Skip to main content
Log in

A \(C^0\) interior penalty method for a von Kármán plate

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We investigate a quadratic \(C^0\) interior penalty method for the approximation of isolated solutions of a von Kármán plate. We prove that the discrete problem is uniquely solvable near an isolated solution and establish optimal order error estimates. Numerical results that illustrate the theoretical estimates are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72, 701–709 (1968)

    Google Scholar 

  3. Berger, M.S.: On von Kármán’s equations and the buckling of a thin elastic plate. I. The clamped plate. Comm. Pure Appl. Math. 20, 687–719 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63, 97–107 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Neilan, M., Sung, L.-Y.: Isoparametric \({C^0}\) interior penalty methods for plate bending problems on smooth domains. Calcolo 49, 35–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  8. Brenner, S.C., Sung, L.-Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Wang, K., Zhao, J.: Poincaré-Friedrichs inequalities for piecewise \(H^2\) functions. Numer. Funct. Anal. Optim. 25, 463–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezzi, F.: Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12, 303–312 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980/81)

  12. Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite-dimensional approximation of nonlinear problems. III. Simple bifurcation points. Numer. Math. 38, 1–30 (1981/82)

  13. Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227, 6241–6248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  16. Ciarlet, P.G.: Mathematical Elasticity Volume II: Theory of Plates. North-Holland, Amsterdam (1997)

  17. Ciarlet, P.G., Rabier, P.: Les équations de von Kármán. Lecture Notes in Mathematics, vol. 826. Springer, Berlin (1980)

  18. Crouzeix, M., Rappaz, J.: On numerical approximation in bifurcation theory, vol. 13 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris. Springer, Berlin (1990)

  19. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 191, 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Evans, L.C.: Partial differential equations, vol. 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

  21. Gomez, H., Nogueira, X.: An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Engrg. 249/252, 52–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gudi, T., Neilan, M.: An interior penalty method for a sixth-order elliptic equation. IMA J. Numer. Anal. 31, 1734–1753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Knightly, G.H.: An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27, 233–242 (1967)

    Article  MATH  Google Scholar 

  24. Miyoshi, T.: A mixed finite element method for the solution of the von Kármán equations. Numer. Math. 26, 255–269 (1976)

    Article  MathSciNet  Google Scholar 

  25. Nelson, M.R., King, J.R., Jensen, O.E.: Buckling of a growing tissue and the emergence of two-dimensional patterns. Math. Biosci. 246, 229–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reinhart, L.: On the numerical analysis of the von Kármán equations: mixed finite element approximation and continuation techniques. Numer. Math. 39, 371–404 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reiser, A.K.: A \(C^0\) Interior Penalty Method for the von Kármán Equations. PhD thesis, Louisiana State University (2011)

  28. Schatz, A.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. von Kármán, Th: Festigkeitsprobleme im maschinenbau. Encyklopädie der Mathematischen Wissenschaften. vol. IV, pp. 348–352. Teubner, Leipzig (1910)

  30. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne C. Brenner.

Additional information

The work of the first and fourth authors was supported in part by the National Science Foundation Grants DMS-1016332 and DMS-13-19172. The work of the second author was supported in part by the National Science Foundation Grant DMS–1417980 and the Alfred P. Sloan Foundation. The work of the third author was supported in part by the National Science Foundation Grant DMS-1016332.

A Proof of Lemma 3.7

A Proof of Lemma 3.7

Let \({H^2(\Omega ,\mathcal {T}_h)}\) be the subspace of \(H^1_0(\Omega )\) whose members are piecewise \(H^2\), i.e.,

$$\begin{aligned} {H^2(\Omega ,\mathcal {T}_h)}=\{v\in H^1_0(\Omega ):\,v\big |_T\in H^2(T)\quad \forall \,T\in \mathcal {T}_h\}, \end{aligned}$$

and let the norm \(|\cdot |_{H^2(\Omega ,\mathcal {T}_h)}\) be defined by

$$\begin{aligned} |v|_{H^2(\Omega ,\mathcal {T}_h)}^2=\sum _{T\in \mathcal {T}_h}|v|_{H^2(T)}^2+\sum _{e\in \mathcal {E}_h}h_e^{-1}\Vert \left[ \left[ {\partial }v/{\partial }n\right] \right] \Vert _{L^2(e)}^2. \end{aligned}$$
(A.1)

We will prove the following estimates on \({H^2(\Omega ,\mathcal {T}_h)}\):

$$\begin{aligned} |u|_{H^1(\Omega )}&\le C|u|_{H^2(\Omega ,\mathcal {T}_h)}&\qquad&\forall u\in {H^2(\Omega ,\mathcal {T}_h)},\end{aligned}$$
(A.2)
$$\begin{aligned} \Vert u\Vert _{L^\infty (\Omega )}&\le C|u|_{H^2(\Omega ,\mathcal {T}_h)}&\qquad&\forall u\in {H^2(\Omega ,\mathcal {T}_h)},\end{aligned}$$
(A.3)
$$\begin{aligned} \Vert \nabla u\Vert _{L^4(\Omega )}&\le C|u|_{H^2(\Omega ,\mathcal {T}_h)}&\qquad&\forall u\in {H^2(\Omega ,\mathcal {T}_h)}, \end{aligned}$$
(A.4)

where the positive constant C depends only on the shape regularity of \(\mathcal {T}_h\). The estimates (3.24)–(3.26) follow immediately since \(U_h\subset {H^2(\Omega ,\mathcal {T}_h)}\) and

$$\begin{aligned} |u|_{H^2(\Omega ,\mathcal {T}_h)}\le \Vert u\Vert _h \qquad \forall \,u\in U_h. \end{aligned}$$

First we note that the estimate (3.24) was already established in [9] in a more general setting. The proofs of (3.25) and (3.26) are based on the properties of the Lagrange interpolation operator \(\Pi _h:C(\bar{\Omega })\longrightarrow V_h\) and an enriching operator \(E_h:V_h\longrightarrow \tilde{V}_h \subset H^2_0(\Omega )\) defined by averaging [8], where \(\tilde{V}_h\) is the sixth order Argyris finite element space [2] associated with \(\mathcal {T}_h\). We have two standard estimates [7, 15] for \(\Pi _h\):

$$\begin{aligned} \Vert u-\Pi _hu\Vert _{L^\infty (T)}&\le Ch_T|u|_{H^2(T)}&\qquad&\forall \,u\in {H^2(\Omega ,\mathcal {T}_h)},\;T\in \mathcal {T}_h,\end{aligned}$$
(A.5)
$$\begin{aligned} \Vert \nabla (u-\Pi _hu)\Vert _{L^4(T)}&\le Ch_T|u|_{H^2(T)}&\qquad&\forall \,u\in {H^2(\Omega ,\mathcal {T}_h)},\;T\in \mathcal {T}_h, \end{aligned}$$
(A.6)

and the following estimate was established in [8, (3.16) and (3.17)]:

$$\begin{aligned} |\Pi _h u|_{H^2(\Omega ,\mathcal {T}_h)}\le C\Big (\sum _{T\in \mathcal {T}_h}|u|_{H^2(T)}^2\Big )^\frac{1}{2} \qquad \forall \,u\in {H^2(\Omega ,\mathcal {T}_h)}. \end{aligned}$$
(A.7)

The following estimates for \(E_h\) were established in [8, (3.24)] and [8, (3.29)]:

$$\begin{aligned} \Vert E_hv\Vert _{H^2(\Omega )}\le C|v|_{H^2(\Omega ,\mathcal {T}_h)}\qquad \forall \,v\in V_h, \end{aligned}$$
(A.8)

and

$$\begin{aligned} \Vert v-E_hv\Vert _{L^2(T)}^2\le C \Bigg (\sum _{T'\in \mathcal {T}_{h,T}} h_{T'}^4|v|_{H^2(T')}^2+ h_T^4\sum _{e\in \mathcal {E}_{h,\mathcal {V}_T}}h_e^{-1}\Vert \left[ \left[ {\partial }v/{\partial }n\right] \right] \Vert _{L^2(e)}^2\Bigg ) \quad \forall \,v\in V_h, \end{aligned}$$
(A.9)

where \(\mathcal {T}_{h,T}\) is the set of triangles in \(\mathcal {T}_h\) that share a vertex with T (including T itself) and \(\mathcal {E}_{h,\mathcal {V}_T}\) is the set of the edges in \(\mathcal {T}_h\) emanating from the vertices of T. Let \(v\in V_h\) be arbitrary. By a standard Sobolev inequality [1], we have

$$\begin{aligned} \Vert E_h v\Vert _{L^\infty (\Omega )}\le C_\Omega \Vert E_hv\Vert _{H^2(\Omega )}. \end{aligned}$$
(A.10)

Furthermore, by (A.1), (A.9) and a standard inverse estimate [7, 15], we also have

$$\begin{aligned} \Vert v-E_hv\Vert _{L^\infty (\Omega )}\le Ch|v|_{H^2(\Omega ,\mathcal {T}_h)}. \end{aligned}$$
(A.11)

In view of (A.8), (A.10), (A.11) and the triangle inequality, we have

$$\begin{aligned} \Vert v\Vert _{L^\infty (\Omega )}\le C|v|_{H^2(\Omega ,\mathcal {T}_h)}\qquad \forall \,v\in V_h. \end{aligned}$$
(A.12)

Using (A.1), (A.5), (A.7), and (A.12), we can now finish the proof of (A.3):

$$\begin{aligned} \Vert u\Vert _{L^\infty (\Omega )}&\le \Vert u-\Pi _hu\Vert _{L^\infty (\Omega )}+\Vert \Pi _hu\Vert _{L^\infty (\Omega )}\\&\le C\big (h|u|_{H^2(\Omega ,\mathcal {T}_h)}+|\Pi _hu|_{H^2(\Omega ,\mathcal {T}_h)}\big )\le C|u|_{H^2(\Omega ,\mathcal {T}_h)}\qquad \forall \,u\in U_h. \end{aligned}$$

The proof of (A.4) is similar. Again, by a standard Sobolev inequality, we have

$$\begin{aligned} \Vert \nabla (E_hv)\Vert _{L^4(\Omega )} \le C_\Omega \Vert E_hv\Vert _{H^2(\Omega )}. \end{aligned}$$
(A.13)

On the other hand, we have

$$\begin{aligned} \Vert \nabla (v-E_hv)\Vert _{L^\infty (T)}&\le Ch_T^{-2}\Vert v-E_hv\Vert _{L^2(T)} \qquad \forall \,T\in \mathcal {T}_h, \end{aligned}$$
(A.14)
$$\begin{aligned} \Vert \nabla (v-E_hv)\Vert _{L^2(T)}&\le Ch_T^{-1}\Vert v-E_hv\Vert _{L^2(T)} \qquad \forall \,T\in \mathcal {T}_h, \end{aligned}$$
(A.15)

by standard inverse estimates. It follows from (A.1), (A.9), (A.14) and (A.15) that

$$\begin{aligned} \Vert \nabla (v-E_hv)\Vert _{L^4(\Omega )}^4&\le \sum _{T\in \mathcal {T}_h}\Vert \nabla (v-E_hv)\Vert _{L^2(T)}^2 \Vert \nabla (v-E_hv)\Vert _{L^\infty (T)}^2\\&\le |v|_{H^2(\Omega ,\mathcal {T}_h)}^2\sum _{T\in \mathcal {T}_h}\Vert \nabla (v-E_hv)\Vert _{L^2(T)}^2 \le Ch^2|v|_{H^2(\Omega ,\mathcal {T}_h)}^4, \end{aligned}$$

and hence

$$\begin{aligned} \Vert \nabla (v-E_hv)\Vert _{L^4(\Omega )}\le Ch|v|_{H^2(\Omega ,\mathcal {T}_h)}\qquad \forall \,v\in V_h. \end{aligned}$$
(A.16)

Using (A.8), (A.13), (A.16) and the triangle inequality, we find

$$\begin{aligned} \Vert \nabla v\Vert _{L^4(\Omega )}\le C|v|_{H^2(\Omega ,\mathcal {T}_h)}\qquad \forall \,v\in V_h. \end{aligned}$$
(A.17)

The estimate (A.4) now follows from (A.1), (A.6), (A.7) and (A.17):

$$\begin{aligned} \Vert \nabla u\Vert _{L^4(\Omega )}&\le \Vert \nabla (u-\Pi _hu)\Vert _{L^4(\Omega )}+\Vert \nabla \Pi _hu\Vert _{L^4(\Omega )}\\&\le C\big (h|u|_{H^2(\Omega ,\mathcal {T}_h)}+|\Pi _hu|_{H^2(\Omega ,\mathcal {T}_h)}\big )\le C|u|_{H^2(\Omega ,\mathcal {T}_h)}\qquad \forall \,u\in U_h. \end{aligned}$$

Remark A.1

The estimates (A.2)–(A.4) are also valid for general partitions (cf. [9]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, S.C., Neilan, M., Reiser, A. et al. A \(C^0\) interior penalty method for a von Kármán plate. Numer. Math. 135, 803–832 (2017). https://doi.org/10.1007/s00211-016-0817-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0817-y

Mathematics Subject Classification

Navigation