n+1)χ(t, n, τ))dt

=
∑

n∈Z

(
δt(n+

1
2 )a(n+1)

∫

R

χ(t, n, τ)dt

)
.

Since
∫
R
χ(t, n, τ)dt =

∫ t(n)

t(n)−τ
dt = τ , Relation (83) is proved.

We now turn to the proof of (84). We define χ̃ by χ̃(n, t) = 1 if n(t) = n, otherwise χ̃(n, t) = 0.
We have

∫

R




n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )


 a(n(t+s)+1)dt =

∫

R




n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )



∑

m∈Z

a(m+1)χ̃(m, t+ s)dt,

which yields

∫

R




n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )


 a(n(t+s)+1)dt =

∑

m∈Z

a(m+1)

∫ t(m+1)−s

t(m)−s




n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )


 dt. (85)

Since
n(t+τ)∑

n=n(t)+1

δt(n+
1
2 ) =

∑

n∈Z, t≤t(n)<t+τ

(t(n+1) − t(n)) ≤ τ + δt,

we deduce from (85) that

∫

R




n(t+τ)∑

n=n(t)+1

δt(n+
1
2 )


 a(n(t+s)+1)dt ≤ (τ + δt)

∑

m∈Z

a(m+1)

∫ t(m+1)−s

t(m)−s

dt

= (τ + δt)
∑

m∈Z

a(m+1)δt(m+ 1
2 ),

which is exactly (84).
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[28] R. Eymard, P. Feron, T. Gallouët, R. Herbin, and C. Guichard. Gradient schemes for the
Stefan problem. International Journal On Finite Volumes, 10s, 2013.
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