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RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR MULTIPOI NT
FLUX MIXED FINITE ELEMENT METHODS ∗

SHAOHONG DU†, SHUYU SUN‡, AND XIAOPING XIE§

Abstract. A novel residual-typea posteriori error analysis technique is developed for multi-
point flux mixed finite element methods for flow in porous mediain two or three space dimensions.
The deriveda posteriori error estimator for the velocity and pressure error inL2

−norm consists of
discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of
analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and
a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior
of the estimator.

Key words.multipoint flux mixed finite element method, postprocessed approximation,
a posteriori error estimate
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1. Introduction. Let Ω ⊂ R
d be a bounded polygonal (d = 2) or polyhedral (d = 3)

domain with a Lipschitz continuous boundary∂Ω. We consider the following first-order
system of diffusion-type partial differential equations:















u = −K∇p in Ω,
∇ · u = f in Ω,
p = g onΓD,
u · n = 0 onΓN .

(1.1)

HereΓD, ΓN are partitions of the boundary∂Ω corresponding to the Dirichlet and Neumann
conditions, respectively, with∂Ω = Γ̄D ∪ Γ̄N , ΓD ∩ ΓN = ∅ andmeas(ΓD) > 0, n is
the outward unit normal vector on∂Ω, andK is a symmetric and uniformly positive definite
tensor with

k0ξ
Tξ ≤ ξTK(x)ξ ≤ k1ξ

Tξ, ∀ x ∈ Ω, ∀ ξ ∈ R
d (1.2)

for 0 < k0 ≤ k1 < ∞. This system has been widely used in physics to model diffusion
processes such as heat or mass transfer and flow in porous media. In flow in porous media,
p denotes the pressure,u is the Darcy velocity, andK represents the permeability divided by
the viscosity.

The main goal of this paper is to derive residual-baseda posteriori error estimation for
multipoint flux mixed finite element (MFMFE) methods for the model (1.1). The MFMFE
approach was developed for single phase flow in porous media in [30, 39, 40]. It is moti-
vated by the multipoint flux approximation (MPFA) approach [2, 1, 26, 32, 33], which is a
control volume method developed by the oil industry as a reliable discretization for single-
phase Darcy flow. One main advantage of this method lies in that, by introducing sub-edge
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2 SHAOHONG DU SHUYU SUN XIAOPING XIE

(or sub-face) fluxes, it provides a local explicit flux with respect to the flow pressure, and al-
lows for local flux elimination around grid vertices and reduction to a cell-centered pressure
scheme. The MFMFE method is based on the lowest order Brezzi-Douglas-Marini (BDM1)
[17] or Brezzi-Douglas-Duran-Fortin (BDDF1) [16] finite element space. By using special
quadrature rules, local velocity elimination is also attained which leads to a symmetric and
positive definite cell-centered system for the pressure on quadrilateral, simplicial and hexahe-
dral meshes. In [41], a coupling discretization of MFMFE method and continuous Galerkin
finite element method was applied to the poroelasticity system that describes fluid flow in
deformable porous media.

It is well-known that adaptive algorithms for the numericalsolution of partial differential
equations are nowadays standard tools in science and engineering. A posteriori error estima-
tion, as an essential ingredient of adaptivity, provides adaptive mesh refinement strategy and
quantitative estimates of the numerical solution obtained. For second-order elliptic problems,
the theory ofa posteriori error estimation has reaches a degree of maturity for finite element
of conforming, nonconforming and mixed types (see [3, 4, 5, 6, 12, 13, 7, 14, 15, 20, 21, 11,
22, 24, 31, 34, 37] and the references therein). To the authors’ knowledge, noa posteriori
estimation for the MFMFE method has been proposed in the literature so far.

In this paper, we develop a novel technique to derive residual-baseda posteriori error
estimation for the MFMFE method for the porous media model intwo or three-dimensional
case. Since the MFMFE method employs a special quadrature rule, its a posteriori error
estimator should include a term to control the error of quadrature. This is different from the
standard analytical technique based on the discreteL2-inner product. Moreover, we can not
directly utilize the analytical technique developed byCarstensenin [21] for nonconforming
finite elements to estimate

inf
β∈H1(Ω)

||∇β −K−1uh||,

because the BDM1 finite element for the velocity approximation,uh, does not have the same
continuity of mean of trace across the interior sides as the nonconforming finite elements do.
To overcome this difficulty, we shall construct a locally postprocessed approximation to the
pressure solution, obtained by the MFMFE scheme, of a special auxiliary problem, and use a
derived estimate of quadrature error. We note that the idea of postprocessing in this contribute
follows from the works [34, 38].

The rest of this paper is organized as follows. In section 2, we introduce some notations
and the continuous problem. Section 3 shows the MFMFE method. Section 4 includes main
results. Sections 5-6 are respectively devoted to the a posteriori error estimation and the
analysis of efficiency. Finally, we illustrate the performance of the obtained estimation in
section 7 by numerical experiments.

2. Notations and continuous problem.Let Th be a shape regular triangulation ofΩ ⊂
R

d in the sense of [23] which satisfies the angle condition, namely there exists a constant
C0 > 0 such that for allT ∈ Th

C−1
0 hdT ≤ |T | ≤ C0h

d
T ,

wherehT := diam(T ). Leth be a piecewise constant function withh|T = hT .
We denote byεh the set of element sides (or faces) inTh, byεT the set of sides (or faces)

of elementT ∈ Th , by ε0h andεD respectively the sets of the interior and Dirichlet boundary
sides (or faces) of all elements inTh, by ωE the union of all elements inTh sharing side (or
face)E ∈ εh, and byN the set of nodes inTh.
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For a domainA ⊂ R
d, let (·, ·)A be theL2 inner product onA, and< ·, · >∂A the dual

pair betweenH−1/2(∂A) andH1/2(∂A). LetW k
p (A) be the usual Sobolev space consisting

of functions defined onA with all derivatives of order up tok belonging toLp(A), with
norm || · ||k,p,A. Whenp = 2, W k

2 (A) =: Hk(A) and || · ||k,2,A =: || · ||k,A, especially
|| · ||0,A =: || · ||A for k = 0. We omit the subscriptA if A = Ω. For a tensor-valued function
M = (Mij), let ||M ||α = maxi,j ||Mij ||α for any norm|| · ||α. Introduce

H(div;A) := {v ∈ L2(A)d : ∇ · v ∈ L2(A)},

and define the ”broken Sobolev space”

H1(∪Th) := {ϕ ∈ L2(Ω) : ϕ|T ∈ H1(T ), ∀T ∈ Th}.

We denote by[v]|E := (v|T+
)|E − (v|T

−

)|E the jump ofv ∈ H1(∪Th) over an interior
sideE := T+ ∩ T− with diameterhE := diam(E), shared by the two neighboring (closed)
elementsT+, T− ∈ Th. Especially,[v]|E := (v|T )|E if E ∈ εT ∩ ΓD.

Since we consider two and three-dimensional cases (d = 2, 3) simultaneously, the Curl
of a functionψ ∈ H1(Ω)k with k = 1 if d = 2 andk = 3 if d = 3 is defined by

Curlψ := (−∂2ψ, ∂1ψ) if d = 2 and Curlψ := ∇× ψ if d = 3,

where× denotes the usual vector product of two vectors inR
3. Given a unit normal vector

nE = (n1, · · · , nd)
T along the sideE, we define the tangential component of a vector

v ∈ R
d with respect tonE by

γtE (v) :=

{

v · (−n2, n1) if d = 2,
v × nE if d = 3.

Throughout the paper,∇h : H1(∪Th) → (L2(Ω))d denotes the local version of differ-
ential operator∇ defined by∇hϕ|T := ∇(ϕ|T ) for all T ∈ Th. We also use the notation
A . B to representA ≤ CB whereC is a generic, positive constant independent of the
mesh size ofTh. Moreover,A ≈ B abbreviatesA . B . A.

Denote

V := {v ∈ H(div; Ω) : v · n = 0 on ΓN}, W := L2(Ω),

then the weak formulation of the model (1.1) is as follows: Findu ∈ V, p ∈ W such that

(K−1u,v) = (p,∇ · v)− < g,v · n >ΓD
, ∀ v ∈ V, (2.1)

(∇ · u, w) = (f, w), ∀ w ∈ W. (2.2)

It is well-known that this problem admits a unique solution [18].

3. Multipoint flux mixed finite element method. We follow the notations and defini-
tions employed in [39, 30] to describe the MFMFE method. LetT̂ be the reference element
which is a unit triangle in two-dimensional case or unit tetrahedron in three-dimensional case,
andPl be the set of polynomials of degree≤ l. The lowest orderBDM1 mixed finite element
spaces on̂T are defined as

V̂(T̂ ) = P1(T̂ )
d, Ŵ (T̂ ) = P0(T̂ ).
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Sincev̂ · n̂ê ∈ P1(ê) for anyv̂ ∈ V̂(T̂ ) and any edge (or face)̂e of T̂ , the degrees of freedom
for V̂(T̂ ) can be chosen to be the values ofv̂ · n̂ê at any two points on each edgeê of T̂ if T̂ is
the unit triangle, or any three points on each faceê of T̂ if T̂ is the unit tetrahedron [18, 17].
In the MFMFE method, these points are chosen to be the vertices of ê for the requirement of
accuracy and certain orthogonality for the trapezoidal quadrature rules. Such a choice allows
for local velocity elimination and leads to a cell-centeredstencil for the pressure [39, 30].

The lowest orderBDM1 spaces onTh are given by

Vh : = {v ∈ V : v|T = 1
JT
DFT v̂ ◦ F−1

T , v̂ ∈ V̂(T̂ ) ∀ T ∈ Th},

Wh : = {w ∈ W : w|T = ŵ ◦ F−1
T , ŵ ∈ Ŵ (T̂ ) ∀ T ∈ Th},

whereF−1
T is the inverse mapping of the bijectionFT : T̂ → T , DFT is the Jacobian

matrix with respect toFT on the elementT with JT = |det(DFT )|. Note that the vector
transformationv = 1

JT
DFT v̂ ◦ F−1

T is is known as the Piola transformation.
Forq,v ∈ Vh, it holds

∫

T

K−1q · vdx =

∫

T̂

K̂−1 1

JT
DFT q̂ ·

1

JT
DFT v̂JTdx̂

=

∫

T̂

1

JT
(DFT )

TK̂−1DFT q̂ · v̂dx̂

=

∫

T̂

K−1q̂ · v̂dx̂

with K := JTDF
−1
T K̂(DF−1

T )T. The quadrature formula on an elementT is then defined
as [39, 30]

(K−1q,v)Q,T := (K−1q̂, v̂)Q̂,T̂ :=
|T̂ |

s

s
∑

i=1

K−1(r̂i)q̂(r̂i) · v̂(r̂i), (3.1)

wherer̂i (i = 1, 2, · · · , s) are the corresponding vertices ofT̂ with s = 3 for the unit triangle
ands = 4 for the unit tetrahedron.

Define the global quadrature formula as

(K−1q,v)Q =
∑

T∈Th

(K−1q,v)Q,T , (3.2)

then the MFMFE method is formulated as follows: Finduh ∈ Vh andph ∈Wh such that

(K−1uh,vh)Q = (ph,∇ · vh)− < g,vh · n >ΓD
, ∀ vh ∈ Vh, (3.3)

(∇ · uh, wh) = (f, wh), ∀ wh ∈ Wh. (3.4)

The existence and uniqueness of the solution to the scheme (3.3)-(3.4) follow from [39, 30].
As shown in [39, 30], the algebraic system that arises from (3.3)-(3.4) is of the form

(

A BT

−B 0

)(

U
P

)

=

(

G
F

)

, (3.5)

whereA = (aij), B = (blj) with aij = (K−1vj ,vi)Q and blj = −(∇ · vj , wl), and
{vi}, {wl} are respectively the bases ofVh andWh. The matrixA is block-diagonal with
symmetric and positive definite blocks, and the local elimination ofU leads to a system forP
with a symmetric and positive definite matrixBA−1BT . For the details, we refer to [39, 30].
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4. Main results. Let ηh be the discretization indicator defined by

η2h := ||h(f −∇ · uh)||
2 +

∑

T∈Th

∑

E∈εT

hEJ
2
tE
, (4.1)

where

J2
tE

:=







||[γtE (K
−1uh)]||2E if E ∈ ε0h ∩ ∂T,

||γtE (K
−1uh)− ∂g/∂s||2E + h2E ||

∂2g
∂s2 ||

2
E if E ∈ ∂T ∩ εD,

0 if E ∈ ∂T ∩ ΓN ,

(4.2)

and∂g/∂s and∂2g/∂s2 denote respectively the first and second order tangential derivatives
of functiong ∈ H2(E) along sideE. Introduce the quadrature indicator

η2Q :=
∑

T∈Th

h2T ||uh||
2
1,T . (4.3)

We note this indicator is owing to the use of the special quadrature formula (3.1) in the
MFMFE method.

We now state in Theorems 4.1-4.2a posteriori error estimates for the errors of velocity
and pressure inL2−norm, respectively.

THEOREM 4.1. Let (u, p) ∈ V ×W be the weak solution of the continuous problem
(2.1)-(2.2), and(uh, ph) ∈ Vh × Wh be the solution of the MFMFE method (3.3)-(3.4).
AssumeK−1 ∈W 1

∞(Th). Then it holds

||K−1/2(u− uh)|| . (η2h + η2Q)
1/2. (4.4)

THEOREM 4.2. AssumeK−1 ∈ W 2
∞(Th). Under the assumptions of Theorem 4.1, it

holds

||Qhp− ph|| . hmax(ηh + ηQ) + ||h(f −∇ · uh)||, (4.5)

||p− ph|| . hmax(ηh + ηQ) + ||hK−1uh||+ ||h(f −∇ · uh)||. (4.6)

Herehmax := maxT∈Th
hT , andQh denotes theL2−projection operator ontoWh.

REMARK 4.1. We note that the two terms||h(f −∇ ·uh)|| and{
∑

E∈εD

h3E ||
∂2g

∂s2
||2E}

1/2

in ηh in the estimatorηh are of high order with respect to the lowest order scheme, which are
usually omitted in computation. In fact, from (3.4) it follows∇ · uh = Qhf , and||h(f −∇ ·
uh)|| = ||h(f −Qhf)|| turns out to be an oscillation term of high order.

REMARK 4.2. The above estimates (4.4)-(4.6) also apply to the original mixed finite
element discretization where the special quadrature rule (3.1) is not used in the scheme (3.3)-
(3.4). In this case, the estimatorηQ is not involved, and thenηQ = 0 in the estimates
(4.4)-(4.6). In this sense, our work can be regarded as a generalization of Carstensen’s [20]
to the three-dimensional case. We note that our estimatorηh is a bit different from that in
[20] due to no occurrence of the term||hCurlh(K−1uh)|| (Curlh denotes the piecewiseCurl
operator acting on element by element inTh). Here we also consider more general boundary
conditions.
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We finally state in Theorem 4.3 the efficiency of thea posteriori error estimators. Note
that the efficiency of a reliablea posteriori error estimator means that its converse estimate
holds up to high order terms and different multiplicative constants. For the sake of simplicity,
we assume thatK−1 is a matrix of piecewise polynomial functions.

THEOREM 4.3. Under the assumptions of Theorems 4.1-4.2, it holds

ηh + ηQ + h−1
max||hK

−1uh|| . ||K−1/2(u− uh)||+ ||h−1(p− ph)||+ h.o.t..

whereh.o.t. denotes some high-order term depending on given data.

5. A posteriori error analysis. This section is devoted to the proofs of Theorems 4.1-
4.2.

Introduce the global quadrature errorσ(K−1uh,vh) and the element quadrature error
σT (K

−1uh,vh) as follows:

σ(K−1uh,vh)|T = σT (K
−1uh,vh) := (K−1uh,vh)T−(K−1uh,vh)Q,T , , for all T ∈ Th.

(5.1)
LetV0

h := RT0(Th) denote the lowest orderRT element space onTh.
We state two estimates on the quadrature error derived in [39, 30] as follows. IfK−1 ∈

W 1
∞(T ) for all elementT ∈ Th, then it holds

|σ(K−1qh,vh)| .
∑

T∈Th

hT ||qh||1,T ||vh||T (5.2)

for all qh ∈ Vh, vh ∈ V0
h. Moreover, ifK−1 ∈ W 2

∞(T ) for all elementT ∈ Th, then it
holds

|σ(K−1qh,vh)| .
∑

T∈Th

h2T ||qh||1,T ||vh||1,T (5.3)

for all qh,vh ∈ Vh.
Denote respectively byΠ andΠ0 the standard projection operators fromH(div; Ω) ∩

(L̺(Ω))d ontoVh andV 0
h for some̺ > 2 (cf. [20, 39]). It holds the following estimates:

||h−1(q−Π0q)|| . ||q||H1(∪Th) for all q ∈ (H1(∪Th))
d ∩H(div; Ω), (5.4)

||Π0v||1,T . ||v||1,T , ||Πv||1,T . ||v||1,T for all v ∈ (H1(T ))d, ∀T ∈ Th. (5.5)

Note that bound (5.4) can be found in [20], and bounds (5.5) are the direct results of Lemma
3.1 in [39].

To derive a reliablea posteriori error estimate for the velocity error, we need to introduce
an auxiliary problem as following:







∇ · (K∇ϑ) = ∇ · uh in Ω,
ϑ = −g on ΓD,
K∇ϑ · n = 0 on ΓN .

(5.6)

SinceK is a symmetric and uniformly positive definite tensor, by theLax-Milgram theorem
there exists a unique solutionϑ ∈ H1(Ω) to this problem, provided thatg ∈ H1/2(ΓD).
AsK∇ϑ− uh is divergence-free, a decomposition of two or three-dimensional vector fields
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(see Theorem 3.4 and Remark 3.10 in [28]) implies that there exists a stream functionψ ∈
H1(Ω)k such that

K∇ϑ− uh = Curl ψ.

SinceK∇ϑ · n anduh · n vanish onΓN , we easily knowCurl ψ · n = 0 onΓN .
IntroduceH1

D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD}, thenz := −(p+ ϑ) ∈ H1
D(Ω) and

it holds

u− uh = −K∇p−K∇ϑ+Curl ψ = K∇z +Curl ψ. (5.7)

This relation leads to

||K−1/2(u− uh)||2 =

∫

Ω

K−1(u− uh) · (u− uh)

=

∫

Ω

(∇z +K−1Curl ψ) · (K∇z +Curl ψ)

=

∫

Ω

K∇z · ∇z + 2

∫

Ω

∇z · Curl ψ +

∫

Ω

K−1Curl ψ · Curl ψ.

(5.8)
Using integration by parts and noticingCurl ψ · n = 0 onΓN andz = 0 onΓD, we have

∫

Ω

∇z · Curl ψ = −

∫

Ω

∇ · (Curl ψ)z +

∫

ΓD∪ΓN

Curl ψ · nz = 0. (5.9)

Notice thatK∇z = (u − uh) − Curl ψ, (u − uh) · n = 0 onΓN andz = 0 onΓD. The
relation (5.9) and integration by parts yield

∫

Ω

K∇z · ∇z =

∫

Ω

(u− uh) · ∇z = −

∫

Ω

∇ · (u− uh)z. (5.10)

LetQhz denote theL2−projection ofz ontoWh. From (2.2) and (3.4) it follows

(∇ · (u− uh), Qhz) = 0. (5.11)

In view of∇ · u = f , the above two relations, (5.10) and (5.11), imply
∫

Ω

K∇z · ∇z = −

∫

Ω

∇ · (u− uh)(z −Qhz)

=
∑

T∈Th

∫

T

(−f +∇ · uh)(z −Qhz)

.
∑

T∈Th

hT ||f −∇ · uh||T ||∇z||T

. ||h(f −∇ · uh)|| ||K
1/2∇z||,

which results in

||K1/2∇z|| . ||h(f −∇ · uh)||. (5.12)

By (5.7) and (5.9) we have

||K−1/2(u− uh)||
2 = ||K1/2∇z||2 + ||K−1/2Curl ψ||2. (5.13)
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Recalling
∫

Ω

Curl ψ · ∇v = 0 for all v ∈ H1
D(Ω), in light of (5.7) we have, for any

β ∈ H1(Ω),
∫

Ω

K−1Curl ψ · Curl ψ =

∫

Ω

(K−1(u− uh)−∇z) · Curl ψ

=

∫

Ω

K−1(u− uh −K∇v) · Curl ψ

=

∫

Ω

K−1(u−K∇v −K∇β) · Curl ψ +

∫

Ω

K−1(K∇β − uh) · Curl ψ

≤ (||K−1(u−K∇v −K∇β)||+ ||∇β −K−1uh||)||Curl ψ||,

which implies

||K−1/2Curlψ|| . inf
v∈H1

D
(Ω)

||K−1(u−K∇v−K∇β)||+ inf
β∈H1(Ω)

||∇β−K−1uh||. (5.14)

Finally, from (5.12)-(5.14) it follows

||K−1/2(u− uh)|| .
{

infv∈H1
D
(Ω) ||K

−1(u−K∇v −K∇β)||

+ inf
β∈H1(Ω)

||∇β −K−1uh||+ ||h(f −∇ · uh)||

}

.
(5.15)

In what follows, we shall follow the routines of [21] to estimate the first and second
terms on the right-hand side of (5.15). To this end, we assumethatg ∈ H1(ΓD) ∩ C(ΓD)
andg|E ∈ H2(E) for all E ∈ εh ∩ ΓD and denote bygh,D the nodalεD−piecewise linear
interpolation ofg on ΓD which satisfiesgh,D(z) = g(z) for all z ∈ N ∩ ΓD. Let {ϕz :
z ∈ N} be the nodal basis of the lowest order finite element space associated toTh, i.e.,
ϕz ∈ C(Ω̄), ϕz|T ∈ P1(T ) for all T ∈ Th, ϕz(x) = 0 for x ∈ N/{z}, andϕz(z) = 1.
Denote byωz := int(suppϕz). We then introduce a subspace ofH1(Ω), S̃, as follows (see
[21]):

S̃ :==







∑

z∈N

ϕzvz : ∀ z ∈ N , vz ∈ C(ωz), vz|ωz
is a piecewise

polynomial, and vz = −gh,D on ΓD ∩ ωz.







LEMMA 5.1. For β ∈ S̃, it holds

inf
v∈H1

D
(Ω)

||K−1(u−K∇v −K∇β)|| . {
∑

E⊂ΓD

h3E ||∂
2g/∂s2||2E}

1/2. (5.16)

Proof. The definition ofS̃ showsβ = −gh,D onΓD. NoticingK−1u = −∇p, we have

inf
v∈H1

D
(Ω)

||K−1(u−K∇v −K∇β)|| = inf
w∈H1(Ω),w|ΓD

=g−gh,D

||∇w||.

The desired result (5.16) immediately follows from an estimate in the proof of Lemma 3.4 in
[21].

On the other hand, it holds

inf
β∈H1(Ω)

||∇β −K−1uh|| ≤ inf
vh∈S̃

||∇vh −K−1uh||. (5.17)
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It is sophisticated to give a computational upper bound for the right-hand side term of (5.17)
with the help ofuh and given data. To this end, letK−1 denote the piecewise mean value of
K−1 on Th, i.e. K−1|T = 1

|T |

∫

T
K−1(x)dx for all T ∈ Th. ThenK−1 is symmetric and

has the followingV−ellipticity:

k−1
1 ξTξ ≤ ξTK−1ξ ≤ k−1

0 ξTξ for all x ∈ Ω, ξ ∈ R
d.

Recall thatV0
h is the lowest orderRT element space onTh. andWh is the piecewise

constant space.Introduce the following auxiliary problem: Find (ũh, p̃h) ∈ V0
h ×Wh such

that

(K−1ũh,vh) = (p̃h,∇ · vh)− < g,vh · n >ΓD
, ∀ vh ∈ V0

h, (5.18)

(∇ · ũh, wh) = (f, wh), ∀ wh ∈ Wh. (5.19)

It is well-known that this problem admits a unique solution (see [18]).
LEMMA 5.2. Let (ũh, p̃h) ∈ V0

h ×Wh be the solution of the auxiliary problem (5.18)-
(5.19), and(uh, ph) ∈ Vh×Wh be the solution of the MFMFEM scheme (3.3)-(3.4). Assume
K−1 ∈W 1

∞(Th). Then it holds

||K−1
1/2

(ũh −Π0uh)|| . {
∑

T∈Th

h2T ||uh||
2
1,T }

1/2, (5.20)

whereΠ0 is the standard projection operator fromH(div; Ω) ontoV0
h.

Proof. Notice thatV0
h ⊂ Vh. From (3.3) we get

(K−1Π0uh,vh) = (ph,∇ · vh)− < g,vh · n >ΓD

+(K−1Π0uh,vh)− (K−1uh,vh)Q, ∀ vh ∈ V0
h.

(5.21)

Using the commuting property ofΠ0 and (3.4), we have

(∇ · Π0uh, wh) = (Qh∇ · uh, wh) = (∇ · uh, wh) = (f, wh), ∀wh ∈ Wh. (5.22)

A combination of (5.19) and (5.22) yields

(∇ · (ũh −Π0uh), wh) = 0, ∀wh ∈Wh. (5.23)

Takingvh = ũh −Π0uh ∈ V0
h, subtracting (5.21) from (5.18) and using (5.23), we have

||K−1
1/2

(ũh −Π0uh)||
2 = (K−1(ũh −Π0uh), ũh −Π0uh)

= (p̃h − ph,∇ · (ũh −Π0uh)) + (K−1uh,vh)Q − (K−1Π0uh,vh)

= (K−1uh,vh)Q − (K−1uh,vh) + (K−1uh,vh)− (K−1Π0uh,vh)

= −σ(K−1uh,vh) + ((K−1 −K−1)uh,vh) + (K−1(uh −Π0uh),vh).

(5.24)

The work left is to estimate the three terms in the last line of(5.24). Notice that the inequality
(5.2) implies

| − σ(K−1uh, ũh −Π0uh)| .
∑

T∈Th

hT ||uh||1,T ||ũh −Π0uh||T

. {
∑

T∈Th

h2T ||uh||
2
1,T }

1/2||K−1
1/2

(ũh −Π0uh)||.
(5.25)
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Due toK−1 ∈W 1
∞(Th), it holds

((K−1 −K−1)uh, ũh −Π0uh) . ||huh|| ||K−1
1/2

(ũh −Π0uh)||. (5.26)

In view of the approximation property (5.4) ofΠ0, we have

(K−1(uh −Π0uh), ũh −Π0uh) . (
∑

T∈Th

h2T ||uh||
2
1,T )

1/2||K−1
1/2

(ũh −Π0uh)||.

(5.27)
Combining (5.24)-(5.27) leads to the desired estimate (5.20).

We now follow the idea of [38] to construct a postprocessed scalar pressurelh which
links ũh andp̃h on each simplicial element in the following way:

−K−1
−1

∇lh = ũh in T, for all T ∈ Th, (5.28)

1

|T |

∫

T

lhdx = p̃h|T , for all T ∈ Th. (5.29)

We refer to [38] for the existence of the postprocessed solution lh.
As shown in [38], the new quantitylh has the continuity of the mean values of traces

across interior sides (or faces), and its mean of trace on anyboundary side (or face) equals
to that ofg. In fact, for an interior side (or face)E shared byT+ andT−, let vE denote the
side (or face) basis function onE with respect toV0

h with the support setωE . From (5.18),
(5.28)-(5.29) and integration by parts we have

0 = (−∇hlh,vE)T+∪T
−

− (p̃h,∇ · vE)T+∪T
−

+ < g,vE · n >∂ωE∩ΓD

=

∫

T+

∇ · vE(lh − p̃h) +

∫

T
−

∇ · vE(lh − p̃h) +

∫

E

vE · nE(lh|T+
− lh|T

−

)

= < 1, lh|T+
− lh|T

−

>E ,

which implies the continuity of the means of traces oflh across the interior side. For a
boundary sideE ⊂ ΓD, letE ⊂ ∂T . Similarly, from (5.18) and (5.28)-(5.29) we have

0 = −(∇lh,vE)T − (p̃h,∇ · vE)T+ < g,vE · n >∂T∩ΓD

= < 1, g − lh >E .

ForK−1 ∈ W 1
∞(Th), from the triangle inequality, the postprocessing (5.28), an inter-

polation estimate, an inverse inequality, Lemma 5.2 and thedefinition (5.1) of the quadrature
indicatorηQ it follows

inf
vh∈S̃

||∇vh −K−1uh|| ≤ inf
vh∈S̃

{

||∇vh −K−1ũh||+ ||K−1ũh −K−1Π0uh||

+||K−1Π0uh −K−1uh||+ ||K−1uh −K−1uh||
}

. inf
vh∈S̃

{

||∇h(vh + lh)||+ ||K−1
1/2

(ũh −Π0uh)||

+(
∑

T∈Th

h2T ||uh||
2
1,T )

1/2 + ||huh||

}

. inf
vh∈S̃

||h−1(vh + lh)||+ ηQ.

(5.30)
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Following the idea of the proof of Lemma 3.4 in [21], we easilyobtain the following
conclusion.

LEMMA 5.3. Let lh be the postprocessed scalar pressure determined by (5.28)-(5.29),
andgh,D be the nodalεD−piecewise linear interpolation ofg on ΓD. For a side (or face)
E ∈ εh, denote

J̃tE :=

{

h
1/2
E ||[lh]||E , if E ∈ ε0h,

h
1/2
E ||lh − gh,D||E , if E ∈ εD.

Then it holds

inf
vh∈S̃

||h−1(vh + lh)||
2 .

∑

E∈ε0
h
∪εD

h−2
E J̃2

tE
. (5.31)

Using Lemma 5.3, we have a further conclusion as follows.
LEMMA 5.4. Let JtE andηQ denote the tangential jump and the quadrature indicator

defined in (4.2) and (5.1), respectively. Under the assumption of Lemma 5.2, it holds

inf
vh∈S̃

||h−1(vh + lh)||
2 .

∑

E∈ε0
h
∪εD

hEJ
2
tE

+ η2Q. (5.32)

Proof. We only prove the three-dimensional case, since the two-dimensional one is some-

what simpler and can be derived similarly. In the caseE = T+ ∩ T− ∈ ε0h, since
∫

E

[lh]ds

vanishes, a sidewise Poincaré inequality and the postprocessing (5.28) yield that

||[lh]||E . hE ||(∇lh|T+
−∇lh|T

−

)× nE ||E

= hE ||(K−1ũh|T
−

−K−1ũh|T+
)× nE ||E .

(5.33)

Recall thatΠ0 is the projection fromH(div; Ω) ontoV0
h, and notice that

K−1ũh|T
−

−K−1ũh|T+

= (K−1ũh|T
−

−K−1Π0uh|T
−

) + (K−1Π0uh|T+
−K−1ũh|T+

)

+(K−1Π0uh|T
−

−K−1Π0uh|T+
)

= (K−1ũh|T
−

−K−1Π0uh|T
−

) + (K−1Π0uh|T+
−K−1ũh|T+

)

+(K−1Π0uh|T
−

−K−1Π0uh|T
−

) + (K−1Π0uh|T
−

−K−1uh|T
−

)

+(K−1uh|T
−

−K−1uh|T+
) + (K−1uh|T+

−K−1Π0uh|T+
)

+(K−1Π0uh|T+
−K−1Π0uh|T+

).

(5.34)

Employing the trace theorem, inverse estimate and the localshape regularity of the mesh,
we have

||(K−1ũh|T
−

−K−1Π0uh|T
−

)× nE ||E + ||(K−1Π0uh|T+
−K−1ũh|T+

)× nE ||E

. h
−1/2
E ||K−1(ũh −Π0uh)||ωE

.
(5.35)
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The trace theorem, together with the stable estimate (5.5) on the operatorΠ0, also indicates

||(K−1Π0uh|T
−

−K−1Π0uh|T
−

)× nE ||E

≤ ||(K−1 −K−1)Π0uh|T
−

||∂T
−

. ||(K−1 −K−1)Π0uh||
1/2
T
−

||(K−1 −K−1)Π0uh||
1/2
1,T

−

. h
1/2
T
−

||uh||1,T
−

.

(5.36)

Similarly, it holds

||(K−1Π0uh|T+
−K−1Π0uh|T+

)× nE ||E . h
1/2
T+

||uh||1,T+
, (5.37)

||(K−1Π0uh|T
−

−K−1uh|T
−

)× nE ||E . h
1/2
E ||uh||1,T

−

, (5.38)

and

||(K−1uh|T+
−K−1Π0uh|T+

)× nE ||E . h
1/2
E ||uh||1,T+

, (5.39)

where in the latter two inequalities we have also used the estimate (5.4).
As a result, a combination of (5.33)-(5.39) shows

||[lh]||E . hE{h
−1/2
E ||K−1(ũh −Π0uh)||ωE

+h
1/2
E ||uh||1,ωE

+ ||[γtE (K
−1uh)]||E}.

(5.40)

On the other hand, in the caseE ⊂ ∂T ∩ εD it holds

1

|E|

∫

E

(lh − g)ds = 0

due to
∫

E

lhds =

∫

E

gds. Using the triangle inequality, sidewise Poincaré inequality and

interpolation estimation, we have

||lh − gh,D||E ≤ ||lh − g||E + ||g − gh,D||E

. hE ||∇lh × nE − ∂g/∂s||E + h2E ||∂
2g/∂s2||E .

(5.41)

Similarly it holds

hE ||∇lh × nE − ∂g
∂s ||E . h

1/2
E ||K−1(ũh −Π0uh)||T + h

3/2
E ||uh||1,T

+hE ||K−1uh × nE − ∂g/∂s||E.
(5.42)

The above two estimates, (5.41) and (5.42), lead to

||lh − gh,D||E . h
1/2
E ||K−1(ũh −Π0uh)||T + h

3/2
E ||uh||1,T

+hE||K−1uh × nE − ∂g/∂s||E + h2E ||∂
2g/∂s2||E .

(5.43)
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From the definition ofJ̃tE in Lemma 5.3, the estimates (5.40) and (5.43) indicate
∑

E∈ε0
h
∪εD

h−2
E J̃2

tE
=

∑

E∈ε0
h

h−2
E hE ||[lh]||

2
E +

∑

E∈εD

h−2
E hE ||lh − gh,D||

2
E

.
∑

T∈Th

h2T ||uh||
2
1,T + ||K−1(ũh −Π0uh)||

2 +
∑

E∈ε0
h

hE ||[γtE (K
−1uh)]||

2
E

+
∑

E∈εD

(hE ||γtE (K
−1uh)− ∂g/∂s||2E + h3E ||∂

2g/∂s2||E).

(5.44)

By noticing that Lemma 5.2 implies

||K−1(ũh −Π0uh)||
2 . η2Q,

the estimate (5.44), together with the definitions ofJtE andηQ, (4.2) and (4.3), yields
∑

E∈ε0
h
∪εD

h−2
E J̃2

tE
.

∑

E∈ε0
h
∪εD

hEJ
2
tE

+ η2Q. (5.45)

The desired result (5.32) follows from Lemma 5.3 and (5.45).
The proof of Theorem 4.1: Collecting (5.17), (5.30) and (5.32), we get

inf
β∈H1(Ω)

||∇β −K−1uh|| . {
∑

E∈ε0
h
∪εD

hEJ
2
tE
}1/2 + ηQ, (5.46)

which, together with the estimates (5.15)-(5.16), yields

||K−1/2(u− uh)|| . ||h(f −∇ · uh)||+ {
∑

E∈εD

h3E ||∂
2g/∂s2||2E}

1/2

+{
∑

E∈ε0
h
∪εD

hEJ
2
tE
}1/2 + ηQ

. {||h(f −∇ · uh)||+
∑

E∈ε0
h
∪εD

hEJ
2
tE
}1/2 + ηQ.

(5.47)

The desired result (4.4) then follows from (5.47) and the definition (4.1) ofηh.
The proof of Theorem 4.2: Recall thatQh is theL2−projection operator ontoWh.

Construct the following auxiliary problem: Findφ ∈ H1(Ω) such that
{

∇ · (K∇φ) = Qhp− ph in Ω,
φ = 0 on∂Ω.

(5.48)

By the assumptions ofK and Lax-Milgram theorem, the operator

∇ · (K∇·) : H1
0 (Ω) → H−1(Ω)

is invertible and it holds the following regularity estimate:

||φ||1 . ||Qhp− ph||. (5.49)

Moreover, ifΩ is convex,K ∈ C1,0(Ω) implies that

∇ · (K∇·) : H1
0 (Ω) ∩H

2(Ω) → L2(Ω)
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is invertible ([29]) and the regularity estimate

||φ||H2(
⋃

Th) . ||Qhp− ph|| (5.50)

holds. We emphasize that here we only need a regularity estimate on||φ||H2(T ) for eachT ∈
Th and then assume a weakened constraint onK such that (5.50) holds. In [20]Carstensen
gave an example whereK is piecewise constant andφ satisfies (5.50) but is notH2-regular.

Notice that the error equation of the MFMFE method (3.3)-(3.4) can be written as

(K−1(u− uh),vh) = (Qhp− ph,∇ · vh)− σ(K−1uh,vh), ∀vh ∈ Vh. (5.51)

RecallingΠ is the standard projection operator fromH(div; Ω) ∩ (L̺(Ω))d ontoVh, and
takingvh = Π(K∇φ) in (5.51), from (5.48) and the commuting property∇ · (ΠK∇φ) =
Qh∇ · (K∇φ), we have

||Qhp− ph||2 = (Qhp− ph,∇ · (ΠK∇φ))

= (K−1(u− uh),Π(K∇φ)) + σ(K−1uh,ΠK∇φ).
(5.52)

Since(∇ · (u − uh), wh) = 0, ∀wh ∈ Wh, by integration by parts, the approximation
property ofΠ and the estimates (5.49)-(5.50), we have

(K−1(u− uh),Π(K∇φ)) = (K−1(u− uh),Π(K∇φ) −K∇φ) + (u− uh,∇φ)

= (K−1(u− uh),Π(K∇φ)−K∇φ)− (∇ · (u− uh), φ)

= (K−1(u− uh),Π(K∇φ)−K∇φ)− (∇ · (u− uh), φ−Qhφ)

.
(

||hK−1/2(u− uh)||+ ||h∇ · (u− uh)||
)

||Qhp− ph||.
(5.53)

On the other hand, a combination of (5.3), (5.5) and (5.50) yields

|σ(K−1uh,ΠK∇φ)| .
∑

T∈Th

h2T ||uh||1,T ||Π(K∇φ)||1,T

. (
∑

T∈Th

h4T ||uh||
2
1,T )

1/2||Qhp− ph||.
(5.54)

Noticing∇· (u−uh) = f −Qhf , from (5.52)-(5.54) and the estimate (4.4) of Theorem
4.1 we obtain the assertion (4.5), i.e.

||Qhp− ph|| . hmax(ηh + ηQ) + ||h(f −∇ · uh)||.

A triangle inequality, the relationu = −K∇p and the approximation property ofQh further
imply

||p− ph|| ≤ ||p−Qhp||+ ||Qhp− ph|| . ||h∇p||+ ||Qhp− ph||

≤ ||hK−1(u− uh)||+ ||hK−1uh||+ ||Qhp− ph||.

This inequality, together with the estimate (4.5), leads tothe conclusion (4.6).

6. Analysis for the efficiency. This section is devoted to the proof of Theorem 4.3. For
the sake of simplicity, we assume thatK−1 is a matrix of piecewise polynomial functions.

Since the two terms||h(f−∇·uh)|| and{
∑

E∈εD

h3E ||
∂2g

∂s2
||2E}

1/2 in ηh are of high order, they
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are directly incorporated inh.o.t. as a high order term. Using standard analytical techniques,
we easily obtain Lemma 6.1.

LEMMA 6.1. Letηh denote the discretization indicator given by (4.1). Then itholds

ηh . ||K−1/2(u− uh)||+ h.o.t. (6.1)

LEMMA 6.2. LetηQ denote the quadrature indicator given by (4.3). Then it holds

ηQ . ||K−1/2(u− uh)||+ ||h−1(p− ph)||. (6.2)

Proof. An inverse inequality and the assumption (1.2) yield

||uh||1,T . h−1
T ||uh||T . h−1

T ||K−1uh||T . (6.3)

For all T ∈ Th, let ψT denote the bubble function onT with ψT |∂T = 0 and0 ≤ ψT ≤ 1.

Then the two norms,||ψ1/2
T · ||T and|| · ||T , are equivalent for polynomials. Since∇ph|T = 0

due toph ∈Wh, it then holds

||K−1uh||2T = ||K−1uh +∇ph||2T

. ||ψ
1/2
T (K−1uh +∇ph)||2T

=
(

ψTK
−1uh,K

−1uh +∇ph
)

T

=
(

ψTK
−1uh,K

−1(uh − u)
)

T
+
(

ψTK
−1uh,∇(ph − p)

)

T

=
(

ψTK
−1uh,K

−1(uh − u)
)

T
−
(

∇ · (ψTK
−1uh), ph − p

)

T

. ||K−1uh||T
(

||K−1/2(u− uh)||T + h−1
T ||p− ph||T

)

,

(6.4)

where in the fourth and last lines we have used the relationu = −K∇p and an inverse
inequality, respectively. This inequality, together with(6.3), shows

hT ||uh||1,T . ||K−1/2(u− uh)||T + h−1
T ||(p− ph)||T ,

from which the desired estimate (6.2) follows.
The proof of Theorem 4.3. From (6.4) we obtain

||hK−1uh|| . ||hK−1/2(u− uh)||+ ||p− ph||, (6.5)

which, together with Lemmas 6.1-6.2, leads to the desired efficiency estimate of Theorem
4.3.

7. Numerical experiments. In this section, we use two model problems to test the per-
formance of the developeda posteriori error estimator for the MFMFE method. We consider
two types of meshes: uniformly refined meshes and adaptivelyrefined meshes. The latter
type of meshes is generated by a standard adaptive algorithmbased on thea posteriori er-
ror estimation. In the first example, the permeabilityK equals to identity matrix andΩ is
anL-shape domain. In the second example,K is inhomogeneous and anisotropic. We are
thus able to study how meshes adapt to various effect from lack of regularity of solutions to
non-convexity of domains.
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Example 7.1. We consider the problem (1.1) in anL-shape domainΩ = {(−1, 1) ×
(0, 1)}∪{(−1, 0)×(−1, 0)}with Dirichlet boundary conditions andK = I (identity matrix).
The exact solution is given by

p(ρ, θ) = ρr sin(rθ),

whereρ, θ are the polar coordinates,r is a parameter. We consider two cases forr: r = 0.4
andr = 0.1. Some simple calculations showf = 0.
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FIG 7.1.A mesh with 347 triangles, iteration 6 (left) and a mesh with 578 triangles, iteration 8 (right)
in caser = 0.4.
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FIG 7.2. A mesh with 1607 triangles, iteration 11 (left) and a mesh with 2618 triangles, iteration 12
(right) in caser = 0.4.

It is well known that this model possesses singularity at theorigin and holdsp ∈ H1+r−ǫ(Ω)
for anyǫ > 0. The singularity of the solution in the caser = 0.4 is weaker than in the case
r = 0.1.The original mesh consists of 6 right-angled triangles. Inthe adaptive algorithm we
first solve the MFMFE scheme (3.3)-(3.4), then mark elementsin terms of Dörfler marking
with the marking parameter̃θ = 0.5, and finally use the ”longest edge” refinement to recover
an admissible mesh. In particular, the uniform refinement means that all elements should be
marked.

From Figs 7.1-7.2 with the parameterr = 0.4 and Fig 7.3 with the parameterr = 0.1,
we see that using the adaptive algorithm the refinement concentrates around the origin. This
means that the predicted error estimator captures well the singularity of the solution, and that
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FIG 7.3. A mesh with 245 triangles, iteration 10 (left) and a mesh with3265 triangles, iteration 24
(right) in caser = 0.1.

the stronger the solution possesses singularity, the better thea posteriorierror estimator can
identify.
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FIG 7.4. The postprocessing approximation to the pressure on the adaptively refined mesh in case
r = 0.4 (left) and in caser = 0.1 (right).

Fig 7.4 reports a continuous piecewise-linear postprocessing approximation to the pres-
sure on the adaptively refined mesh in the caser = 0.4 (left) and in the caser = 0.1 (right)
with 24 iterations. Since the approximation to the pressureof the MFMFE method is piece-
wise constant, the value of the postprocessing approximation to the pressure on each node is
taken as the algorithmic mean of the values of the pressure finite element solution on all the
elements sharing the vertex.

Fig 7.5 reports the estimated and actual errors of the numerical solutions on uniformly
and adaptively refined meshes. It can be seen that the error ofthe velocity inL2 norm uni-
formly reduces with a fixed factor on two successive meshes, and that the error on the adap-
tively refined meshes decreases more rapidly than the one on the uniformly refined meshes.
This means that one can substantially reduce the number of unknowns necessary to obtain the
prescribed accuracy by usinga posteriori error estimators and adaptively meshes. We note
that the exact error is approximated with a 7-point quadrature formula in each triangle.

Fig 7.6 shows the quadrature errorηQ and discretization errorηh in adaptively refined
meshes in caser = 0.4 with the marking parameterθ = 0.5 (left) and in caser = 0.1 with
the marking parameterθ = 0.8 (right). It can be seen that the error indicatorηh produced by
the discretization is very close to the error indicatorηQ produced by the quadrature rule as the
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FIG 7.5. The estimated and actual errors against the number of elements in uniformly / adaptively
refined meshes in caser = 0.4 (left) and in caser = 0.1 (right) with the marking parameter̃θ = 0.5.
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FIG 7.6. The quadrature errorηQ and discretization errorηh against the number of elements in
adaptively refined meshes in caser = 0.4 with the marking parameter̃θ = 0.5 (left) and in case
r = 0.1 with the marking parameter̃θ = 0.8 (right) .

mesh is refined. This also shows that the quadrature indicator ηQ is very efficient. We note
that this efficiency is not sufficiently demonstrated by Theorem 4.3 due to the appearance
of the pressure error term, while this error term usually hasthe second order accuracy on
uniform meshes.

Example 7.2. We consider the problem (1.1) in a square domainΩ = (−1, 1)× (−1, 1)
with Dirichlet boundary conditions, whereΩ is divided into four subdomainsΩi (i = 1, 2, 3, 4)
corresponding to the axis quadrants (in the counterclockwise direction), and the permeability
K is piecewise constant withK = siI in Ωi. We assume the exact solution of this model has
the form

p(ρ, θ)|Ωi
= ρr(aisin(rθ) + bicos(rθ)).

Hereρ, θ are the polar coordinates inΩ, ai and bi are constants depending onΩi, andr
is a parameter. This solution is not continuous across the interfaces, and only the normal
component of its velocityu = −K∇p is continuous, and it exhibits a strong singularity at
the origin. We consider a set of coefficients in the followingtable:
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s1 = s3 = 5, s2 = s4 = 1
r = 0.53544095

a1 = 0.44721360, b1 = 1.00000000
a2 = −0.74535599, b2 = 2.33333333
a3 = −0.94411759, b3 = 0.55555555
a4 = −2.40170264, b4 = −0.48148148

The origin mesh consists of 8 right-angled triangles. We perform the adaptive algorithm
described in Example 7.1 with the marking parameterθ̃ = 0.5. Figs 7.7-7.8 report the adap-
tive meshes generated by 6 to 8 iterations, and the continuous piecewise-linear postprocessing
approximation to the pressure on the adaptively refined mesh. We again see that the refine-
ment concentrates around the origin. This indicates that the predicted error estimator captures
well the singularity of the solution.
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FIG 7.7.A mesh with 740 triangles, iteration 6 (left) and a mesh with 1350 triangles, iteration 7 (right).

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

FIG 7.8. A mesh with 2328 triangles, iteration 8 (left) and the postprocessing approximation to the
pressure on the adaptively refined mesh.

Fig 7.9 reports the estimated and actual errors of the numerical solutions on uniformly
and adaptively refined meshes (left), and the quadrature indicatorηQ and discretization indi-
catorηh in adaptively refined meshes (right).

We can see that the error of the velocity uniformly reduces with a fixed factor on two
successive meshes, that the error on the adaptively refined meshes decreases more rapidly than
the one on the uniformly refined meshes, and that the a posteriori error estimators developed
in this paper are efficient with respect to inhomogeneities and anisotropy of the permeability.
This means that one can substantially reduce the number of unknowns necessary to obtain
the prescribed accuracy by usinga posteriori error estimators and adaptively refined meshes.
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FIG 7.9. The estimated and actual errors against the number of elements in uniformly / adaptively
refined meshes (left) and the quadrature errorηQ and discretization errorηh against the number of
elements in adaptively refined meshes (right).

We also see that the error indicatorηh andηQ differs at most a constant factor, which shows
the quadrature error estimatorηQ is efficient.

8. Conclusions. In this contribution we have developed a reliable and efficient a pos-
teriori error estimator of residual-type for the multi-point flux mixed finite element methods
for flow in porous media in two or three space dimensions. The main tools of our analysis are
a locally postprocessed technique and a quadrature error estimation. Numerical experiments
are conformable to our theoretical results.
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[12] I. BABUŠKA , W. C. RHEINBOLDT, Error estimates for adaptive finite element computations, SIAM

J.Numer. Anal., 15 (1978), pp. 736-754.
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