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RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR MULTIPOI  NT
FLUX MIXED FINITE ELEMENT METHODS  *

SHAOHONG DU, SHUYU SUN, AND XIAOPING XIE$

Abstract. A novel residual-typea posteriori error analysis technique is developed for multi-
point flux mixed finite element methods for flow in porous meididawo or three space dimensions.
The deriveda posteriori error estimator for the velocity and pressure errof.fi-norm consists of
discretization and quadrature indicators, and is showreteebable and efficient. The main tools of
analysis are a locally postprocessed approximation toréespre solution of an auxiliary problem and
a quadrature error estimate. Numerical experiments asepted to illustrate the competitive behavior
of the estimator.
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1. Introduction. LetQ c R? be a bounded polygonad (= 2) or polyhedral § = 3)
domain with a Lipschitz continuous bounda?§2. We consider the following first-order
system of diffusion-type partial differential equations:

u=—-KVp in Q,
V-u=f inQ,
p=g onlp,
un=0 only.

(1.1)

Herel'p, I' v are partitions of the boundaé}f) corresponding to the Dirichlet and Neumann
conditions, respectively, withQ2 = I'p UTx, I'p N Ty = 0 andmeas(I'p) > 0, nis
the outward unit normal vector ai2, andK is a symmetric and uniformly positive definite
tensor with

kot TE < ETK(x)E < hg¢, Vxe, VEeR? (1.2)

for0 < ko < k1 < oo. This system has been widely used in physics to model ddfusi
processes such as heat or mass transfer and flow in poroua.nhedliow in porous media,
p denotes the pressune,s the Darcy velocity, and represents the permeability divided by
the viscosity.

The main goal of this paper is to derive residual-bas@dsteriori error estimation for
multipoint flux mixed finite element (MFMFE) methods for theodel (1.1). The MFMFE
approach was developed for single phase flow in porous med0i[39,/40]. It is moti-
vated by the multipoint flux approximation (MPFA) approa@hl1,[26, 32] 33], which is a
control volume method developed by the oil industry as abédi discretization for single-
phase Darcy flow. One main advantage of this method lies i lyaintroducing sub-edge
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(or sub-face) fluxes, it provides a local explicit flux withspect to the flow pressure, and al-
lows for local flux elimination around grid vertices and retion to a cell-centered pressure
scheme. The MFMFE method is based on the lowest order BBaaglas-Marini (BDM1)
[17] or Brezzi-Douglas-Duran-Fortin (BDDF1) [16] finiteezhent space. By using special
guadrature rules, local velocity elimination is also attai which leads to a symmetric and
positive definite cell-centered system for the pressureuaadlateral, simplicial and hexahe-
dral meshes. I [41], a coupling discretization of MFMFE hoet and continuous Galerkin
finite element method was applied to the poroelasticityesysthat describes fluid flow in
deformable porous media.

Itis well-known that adaptive algorithms for the numerisalution of partial differential
equations are nowadays standard tools in science and enigigeA posteriori error estima-
tion, as an essential ingredient of adaptivity, providespdite mesh refinement strategy and
guantitative estimates of the numerical solution obtaired second-order elliptic problems,
the theory ofa posteriori error estimation has reaches a degree of maturity for fitét@ent
of conforming, nonconforming and mixed types (s€e [3,) 48,2313/ 7] 14, 15, 20, 21,11,
22,2431/ 34, 37] and the references therein). To the asitknowledge, na posteriori
estimation for the MFMFE method has been proposed in theatitee so far.

In this paper, we develop a novel technique to derive residaseda posteriori error
estimation for the MFMFE method for the porous media modéhio or three-dimensional
case. Since the MFMFE method employs a special quadratleeitzia posteriori error
estimator should include a term to control the error of qatde. This is different from the
standard analytical technique based on the disdiétimner product. Moreover, we can not
directly utilize the analytical technique developed®grstenserin [21] for nonconforming
finite elements to estimate

inf [|[VB— K tup|,
JnIIVE = K

because the BDM1 finite element for the velocity approxiomgtii;,, does not have the same
continuity of mean of trace across the interior sides as ¢tireonforming finite elements do.

To overcome this difficulty, we shall construct a locally fivecessed approximation to the
pressure solution, obtained by the MFMFE scheme, of a dpxdiary problem, and use a

derived estimate of quadrature error. We note that the iflpastprocessing in this contribute
follows from the works|[[34, 38].

The rest of this paper is organized as follows. In sectionintroduce some notations
and the continuous problem. Section 3 shows the MFMFE metBedtion 4 includes main
results. Sections 5-6 are respectively devoted to the seposterror estimation and the
analysis of efficiency. Finally, we illustrate the performea of the obtained estimation in
section 7 by numerical experiments.

2. Notations and continuous problem.Let 7; be a shape regular triangulationt@fc
R? in the sense of [23] which satisfies the angle condition, arthere exists a constant
Co > 0 such that for alll’ € 7y,

Cy 'hi < |T| < Coh,

wherehr := diam(T'). Let h be a piecewise constant function withr = hr.

We denote by, the set of element sides (or faces)in by er the set of sides (or faces)
of elementl’ € 7, , by <)) andep respectively the sets of the interior and Dirichlet bouydar
sides (or faces) of all elementsj, by wg the union of all elements iff;, sharing side (or
face)E € ¢, and by the set of nodes iff;,.
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For a domaind c RY, let (-, -) 4 be theL? inner product om4, and< -,- >4 the dual
pair betweert ~/2(9A) and H'/2(0A). Let W} (A) be the usual Sobolev space consisting
of functions defined oM with all derivatives of order up t@& belonging toL?(A), with
norm|| - ||x.p.a. Whenp = 2, WF(A) =: H¥(A) and|| - |[k.2.4 =: || - ||x,a, €Specially
|- 1lo,a =: |- ||a for k = 0. We omit the subscript if A = . For a tensor-valued function
M = (M;;), let||M||o = max; ; || M;;||o for any norm|| - ||,. Introduce

H(div; A) := {v e L}(4A)¢: V.-v e L?(A)},
and define the "broken Sobolev space”
HYUTR) = {p € L*(Q) : p|r € HY(T),VT € T1,}.

We denote byjv]|g := (v|r,)|e — (v|r_)|E the jump ofv € H'(UT) over an interior
sideF := Ty N T_ with diameterhg := diam(FE), shared by the two neighboring (closed)
elements’y, T_ € Ty,. Especially|v]|g := (v|r)|gif E €er NTp.

Since we consider two and three-dimensional cages ¢, 3) simultaneously, the Curl
of a functionyy € H'(Q)* with k = 1if d = 2 andk = 3 if d = 3 is defined by

Curly := (—021,01¢) if d =2 and Curly) :=V x ¢ if d = 3,

where x denotes the usual vector product of two vector®i Given a unit normal vector
ng = (n1,---,nq)! along the sideF, we define the tangential component of a vector
v € R? with respect tmg by

| v-(—n2,m) if d
Yes (V) = { v X ng if d

2,
3.
Throughout the papeX/;, : H(UT,) — (L2(2))¢ denotes the local version of differ-
ential operatoV defined byV,,¢|r := V(¢|r) forall T € T;,. We also use the notation
A < B torepresentd < C'B whereC is a generic, positive constant independent of the

mesh size off;,. Moreover,A =~ B abbreviatesi < B < A.
Denote

V:={vecH(iv;Q) :v-n=0 onTx}, W:=L*Q),
then the weak formulation of the modEgL{lL.1) is as followsichi € V, p € W such that

(K~ 'u,v)=(p,V-v)—<g,v-n>r,, YveV, (2.1)

(V-u,w)=(f,w), Ywe W. (2.2)

It is well-known that this problem admits a unique soluti@g].

3. Multipoint flux mixed finite element method. We follow the notations and defini-
tions employed in[[39, 30] to describe the MFMFE method. T'dte the reference element
which is a unit triangle in two-dimensional case or unitagidron in three-dimensional case,
and P, be the set of polynomials of degreel. The lowest ordeBDM; mixed finite element
spaces off” are defined as

V(T) = P(T)*, W(T) = Py(T).
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Sincev-n; € P,(é) foranyv € V(T') and any edge (or facé)of 7', the degrees of freedom

for V(7') can be chosen to be the valuesiofi; at any two points on each edgef 7'if 7' is

the unit triangle, or any three points on each facé 7' if 7 is the unit tetrahedron [18,117].

In the MFMFE method, these points are chosen to be the vemitefor the requirement of

accuracy and certain orthogonality for the trapezoidabgafare rules. Such a choice allows

for local velocity elimination and leads to a cell-centesgehcil for the pressuré [39, 130].
The lowest ordeBDM; spaces of}, are given by

Vi + ={veV: vlp=LDPvoF;', veV(I) VI eT},
W, @ ={weW : wp=woF;', ¥ eW(T) VT eT},
Wherngl is the inverse mapping of the bijectidfir : 7' — T, DFr is the Jacobian

matrix with respect taFr on the element” with Jr = |det(DFr)|. Note that the vector
transformationv = %DFT% o F;l is is known as the Piola transformation.
Forq,v € Vy, it holds

L1 1
/K*lq-vdx = /AK”J—DFTqJ—DFT{rJTdfc
T T T T
1 ~
= /AJ—(DFT)TK*DFTq-od&
T JT
= /K*lq-odx
7

with £ := JrDF;'K(DF;1)T. The quadrature formula on an eleméhts then defined
as [39/30]

(K 'av)or = (K@ 9)gp = S K7 E)a) - v@). (D)
=1

wheret; (i = 1,2, - - -, s) are the corresponding verticesBfwith s = 3 for the unit triangle
ands = 4 for the unit tetrahedron.
Define the global quadrature formula as

(K71q7 V)Q = Z (K71q7 V)Q,Tv (32)
TETh

then the MFMFE method is formulated as follows: Fimgl € V;, andp;, € W}, such that

(Kfluh,vh)Q = (ph,v . Vh)— < ¢g,Vp-n>r,, Vv, € Vh, (33)

(Vup,wp) = (f,wn), Vwn € Wh. (3.4)

The existence and uniqueness of the solution to the scHe@e(@&34) follow from [39/30].
As shown in[[39] 30], the algebraic system that arises flo@){@.4) is of the form

(25%)(%)-(%) @9

where4d = (aij), B = (blj) with Q5 = (Kﬁlvj,vi)Q and blj = —(V . vj,wl), and
{v;}, {w;} are respectively the bases¥, andW,,. The matrixA is block-diagonal with
symmetric and positive definite blocks, and the local elation of U leads to a system fa?
with a symmetric and positive definite matidixA—! BT For the details, we refer td [39,130].
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4. Main results. Letn, be the discretization indicator defined by

m= (= Vew)lP+ > Y hedi,, (4.2)
TeTh E€er
where
e (K~ Man)]l| . if E€cynal,
Jiy = s (K~ tuy) — 8g/0s|[3 + h3|| 543, if E€dT nep, (4.2)
0 if £Ee€dl NIy,

anddg/0s andd?g/0s? denote respectively the first and second order tangentizadiees
of functiong € H?(FE) along sideE. Introduce the quadrature indicator

1= > bl 1. (4.3)
T€7-h

We note this indicator is owing to the use of the special qatade formula[(3]1) in the
MFMFE method.

We now state in Theoreris #.1-¥adosteriori error estimates for the errors of velocity
and pressure if.2—norm, respectively.

THEOREM4.1. Let (u,p) € V x W be the weak solution of the continuous problem
(2.3)-(22), and(up,pr) € V5 x Wy, be the solution of the MFMFE methdd (B.B)-(3.4).
AssumeK —t € WL (7). Thenit holds

|K 12w =)l S (7 +n) "2 (4.4)

THEOREM 4.2. Assumek — € W2 (7). Under the assumptions of Theorem]4.1, it
holds

11Qnp — pull S hmax(mn +10) + |[R(f =V - w)], (4.5)

1P = Pall < hmax (nn + Q) + WK ™ ap | + [[R(f = V- uy)]|. (4.6)

Here hyax := maxreT, hr, andQ;, denotes thd.?>—projection operator ontdV,.
2

REMARK 4.1. We note that the two termigy(f — V- uy,)|[ and{ > h?,;||%||§}1/2

S

FEeep
in 7y, in the estimatory;, are of high order with respect to the lowest order schemeglwhie

usually omitted in computation. In fact, from (B.4) it falleV - u;, = Qr f, and||h(f — V -
up)|| = ||h(f — @Qrf)|| turns out to be an oscillation term of high order.

REMARK 4.2. The above estimates (#.4)-(4.6) also apply to the originiakoh finite
element discretization where the special quadrature 8I&)(is not used in the schenie {3.3)-
(3:4). In this case, the estimateg, is not involved, and theng = 0 in the estimates
(4.2)-[4.8). In this sense, our work can be regarded as a gdization of Carstensen’s [20]
to the three-dimensional case. We note that our estimgids a bit different from that in
[20] due to no occurrence of the terffh Curly, (K ~tuy,)|| (Curly, denotes the piecewigéurl
operator acting on element by elemenfit). Here we also consider more general boundary
conditions.
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We finally state in Theorefn 4.3 the efficiency of th@osteriori error estimators. Note
that the efficiency of a reliabla posteriori error estimator means that its converse estimate
holds up to high order terms and different multiplicativestants. For the sake of simplicity,
we assume thalk —! is a matrix of piecewise polynomial functions.

THEOREM4.3. Under the assumptions of Theordmd[4.7-4.2, it holds

M+ 1Q + M B up|| S LK (0= wp) ||+ |7 (p = i)l + hoo-t..

whereh.o.t. denotes some high-order term depending on given data.

5. A posteriori error analysis. This section is devoted to the proofs of Theoréms 4.1-
4.2

Introduce the global quadrature ermofK ~'u;,v;) and the element quadrature error
or(K~tuy, v,) as follows:

O'(Kiluh, Vh)|T = O'T(Kiluh, Vh) = (Kﬁluh, Vh)T—(Kiluh, Vh)Q,T7 , forall T € Ty,.
(5.1)
Let vg := RTy(7x) denote the lowest ord®T element space ofy,.
We state two estimates on the quadrature error derived |BJ%s follows. IfK ! €
WL (T) for all elementl’ € Ty, then it holds

lo(K an, vi)| S D hrllanllrlivallr (5.2)
TET:H

forall q, € Vy, vi, € V. Moreover, ifK—! € W2 (T) for all elementl” € T, then it
holds

oK an vl £ 3 Wllanllurlvallur (53)
TEThH

forall g5, vy € V.
Denote respectively byl andIl, the standard projection operators frdd{div; 2) N
(Le(£2))? ontoV}, andV}? for somep > 2 (cf. [20,[39]). It holds the following estimates:

IIh" (@ — oq)|| < |lallaur,y forall g € (H'(UTy))? NH(div; Q), (5.4)

IMovllr S IVl [0v][ir SIvIr forall ve (HY(T)Y, VT €Th.  (5.5)

Note that bound(514) can be found(in]20], and bouhds (5&}tee direct results of Lemma
3.1in [39].

To derive a reliabl@ posteriori error estimate for the velocity error, we need to introduce
an auxiliary problem as following:

V- (KVY)=V-uy in Q,
9 =—g on I'p, (5.6)
KVY-n=0 on I'y.

SinceK is a symmetric and uniformly positive definite tensor, by tth&-Milgram theorem
there exists a unique solutiah € H'(f) to this problem, provided that € H/?(Tp).
As KV — uy, is divergence-free, a decomposition of two or three-dirieeres vector fields
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(see Theorem 3.4 and Remark 3.100in| [28]) implies that theistsea stream functiog €
H'(Q)* such that

KVY —uy = Curl ¢.
SinceK'VY - n anduy, - n vanish onl"y, we easily knowCurl ) -n=0onT .
IntroduceH },(Q2) := {v € H' () : v =0 on I'p}, thenz := —(p+ ) € H,H(Q) and
it holds
u—u, =—-KVp— KViY+ Curlyy = KVz + Curl ¢. (5.7)

This relation leads to

||K_1/2(u_uh)||2 _ /QK—l(u—uh)-(u—uh)

/ (Vz+ K~ 'Curl¢) - (KVz + Curl ¢)
Q

/KVZ-V2+2/Vz-Curlw—i-/K_lCurlw-Curlw.
Q Q Q

(5.8)
Using integration by parts and noticifgirl ) - n = 0 onI'yy andz = 0 onIT'p, we have

/ Vz-Curly = —/ V- (Curl ¢)z + / Curl ¢ - nz = 0. (5.9)
Q Q Ipul'y

Notice thatK'Vz = (u — uy) — Curl ¢, (u —up) -n=00onT'y andz = 0onT'p. The
relation [5.9) and integration by parts yield

KVz-Vz:/(u—uh)~Vz:— V-(u—uy)z. (5.10)

Q Q Q

Let Qy,z denote thel.2—projection ofz ontoW),. From [2.2) and(314) it follows
(V : (u - uh), th) = 0. (511)
Inview of V - u = f, the above two relationd, (5]10) and (3.11), imply

KVz-Vz = — [ V-(u—w)(z—Qnz)
Q Q

= 3 [V ue- o)

TETh

S hrllf - ¥ - wnllzlV2llr
TeThH

IA(f =V - up)|[ [ K2 V]|,

A

A

which results in
K2V 2] S [[h(f =V - up)]]. (5.12)
By (5.14) and[(5.R) we have
[K~Y2 (0 —up)|]? = ||[KY2V2|)? + || K~ /2Curl o] . (5.13)
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Recalling/ Curl ¢ - Vo = 0 for all v € HL(9), in light of (57) we have, for any
Q
B e HY (),

/K_lCurlw-Curlz/J:/(K_l(u—uh)—Vz)-Curlz/J
Q Q
:/K_l(u—uh—KVU)-Curlw

Q

= [ K '(u—KVv—-KVB)-Curlyp+ | KHKVS—uy) - Curl ¢
Q Q

< ([K7H(u = KVv = KVB)|| +[|V8 — K~ ay])||Curl 9],
which implies

—1/2 < . —1(yy_ _ . g1
1K CUFWHNUG}}I}E(Q)HK (u-KVv KVB)HJFﬁegllf(Q)HVﬁ K™ uy|]. (5.14)

Finally, from (5.12){5.11) it follows

K2 =)l S {infuermy o) 1K (a - KV0— KVB)|

(5.15)
inf - Kt h(f -V - .
bt IV K+ 7 - V- w)l

In what follows, we shall follow the routines df [21] to estie the first and second
terms on the right-hand side ¢f(5115). To this end, we asshatgy € H'(I'p) N C(T'p)
andg|g € H?(E) for all E € ¢, N T'p and denote by, p the nodak p, —piecewise linear
interpolation ofg on ', which satisfiesy, p(z) = g(z) forallz € N NTp. Let{y, :
z € N} pe the nodal basis of the lowest order finite element spaciassd to7;, i.e.,
s € C(Q), 057 € PI(T) forall T € T, pa(x) = 0forx € N/{z}, andyp,(z) = 1.
Denote byw, := int(suppy,). We then introduce a subspacefdt (), S, as follows (see
[21]):

R Z Oy V2 € N, vy, € C(wy), Vals, is a piecewise
S == zeEN

polynomial, and v, = —gp,p on I'p Nw,.
LEMMA 5.1.For 8 € S, it holds

inf ||[K~'(u—KVo—KVB)||<{ > hhl0%g/0s|5} > (5.16)
veHE (Q) EcTp

Proof The definition ofS shows3 = —gp, p onT'p. Noticing K ~'u = —Vp, we have

inf(Q)||K’1(u—KVv—KVB)|| = [[Vwl].

inf
vEH], weH (Q),w|r ,=g—gn,p

The desired resulf (5.116) immediately follows from an estierin the proof of Lemma 3.4 in
[21].0
On the other hand, it holds

inf ||VB— K 'w|| < inf ||[Vu, — K ay]. (5.17)
BEH(Q) v, €S
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It is sophisticated to give a computational upper boundHerrtght-hand side term di(5.17)
with the help ofu;, and given data. To this end, l1&t—! denote the piecewise mean value of
K-'onT,, ie K-lp = ﬁ Jp K~Y(x)dx forall T € T;,. ThenK ~1 is symmetric and
has the following/ —ellipticity:

KT < ETRTE < i '€TE forallx €9, € €RY,

Recall thatV? is the lowest ordeRT element space ofi,. andW), is the piecewise
constant space.Introduce the following auxiliary prohldfimd (a,, pn) € V9 x W), such
that

(K—ap,v) = (pr, V- vi)— < g, Vi -1 >1,, Vv, € V), (5.18)

(V-ap,wp) = (f,wn), Ywp € Wh. (5.19)

It is well-known that this problem admits a unique solutisad [18]).

LEMMA 5.2. Let (up, pr) € VY x W), be the solution of the auxiliary problef(5]18)-
(5.19), anduy,, pr) € Vj, x W}, be the solution of the MFMFEM scheme(3.3)(3.4). Assume
K~=' e WL (T3). Thenit holds

—1/2, _
1K1 (= Town)|| S{ Y pllunlff 32, (5.20)
T€7-h

wherelly is the standard projection operator frol (div; 2) onto VY.
Proof. Notice thatV) c V,. From [3:8) we get

(K—tIpup,vy) = (pn,V-Vp)— < g,Vp-n>r
v (5.21)

+(K ~Moup, vi) — (K tup, vi)g, Vv, € VY.
Using the commuting property @f, and [3.4), we have
(V- Toup,wp) = (QrV - up,wp) = (V -up,wp) = (f,wy), Ywy € Wh. (5.22)
A combination of[(5.1B) and (5.22) yields
(V- (i — Houyp),wp) =0, Vwy € W (5.23)
Takingvy, = 1y, — [lpuy, € VY, subtracting(5.21) froni(5.18) and usifng(3.23), we have

— 12 B .
BT (@, — Toun)||2 = (K= (in — Moup), i — Houp)

= (P — 1, V- (T — Houp)) + (K tup, vi)g — (K- oup, vi,)
= (Kﬁluh, Vh)Q — (Kﬁluh,vh) + (Kﬁluh,vh) — (K*lﬂouh, Vh)

= —U(K_luh,vh) =+ ((K_l — K*l)uh,vh) + (K*l(uh — Houh), Vh).

(5.24)

The work left is to estimate the three terms in the last lingdt4). Notice that the inequality

(5.2) implies

| = o(K~ ap, ay, — Touy)| S Z hr|lupll1,rl[tn — Housl|7
TETh

——7l/2, -
S Bl 32T (i, — Touy)|.
TeTh

(5.25)
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DuetoK ! € WL (T), it holds

/2,

- —
(K™' = KNy, 0, — Houy) S |[hup|| [[K—1 "7 (@, — Houy)|[. (5.26)

In view of the approximation property (.4) oy, we have

(K~ T(up — Houp), &, — Houn) < (Y hilfuplf 0)/2[KT
T€7-h

Combining [5.24){(5.27) leads to the desired estinfatedj52
We now follow the idea of{[38] to construct a postprocessedasqressuré, which

links @;, andp;, on each simplicial element in the following way:

1/2
(uh —Houh)H.

(5.27)

KT 'V, =1, in T, forall TeT, (5.28)

1 -
m/Tlhdx = pplr, forall T €T,. (5.29)

We refer to[[38] for the existence of the postprocessed isoiil.

As shown in [38], the new quantitl, has the continuity of the mean values of traces
across interior sides (or faces), and its mean of trace orbangdary side (or face) equals
to that ofg. In fact, for an interior side (or facéy shared byl'; and7_, let vy denote the
side (or face) basis function dfi with respect tov) with the support sebx. From [5.18),

(5.28)-[5.29) and integration by parts we have

0 = (=Viln,ve)r,ur. — (Pn, V-VE)T, 0T+ < ¢, VE -1 >00,nTp

= / Vve(lh — pn) + V'VE(lh—ﬁh)+/VE'HE(lh|T+—lh|T,)
Ty

T_ E
= < l,lh|T+ — lh|T7 >g,
which implies the continuity of the means of tracesigpfacross the interior side. For a
boundary sideZ C T'p, let E C 9T Similarly, from [5.18) and (5.28]-(5.29) we have
0=—(Vin,ve)r — (Pn,V - VE)T+ < ¢,VE - D >o7rp
=<1l,9-1Ilp>E.
For K—1 € WL (T), from the triangle inequality, the postprocessing (b.28)irder-

polation estimate, an inverse inequality, Lenima 5.2 andéfiition [5.1) of the quadrature
indicatorr it follows

inf [|[Vo, — K~ 'up|| < inf. {||wh — K Tiay|| + ||K Tay — K Mlouy)|

’Uheg v ES

+|[K-Tlpuy, — K—tuy|| + |[K~Tup — KfluhH}

. —1/2
N 1nf5{llvh(vh+lh)ll+llK—1 (ap — Houp)||
vpE
+(Y Bl o) + ||huh||}
TETh
< inf [ on + )|+ ne-

vp €

(5.30)
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Following the idea of the proof of Lemma 3.4 in_[21], we eagilytain the following
conclusion.

LEMMA 5.3. Let!;, be the postprocessed scalar pressure determinef byl (628,
and gy, p be the nodakp—piecewise linear interpolation of onT'p. For a side (or face)
E € ¢, denote

o L n e, if e e,
; h1E/2||lh_gh,D||E, if Ecep.
Then it holds
inf_|[h on+W)IPS D hpt L, (5.31)
ones EeelUep

Using Lemma513, we have a further conclusion as follows.
LEMMA 5.4. Let J;,, andng denote the tangential jump and the quadrature indicator
defined in[(4.R) and{5.1), respectively. Under the asswonmf Lemm&35l2, it holds

inf [ on + WIS Y. heJd, +np- (5.32)
vRLES E 0
ceUep

Proof. We only prove the three-dimensional case, since the tweedsional one is some-
what simpler and can be derived similarly. In the case- T, NT_ € &9, since [ [I,]ds

vanishes, a sidewise Poincaré inequality and the pospsing((5.28) yield that

e < hell(Vikr, = Vir ) xng|le
’ (5.33)

= hgel|(K tapr. — K~'s|r,) x ng|s.

Recall thaflI is the projection fronH (div; ) onto VY, and notice that

= (KTl — K- Touylr. ) + (K- Tlous|r, — K-Taglz,) (5.34)
K-guy|r. — K Moup|r ) + (K oup|r. — K~ tup|r.)

(K 'uplr. — K7 wp|r,) + (K tag|r, — K- lowgr, )
+(KMlgup|r, — K- Touslr, ).

Employing the trace theorem, inverse estimate and the éhegde regularity of the mesh,
we have

(K~ tap|r. — K loup|r ) x ng|lp + [[(K~"Hlous|r, — K~ 1ap|r, ) X ngl|e

< b PIE T (W — Toup) ||y -
(5.35)
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The trace theorem, together with the stable estiniaié (5. B)@operatofly, also indicates

[|(K 11_[011h|T, — K ' oup|r ) x npl|e
[(K-T “Houp |7 ||or.

< WKE-T- K-1>nouh||¥f||<—f<—l — K Y)ouy|}/7

IN

< Pl
Similarly, it holds

(K 'Moup |z, — K- Moy, ) x ngllp S hy llanl 1z,

(K Mloun|r — K uplr ) x nglls S hillunllur
and
(K tuplr, — K Mounlr,) x nplle S hofllunlli

where in the latter two inequalities we have also used thmast [5.4).
As a result, a combination N-(5139) shows

Illle S hethy 2K (@, — oup)|lw,

1/2 —
+hil* [l 1w + 1 [es (K~ un)]l £}

On the other hand, in the cageC 9T Nep it holds

g9)ds =0
77 /0

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

due to/ lpds = / gds. Using the triangle inequality, sidewise Poincaré inditjpaand

interpolation estimation, we have

|l —gnplle < |lln—glle +Ilg — gnpllE
< hgl|Vin x ng — 8g/0s||5 + hL||029/052|| .

Similarly it holds

hel|Vin xng — 25 < b2 I[K- (@, — Mou)||r + 132 [unl |17
+hE||K*1uh X Nng — 89/8S||E

The above two estimate§, (5141) ahd (5.42), lead to

N —gnplle S L2 IIK (@, — Tous)|[r + A3 [[up| |,z

~

+hp||K " u, x ng — 0g/0s||g + h%]|0%9/0s%|| k.

(5.41)

(5.42)

(5.43)
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From the definition of/; , in Lemmd5.8, the estimatds (5140) ahd (5.43) indicate

ST =Y ngthell)lE + Y hpthell — gnoll

Eee)Uep Eeel Eeep
SO Wil + KT, — Town) | + > hulllyes (K un)]|[3 (5.44)
TETh Eee)
+ ) (hellves (K" up) — 0g/0s||% + h3]10%9/957| | ).
FEeep

By noticing that Lemm&5]2 implies
1K= (@, — Hows)||* < 7B,
the estimate (5.44), together with the definitions/gf andn, (4.2) and[(4.B), yields
NPT S > hei . (5.45)
Eeceuep Ee€efUep

The desired result (5.82) follows from Lemial5.3 dnd (5.45).
The proof of Theorem[4.1 Collecting [5.17),[(5.30) an@ (5.B82), we get

inf |IVB—K 'wllS{ Y. hedi}"? +ne, (5.46)
BeH (@) Eeefuep

which, together with the estimatés (5.15)-(5.16), yields

1K~ (= wy)[| S [[W(f = V)|l + { Y hEl0%g/05%| [}/

E€ep

2 \1/2
DL R g (5.47)

EeelUep

SRS =Vow)ll+ > hedd 3 +nq.

EeelUep

The desired resuli(4.4) then follows from (5.47) and therdtidin (4.3) ofr;,.
The proof of Theorem[4.2 Recall thatQ,, is the L?—projection operator ontdV;,.
Construct the following auxiliary problem: Finde H'(Q) such that

{ V- (KV$)=Qnp—pn InQ,
o=0 onof.

(5.48)
By the assumptions dk and Lax-Milgram theorem, the operator
V- (KV-): H3(Q) = H Q)
is invertible and it holds the following regularity estireat
el < 1Qnp — prll- (5.49)

Moreover, if() is convex,K € C19(Q) implies that

V- (KV-): Hy(Q)N H?*(Q) — L*(Q)
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is invertible ([29]) and the regularity estimate

ol a2y S 1Qnp — pall (5.50)

holds. We emphasize that here we only need a regularity atgtion||¢|| ;2 (1) for eachl” €

Tr and then assume a weakened constrainkosuch that[(5.50) holds. Ih [2@arstensen

gave an example whef& is piecewise constant ardsatisfies[(5.50) but is ndf2-regular.
Notice that the error equation of the MFMFE methlod](3[3%)8an be written as

(K~ (u—up),vi) = (Qup = pn, V- vi) — (K "an, vi), Vi € Vi (5.51)
RecallingIl is the standard projection operator frdf(div; Q) N (L2(2))¢ onto V4, and
takingv, = II(KV¢) in (551), from [5.4B) and the commuting prope¥y: (IIKV¢) =
QrV - (KV¢), we have

(Qnp — pn, V - (IIKV¢))
= (K l'(u—u),I(KVe))+ o(K 1u,, [IKV9).

-~ 2
[|Qnp — pal| (5.52)

Since(V - (u — up),wp) = 0,Ywy, € Wy, by integration by parts, the approximation
property oflI and the estimateg (5149)-(5150), we have

(K~Y(u—up),II(KV¢)) = (K~ 1(u—up),[I(KV¢) — KV) + (u—up, Vo)
= (K Y(u—u,),I(KV¢) — KV¢) — (V- (u—up), o)

= (K~ (u—up),I(KV¢) — KV¢) — (V- (u—up), ¢ — Qnd)

< (IRE =2 (= wp)|| + [[AV - (0 = up)]) [|Qnp — pall.

(5.53)
On the other hand, a combination bf {5.8), {5.5) dnd (5.58Idgi
o (K~ KV < D hipl[unh 2 [TH(K V)| 7
T€7-h
(5.54)
S (O hrllanllE ) ?11@np — pall
T€Th

NoticingV - (u—uy) = f — Qnf, from (552){5.54) and the estimale (4.4) of Theorem
[4.7 we obtain the assertidn (4.5), i.e.

[|Qnp — Prll S hmax(nn +1q) + [|R(f =V - ws)]].
A triangle inequality, the relation = — K'Vp and the approximation property 6, further
imply
lp—pull < llp = Qupll +|Qnp — prll S NIRVD| +[|Qnp — pall
< IhE " a = ap)l| + [[RE ] + [ Qnp — pall.
This inequality, together with the estimalte (4.5), leadth@conclusion(4]6).

6. Analysis for the efficiency. This section is devoted to the proof of Theoleni 4.3. For
the sake of simplicity, we assume thi&t! is a matrix of piecewise polynomial functions.

2
Since the two termgh(f — V-uy,)|| and{ > h?iE||%||2E}1/2 in 1, are of high order, they
S

FE€ep
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are directly incorporated ih.o.t. as a high order term. Using standard analytical techniques,
we easily obtain Lemnia§.1.
LEMMA 6.1. Letn;, denote the discretization indicator given by (4.1). Theoids

mn <K% (u—w)|| + hoo.t. (6.1)

LEMMA 6.2. Letng denote the quadrature indicator given py (4.3). Then it bold

no SIEK 2w —w)|[+[1h " (p — pa)l|- (6.2)

Proof. An inverse inequality and the assumptibn11.2) yield
lunllr S hytllanlle S hat 1K |7 (6.3)

For allT € Ty, letyr denote the bubble function dh with ¥ |s7 = 0 and0 < ¢p < 1.

Then the two normsﬂw;/2 -||z and|| - ||z, are equivalent for polynomials. Sin&&;,|r = 0
due top, € Wy, it then holds

IK~ |7 = [[Kap + Vpsll7

g/ * (K~ an + V) I3

= (YrK tup, K'ay + Vp)

(vr K~ tap, K~ Huy —u)) , + (00K up, Vipn — p))
(or Kty K= uy, — ), = (V- (00K an), pr —p)
1K~ gl (I[K 712 (a = wp) || + by llp = pallr)

A

(6.4)

A

where in the fourth and last lines we have used the relaiice —KVp and an inverse
inequality, respectively. This inequality, together W(@a3), shows

hellullrr S K2 (a—ws)llr + byt ll(0 = po)llrs

from which the desired estimafe (6.2) follovis.
The proof of Theorem[4.3 From [6.4) we obtain

1K ]| S NRE 2 (w —un)|| + [lp = pall, (6.5)

which, together with Lemmds 8[1-6.2, leads to the desiréidieicy estimate of Theorem
43.

7. Numerical experiments. In this section, we use two model problems to test the per-
formance of the developedposteriori error estimator for the MFMFE method. We consider
two types of meshes: uniformly refined meshes and adaptreilyed meshes. The latter
type of meshes is generated by a standard adaptive algdsaised on tha posteriori er-
ror estimation. In the first example, the permeabilifyequals to identity matrix anf is
an L-shape domain. In the second exampgtejs inhomogeneous and anisotropic. We are
thus able to study how meshes adapt to various effect frokndaoegularity of solutions to
non-convexity of domains.
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Example 7.1. We consider the problenh (1.1) in drshape domaif2 = {(—1,1) x
(0,1)}U{(-1,0)x (—1,0)} with Dirichlet boundary conditions anl = I (identity matrix).
The exact solution is given by

p(p,0) = p"sin(rh),

wherep, § are the polar coordinates,s a parameter. We consider two casesrfor = 0.4
andr = 0.1. Some simple calculations shgfv= 0.

771 -0.5 0 05 1 -1 -0.5 0 0.5 1

FIG 7.1.A mesh with 347 triangles, iteration 6 (left) and a mesh witB &iangles, iteration 8 (right)
in caser = 0.4.

771 -0.5 0 05 1 -1 -0.5 0 0.5 1

FIG 7.2. A mesh with 1607 triangles, iteration 11 (left) and a meslh\&&18 triangles, iteration 12
(right) in caser = 0.4.

Itis well known that this model possesses singularity abtigin and holdg € H*7=¢(Q)
for anye > 0. The singularity of the solution in the cagse= 0.4 is weaker than in the case
r = 0.1.The original mesh consists of 6 right-angled triangleshmadaptive algorithm we
first solve the MFMFE schemE(3.3)-(B.4), then mark elemintsrms of Dorfler marking
with the marking parametér= 0.5, and finally use the "longest edge” refinement to recover
an admissible mesh. In particular, the uniform refinemerdamsehat all elements should be
marked.

From Figs 7.1-7.2 with the parameter= 0.4 and Fig 7.3 with the parameter= 0.1,
we see that using the adaptive algorithm the refinement edrates around the origin. This
means that the predicted error estimator captures welitlg@larity of the solution, and that
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' N

771 -0.5 0 05 1 -1 -0.5 0 0.5 1

FIG 7.3. A mesh with 245 triangles, iteration 10 (left) and a mesh \B2B5 triangles, iteration 24
(right) in caser = 0.1.

the stronger the solution possesses singularity, thertib#@ posteriorierror estimator can
identify.

14
12

08

0.6

0.2

RO

05
L o 05 !
- I -05

FIG 7.4. The postprocessing approximation to the pressure on thetaddy refined mesh in case
r = 0.4 (left) and in case: = 0.1 (right).

Fig 7.4 reports a continuous piecewise-linear postpracgspproximation to the pres-
sure on the adaptively refined mesh in the case (0.4 (left) and in the case = 0.1 (right)
with 24 iterations. Since the approximation to the pressfitte MFMFE method is piece-
wise constant, the value of the postprocessing approximédi the pressure on each node is
taken as the algorithmic mean of the values of the presstite eilement solution on all the
elements sharing the vertex.

Fig 7.5 reports the estimated and actual errors of the ngadesolutions on uniformly
and adaptively refined meshes. It can be seen that the ertbe aklocity inL? norm uni-
formly reduces with a fixed factor on two successive meshestlzat the error on the adap-
tively refined meshes decreases more rapidly than the ongeamtformly refined meshes.
This means that one can substantially reduce the numbekabwms necessary to obtain the
prescribed accuracy by usigposteriori error estimators and adaptively meshes. We note
that the exact error is approximated with a 7-point quadedformula in each triangle.

Fig 7.6 shows the quadrature errgs and discretization erray, in adaptively refined
meshes in case = 0.4 with the marking parametér= 0.5 (left) and in case = 0.1 with
the marking parametér= 0.8 (right). It can be seen that the error indicatgrproduced by
the discretization is very close to the error indicafgrproduced by the quadrature rule as the
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Estimate uniform
¥ - Estimate adapt

Estimate uniform
*. ¥ - Estimate adapt

Error uniform * % Ho Error uniform
—+— Error adapt * e 4, | —+— Error adapt

Energy error
4 ¥
Energy error

10° 10°
Number of triangles

10'

1 3 4

10° 10 10

Number of triangles

FIG 7.5. The estimated and actual errors against the number of elesxiaruniformly / adaptively
refined meshes in case= 0.4 (left) and in caser = 0.1 (right) with the marking parametet = 0.5.

10

Quadrature error 0 Quadrature error [
——&— Discretization error —&— Discretization error

10° E\& 10070

2

10" . . . . .
10° 10" 10° 10° 10* 10° 10° 10 10° 10° 10"

Number of triangles Number of triangles
FIG 7.6. The quadrature erromq and discretization errom;, against the number of elements in
adaptively refined meshes in case= 0.4 with the marking parametef = 0.5 (left) and in case
r = 0.1 with the marking parametet = 0.8 (right) .

mesh is refined. This also shows that the quadrature indiggtds very efficient. We note
that this efficiency is not sufficiently demonstrated by Tite®o[4.3 due to the appearance
of the pressure error term, while this error term usually th@ssecond order accuracy on
uniform meshes.

Example 7.2. We consider the probleri(1.1) in a square donfaia (—1,1) x (—1,1)
with Dirichlet boundary conditions, whefeis divided into four subdomains; (i = 1, 2, 3,4)
corresponding to the axis quadrants (in the counterclasédirection), and the permeability
K is piecewise constant with” = s; 7 in ;. We assume the exact solution of this model has
the form

p(p, 0)|a, = p"(a;sin(rd) + bycos(rd)).

Here p, 6 are the polar coordinates i, a; andb; are constants depending 6n, andr

is a parameter. This solution is not continuous across ttegfates, and only the normal
component of its velocity = —K'Vp is continuous, and it exhibits a strong singularity at
the origin. We consider a set of coefficients in the followable:
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S1 =83 =5,82 =84 =1
r = 0.53544095
a; = 0.44721360,b; = 1.00000000
as = —0.74535599, ba 2.33333333
az = —0.94411759, b3 = 0.55555555
as = —2.40170264, by = —0.48148148

The origin mesh consists of 8 right-angled triangles. Wéquar the adaptive algorithm
described in Example 7.1 with the marking paraméter 0.5. Figs 7.7-7.8 report the adap-
tive meshes generated by 6 to 8 iterations, and the contipieuewise-linear postprocessing
approximation to the pressure on the adaptively refined mé&hagain see that the refine-
ment concentrates around the origin. This indicates tlegbtbdicted error estimator captures
well the singularity of the solution.

771 -0.5 0 05 1 -1 -0.5 0 0.5 1

FIG 7.7.A mesh with 740 triangles, iteration 6 (left) and a mesh wahQ.triangles, iteration 7 (right).

1 -0.5 0 0.5 1 -1 -1

FIG 7.8. A mesh with 2328 triangles, iteration 8 (left) and the postgissing approximation to the
pressure on the adaptively refined mesh.

Fig 7.9 reports the estimated and actual errors of the ngadesolutions on uniformly
and adaptively refined meshes (left), and the quadraturestair and discretization indi-
catorny, in adaptively refined meshes (right).

We can see that the error of the velocity uniformly reduced wifixed factor on two
successive meshes, that the error on the adaptively refiaskdaa decreases more rapidly than
the one on the uniformly refined meshes, and that the a posterior estimators developed
in this paper are efficient with respect to inhomogeneitresanisotropy of the permeability.
This means that one can substantially reduce the numberkofoums necessary to obtain
the prescribed accuracy by usiagosteriori error estimators and adaptively refined meshes.
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*. Estimate uniform Quadrature error
*, ¥ - Estimate adapt —&— Discretization error
+* Error uniform
# —+— Error adapt o
®
0 . % o
5 10 e “ 10° b
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FIG 7.9. The estimated and actual errors against the number of elesxiaruniformly / adaptively
refined meshes (left) and the quadrature erngr and discretization errom;, against the number of
elements in adaptively refined meshes (right).

We also see that the error indicaigyr andny, differs at most a constant factor, which shows
the quadrature error estimaiqyg is efficient.

8. Conclusions. In this contribution we have developed a reliable and effitcae pos-
teriori error estimator of residual-type for the multi-pbflux mixed finite element methods
for flow in porous media in two or three space dimensions. Tamnools of our analysis are
a locally postprocessed technique and a quadrature etharagi®n. Numerical experiments
are conformable to our theoretical results.
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