Skip to main content
Log in

A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the \(H^1\) error of the primal variable is bounded by the error of the \(L^2\) best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brézis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York (1971)

    Google Scholar 

  3. Carstensen, C., Gallistl, D., Schedensack, M.: Adaptive nonconforming Crouzeix–Raviart FEM for eigenvalue problems. Math. Comput. 84(293), 1061–1087 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comput. 83(290), 2605–2629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carstensen, C., Köhler, K., Peterseim, D., Schedensack, M.: Comparison results for the Stokes equations. Appl. Numer. Math. (2014). doi:10.1016/j.apnum.2013.12.005

  6. Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50(6), 2803–2823 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carstensen, C., Schedensack, M.: Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. (2014). doi:10.1093/imanum/dru048

  8. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Autom. Inf. Recherche Opér. Sér. Rouge 7(R-3), 33–75 (1973)

  9. Duvaut, G., Lions, J.L., Trémolières, R.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  10. Evans, L.C.: Graduate Studies in Mathematics. Partial differential equations, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  11. Falk, R., Mercier, B.: Error estimates for elasto-plastic problems. RAIRO Anal. Numér. 11(R–2), 135–144 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Fuchs, M., Seregin, G.: Variational methods for problems from plasticity theory and for generalized Newtonian fluids. In: Lecture Notes in Mathematics, vol. 1749. Springer, Berlin (2000)

  13. Glowinski, R.: Sur l’approximation d’une inéquation variationnelle elliptique de type Bingham. RAIRO Anal. Numér. 10(R–3), 13–30 (1976)

    MathSciNet  Google Scholar 

  14. Glowinski, R.: Scientific Computation. Numerical methods for nonlinear variational problems. Springer, Berlin (2008). (reprint of the 1984 original)

    Google Scholar 

  15. Glowinski, R., Lions, J.L., Trémolières, R.: Analyse numérique des inéquations variationnelles. Tome 1. Théorie générale premiéres applications. In: Méthodes Mathématiques de l’Informatique, vol. 5. Dunod, Paris (1976)

  16. Mosolov, P.P., Miasnikov, V.P.: Variational methods in the theory of the fluidity of a viscous-plastic medium. J. Appl. Math. Mech. 29(3), 545–577 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mosolov, P.P., Miasnikov, V.P.: On stagnant flow regions of a viscous-plastic medium in pipes. J. Appl. Math. Mech. 30(4), 841–854 (1966)

    Article  MATH  Google Scholar 

  18. Mosolov, P.P., Miasnikov, V.P.: On qualitative singularities of the flow of a viscoplastic medium in pipes. J. Appl. Math. Mech. 31(3), 609–613 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  19. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. In: Advances in Numerical Mathematics. Wiley, Chichester (1996)

Download references

Acknowledgments

The third named author was supported by the Berlin Mathematical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Carstensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carstensen, C., Reddy, B.D. & Schedensack, M. A natural nonconforming FEM for the Bingham flow problem is quasi-optimal. Numer. Math. 133, 37–66 (2016). https://doi.org/10.1007/s00211-015-0738-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0738-1

Mathematics Subject Classification

Navigation