Skip to main content
Log in

Superconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-uniform rectangular meshes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Since the development of Yee scheme back in 1966, it has become one of the most popular simulation tools for modeling electromagnetic wave propagation in various situations. However, its rigorous error analysis on nonuniform rectangular type grids was carried out until 1994 by Monk and Süli. They showed that the Yee scheme is still second-order convergent on a nonuniform mesh even though the local truncation error is only of first order. In this paper, we extend their results to Maxwell’s equations in metamaterials by a simpler proof, and show the second-order superconvergence in space for the true Yee scheme instead of the only semi-discrete form discussed in Monk and Süli’s original work. Numerical results supporting our analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. Part I: superconvergence error analysis. J. Sci. Comput. 33, 75–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Winther, R.: A superconvergent finite element method for the Korteweg–deVries equation. Math. Comput. 38, 23–36 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part II: general unstructured grids. SIAM J. Numer. Anal. 41, 2313–2332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bokil, V.A., Gibson, N.L.: Analysis of spatial high-order finite difference methods for Maxwell’s equations in dispersive media. IMA J. Numer. Anal. 32, 926–956 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W.: On the superconvergence patch recovery techniques for the linear finite element approximation on anisotropic meshes. J. Comput. Appl. Math. 265, 33–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Celiker, F., Zhang, Z., Zhu, H.: Nodal superconvergence of SDFEM for singularly perturbed problems. J. Sci. Comput. 50, 405–433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C.M., Huang, Y.: High Accuracy Theory of Finite Element Methods (in Chinese). Hunan Science Press, China (1995)

    Google Scholar 

  9. Chen, H., Ewing, R., Lazarov, R.: Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data. Numer. Math. 78, 495–521 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Li, X., Liang, D.: Energy-conserved splitting FDTD methods for Maxwells equations. Numer. Math. 108, 445–485 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, E.T., Ciarlet Jr, P., Yu, T.F.: Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwells equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chung, E.T., Du, Q., Zou, J.: Convergence analysis of a finite volume method for Maxwell’s equations in nonhomogeneous media. SIAM J. Numer. Anal. 41(1), 37–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Craster, R.V., Guenneau, S. (eds.): Acoustic Metamaterials: Negative Refraction, Imaging, Sensing and Cloaking. Springer, New York (2013)

    Google Scholar 

  14. Engheta, N., Ziolkowski, R.W. (eds.): Electromagnetic Metamaterials: Physics and Engineering Explorations. Wiley, New York (2006)

    Google Scholar 

  15. Gao, L.P., Zhang, B.: Stability and superconvergence analysis of the FDTD scheme for the 2D Maxwell equations in a lossy medium. Sci. China Math. 54, 2693–2712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, W., Qiu, J.-M., Qiu, J.: A new LaxWendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65, 299–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hong, J., Ji, L., Kong, L.: Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers. J. Comput. Phys. 269, 201–214 (2014)

    Article  MathSciNet  Google Scholar 

  18. Huang, Y., Li, J., Lin, Q.: Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials. Numer. Methods Partial Differ. Equ. 28, 1794–1816 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Y., Li, J., Yang, W.: Modeling backward wave propagation in metamaterials by the finite element time-domain method. SIAM J. Sci. Comput. 35, B248–B274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, Y., Li, J., Yang, W., Sun, S.: Superconvergence of mixed finite element approximations to 3-D Maxwells equations in metamaterials. J. Comput. Phys. 230, 8275–8289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krizek, M., Neittaanamäki, P., Stenberg, R. (eds.): Finite Element Methods: Superconvergence, Postprocessing and A Posteriori Estimates. Marcel Dekker, New York (1998)

    Google Scholar 

  22. Li, J.: Error analysis of mixed finite element methods for wave propagation in double negative metamaterials. J. Comput. Appl. Math. 209, 81–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J.: Numerical convergence and physical fidelity analysis for Maxwells equations in metamaterials. Comput. Methods Appl. Mech. Eng. 198, 3161–3172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Huang, Y.: Springer Series in Computational Mathematics. Time-domain finite element methods for Maxwell’s equations in metamaterials, vol. 43. Springer, New York (2013)

    Google Scholar 

  25. Li, J., Wheeler, M.F.: Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids. SIAM J. Numer. Anal. 38, 770–798 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, W., Liang, D., Lin, Y.: A new energy-conserved S-FDTD scheme for Maxwell’s equations in metamaterials. Int. J. Numer. Anal. Model 10, 775–794 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Lin, Q., Li, J.: Superconvergence analysis for Maxwell’s equations in dispersive media. Math. Comput. 77, 757–771 (2008)

    Article  MATH  Google Scholar 

  28. Lin, Q., Yan, N.: Global superconvergence for Maxwell’s equations. Math. Comput. 69, 159–176 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, Q., Yan, N.: The Construction and Analysis of High Accurate Finite Element Methods (in Chinese). Hebei University Press, Hebei (1996)

    Google Scholar 

  30. Monk, P.: Superconvergence of finite element approximations to Maxwells equations. Numer. Methods Partial Differ. Equ. 10, 793–812 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Monk, P., Süli, E.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 32, 393–412 (1994)

    Article  MATH  Google Scholar 

  32. Nicolaides, R.A., Wang, D.-Q.: Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions. Math. Comput. 67, 947–963 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic Maxwell’s equations. J. Sci. Comput. 46, 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shi, D.Y., Pei, L.F.: Low order Crouzeix–Raviart type nonconforming finite element methods for the 3D time-dependent Maxwells equations. Appl. Math. Comput. 211, 1–9 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  36. Wang, J., Ye, X.: Superconvergence of finite element approximations for the Stokes problem by projection methods. SIAM J. Numer. Anal. 39, 1001–1013 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ziolkowski, R.W.: Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Opt. Express 11, 662–681 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to thank the referees for their constructive comments on improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Additional information

J. Li’s work is partially supported by NSF grant DMS-1416742, and NSFC Project 11271310.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shields, S. Superconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-uniform rectangular meshes. Numer. Math. 134, 741–781 (2016). https://doi.org/10.1007/s00211-015-0788-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0788-4

Mathematics Subject Classification

Navigation