Skip to main content
Log in

An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A third-order in time numerical IMEX-type algorithm for the Stokes–Darcy system for flows in fluid saturated karst aquifers is proposed and analyzed. A novel third-order Adams–Moulton scheme is used for the discretization of the dissipative term whereas a third-order explicit Adams–Bashforth scheme is used for the time discretization of the interface term that couples the Stokes and Darcy components. The scheme is efficient in the sense that one needs to solve, at each time step, decoupled Stokes and Darcy problems. Therefore, legacy Stokes and Darcy solvers can be applied in parallel. The scheme is also unconditionally stable and, with a mild time-step restriction, long-time accurate in the sense that the error is bounded uniformly in time. Numerical experiments are used to illustrate the theoretical results. To the authors’ knowledge, the novel algorithm is the first third-order accurate numerical scheme for the Stokes–Darcy system possessing its favorable efficiency, stability, and accuracy properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67, 457–477 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G., Smyrlis, Y.: Implicit–explicit BDF methods for the Kuramoto–Sivashinsky equation. Appl. Numer. Math. 51, 151–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anitescu, M., Pahlevani, F., Layton, W.: Implicit for local effects and explicit for nonlocal effects is unconditionally stable. Electron. Trans. Numer. Anal. 18, 174–187 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Ascher, U., Ruuth, S., Wetton, B.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  7. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes–Darcy problems with boundary integrals. SIAM J. Sci. Comput. 35(1), B82–B106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8, 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, Y., Gunzburger, M., Hu, B., Hua, F., Wang, X., Zhao, W.: Finite element approximation of the Stokes–Darcy flow with Beavers–Joseph interface boundary condition. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin–Robin Domain decomposition method for Stokes-Darcy model with Beaver–Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83, 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cesmelioglu, A., Girault, V., Riviere, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM Math. Model. Numer. Anal. doi:10.1051/m2an/2012034

  13. Chen, W., Chen, P., Gunzburger, M., Yan, N.: Superconvergence analysis of FEMs for the Stokes–Darcy system. Math. Methods Appl. Sci. 33, 1605–1617 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second order methods for Stokes–Darcy system. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Brezzi, F., et al. (eds.) Numerical Mathematics and Advanced Applications-ENUMATH 2001, pp. 3–20. Springer, Milan (2003)

    Chapter  Google Scholar 

  18. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Discacciati, M., Quarteroni, A.: Navier–Stokes/Darcy coupling: modeling, analysis and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ervin, V.J., Jenkins, E.W., Lee, H.: Approximation of the Stokes–Darcy system by optimization. J. Sci. Comput. 59(3), 775–794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, W., He, X., Wang, Z., Zhang, X.: Non-iterative domain decomposition methods for a non-stationary Stokes–Darcy model with Beavers–Joseph interface condition. Appl. Math. Comput. 219(2), 453–463 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jones, I.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  25. Kincaid, T.: Exploring the Secrets of Wakulla Springs. Open Seminar, Tallahassee (2004)

    Google Scholar 

  26. Kubacki, M.: Uncoupling evolutionary groundwater-surface water flows using the Crank–Nicolson leapfrog method. Numer. Methods Partial Differ. Equ. 29(4), 1192–1216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuniansky, E.: U.S. Geological Survey Karst Interest Group Proceedings, U.S. Geological Survey Scientific Investigations Report, Bowling Green, pp. 2008–5023 (2008)

  28. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(1), 248–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for splitting the evolutionary Stokes–Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236, 3198–3217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Layton, W.J., Trenchea, C.: Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations. Appl. Numer. Math. 62, 112–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, H., Rife, K.: Least squares approach for the time-dependent nonlinear Stokes–Darcy flow. Math. Method Appl. Sci. 67(10), 1806–1815 (2014)

    MathSciNet  Google Scholar 

  33. Márquez, A., Meddahi, S., Sayas, F.J.: A decoupled preconditioning technique for a mixed Stokes–Darcy model. J. Sci. Comput. 57(1), 174–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79, 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saffman, P.: On the boundary condition at the interface of a porous medium. Studies Appl. Math. 1, 77–84 (1971)

    Google Scholar 

  37. Shan, L., Zheng, H., Layton, W.: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model. Numer. Methods Partial Differ. Equ. 29(2), 549–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51(2), 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Si, Z., Wang, Y., Li, S.: Decoupled modified characteristics finite element method for the time dependent Navier–Stokes/Darcy problem. Math. Methods Appl. Sci. 37(9), 1392–1404 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Zuo, L., Hou, Y.: A decoupling two-grid algorithm for the mixed Stokes–Darcy model with the Beavers–Joseph interface condition. Numer. Methods Partial Differ. Equ. 30(3), 1066–1082 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Wang.

Additional information

This work is support in part by a grant from the NSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Gunzburger, M., Sun, D. et al. An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system. Numer. Math. 134, 857–879 (2016). https://doi.org/10.1007/s00211-015-0789-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0789-3

Mathematics Subject Classification

Navigation