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Abstract

When iteratively solving linear systems By = b with Hermitian positive semi-definite B,
and in particular when solving least-squares problems for Ax = b by reformulating them
as AA∗y = b, it is often observed that SOR type methods (Gauß-Seidel, Kaczmarz) per-
form suboptimally for the given equation ordering, and that random reordering improves
the situation on average. This paper is an attempt to provide some additional theoretical
support for this phenomenon. We show error bounds for two randomized versions, called
shuffled and preshuffled SOR, that improve asymptotically upon the best known bounds for
SOR with cyclic ordering. Our results are based on studying the behavior of the triangular
truncation of Hermitian matrices with respect to their permutations.

Keywords: SOR method, Kaczmarz method, random ordering, triangular truncation, con-
vergence estimates.
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1 Introduction

In this paper, we discuss the influence of the equation ordering in a linear system By = b
on deriving upper bounds for the convergence speed of the classical successive over-relaxation
(SOR) method. We assume that B is a complex n× n Hermitian positive semi-definite matrix
with positive diagonal part D. If we write B = L+D+L∗, where L denotes the strictly lower
triangular part of B and ∗ stands for Hermitian conjugation, then one step of the classical SOR
iteration reads

y(k+1) = y(k) + ω(D + ωL)−1(b−By(k)), k = 0, 1, . . . . (1)

The classical Gauß-Seidel method for solving By = b emerges if one takes ω = 1. If one attempts
to solve a general linear system Ax = b in the least-squares sense, then one has the choice to
apply the SOR method to either the normal equation A∗Ax = A∗b or to AA∗y = b. In the
latter case, the algorithm resulting from applying (1) to B = AA∗ is equivalent to the Kaczmarz
method (here approximations to the solution of Ax = b are recovered by setting x(k) = A∗y(k)),
see [6].

To make the paper more readable and avoid technical detail, we make two additional assump-
tions. First, we consider only consistent systems (b ∈ Ran(B)). This guarantees convergence of
(1) for any 0 < ω < 2 and any y(0) to a solution of By = b, while for inconsistent systems the
method diverges (this does not contradict the known convergence of the Kaczmarz method for
inconsistent systems Ax = b since the divergence manifests itself only in the Ker(B) = Ker(AA∗)
component of y(k) which is annihilated when recovering x(k) = A∗y(k)). Secondly, we assume
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that B has unit diagonal (D=I) which can always be achieved by transforming to the equivalent
rescaled system D−1/2BD−1/2ỹ = D−1/2b (for the Kaczmarz algorithm, one would simply use
row normalization in A). Alternatively, the analysis of the SOR method can be carried out with
arbitrary D > 0, with minor changes in some places, see [11] for some details. With both ap-
proaches, D enters the final results via the spectral properties of the transformed B or its norm,
respectively. Note that with D = I, one step of (1) consists of n consecutive projection steps
onto the i-th coordinate direction, i = 1, 2, . . . , n, and the method thus becomes an instance of
the alternating direction method (ADM). Unless stated otherwise, these two assumptions are
silently assumed from now on.

Since any positive semi-definite B can be factored, in a non-unique way, as

B = AA∗,

we can always assume that B is produced by some n×m matrix A with unit norm rows. Denote
by r = rank(B) ≤ min(n,m) its rank, the spectral properties of A and B are obviously related:
The non-zero eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr of B are given by the squares of the non-zero
singular values of A. Thus, if we define the essential condition number κ̄(A) of a matrix as the
quotient of its largest and smallest non-zero singular values then

κ̄ := κ̄(B) = κ̄(A)2 =
λ1

λr
.

The unit diagonal assumption D = I for B implies 0 < λr ≤ 1 ≤ λ1 ≤ n. In the convergence
analysis below, we will use the energy semi-norm |y|B = 〈By, y〉1/2 = ‖A∗y‖1/2 associated with
B, it is a norm if and only if B is non-singular, i.e., positive definite. Here, 〈·, ·〉 and ‖ · ‖ denote
the usual Euclidian scalar product and norm in C

n, respectively. Later, we will use the notation
‖ · ‖ also for matrices (then it stands for their spectral norm) which should be clear from the
context and not lead to any confusion.

Condition numbers and other spectral properties often enter the asymptotic error estimates of
iterative schemes for solving linear systems, the best known examples are the standard bounds
for the Jacobi-Richardson and conjugate gradient methods for systems with positive definite
B, see e.g., [6]. For the SOR method, such upper estimates have been established in [10] for
non-singular B, and recently improved in [11] within the framework of the Kaczmarz iteration
to include the semi-definite case:

Theorem 1. Let B be a given n×n Hermitian positive semi-definite matrix with unit diagonal,
and assume that By = b is consistent, i.e., possesses at least one solution ȳ. Then the SOR
iteration (1) converges for 0 < ω < 2 in the energy semi-norm associated with B according to

|ȳ − y(k)|2B ≤ (1− (2− ω)ωλ1

(1 + 1
2⌊log2(2n)⌋ωλ1)2κ̄

)k|ȳ − y(0)|2B , k ≥ 1. (2)

If B is singular, then for sufficiently small rank r the term 1
2 log2(2n) can be replaced by the

smaller term C0 ln r, where C0 is an absolute constant.

The proof of (2) rests on rewriting the squared energy semi-norm of Qy, where

Q = I − ω(I + ωL)−1B

is the error iteration matrix associated with (1), as

|Qy|2B = |y|2B − ω(2− ω)‖(I + ωL)−1By‖2 ≤ |y|2B − ω(2− ω)‖By‖2
‖I + ωL‖2 .
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and using a spectral norm inequality for L from [10],

‖L‖ ≤ 1

2
⌊log2(2n)⌋‖B‖, (3)

to estimate the term ‖I +ωL‖ ≤ 1+ω‖L‖. For singular B with small rank r < n, the estimate
(3) has been improved in [11] to

‖L‖ ≤ C0 ln r‖B‖, r ≥ 2, (4)

where C0 is a fixed positive constant. It is well known that the estimate (3) is sharp in its
logarithmic dependency on n, more precisely

bn := sup
B 6=0

‖L‖
‖B‖ ≍ 1

π
lnn, n → ∞,

where the supremum is taken with respect to all n×n matrices B, and ≍ stands for asymptotic
equality (see [3, 9] for sharp estimates and examples). Similar lower estimates hold also for
Hermitian positive semi-definite matrices B with unit diagonal D = I, and examples exist that
the necessity of the logarithmic terms in (2), see [10].

For non-singular B, i.e., when | · |B becomes a norm and the system has full rank r = n, the
outlined idea of proof for Theorem 1 has been carried out in detail in [10]. The changes for
singular B are minimal, the proof of (4) for this case can be found in [11, Theorem 4], see also
the proof of Part b) of Theorem 4 in Section 3.

The crucial inequalities (3) and (4), and consequently the error bounds in Theorem 1, suffer from
one serious drawback: They are invariant under simultaneously reordering rows and columns
in B = AA∗ resp. reordering the rows in A. Indeed, Bσ = PσBP ∗

σ has the same spectrum
and spectral norm as B for any permutation σ of the index set {1, . . . , n} (Pσ denotes the
associated n×n row permutation matrix), while the spectral properties of the lower triangular
part Lσ of Bσ depend on σ. As a matter of fact, in practice it is often observed (for example,
see [16, 14, 5]) that reordering improves the convergence behavior of SOR methods as well
as other, more general, alternating directions, subspace correction, and projection onto convex
sets (POCS) methods. The interest in explaining this observation theoretically has been further
stimulated by convergence results for a randomized Kaczmarz iteration in [13]. In the language
of SOR for solving a consistent system By = b with D = I, instead of performing the n
consecutive projection steps on the i-th coordinate that compose the SOR iteration step (1) in
the fixed order i = 1, 2, . . . , n, the method in [13] performs the projection steps on coordinate
directions by randomly selecting i uniformly and independently from {1, . . . , n} in each single
step. For a fair comparison with the original SOR iteration (1), and the randomized SOR
methods discussed below, it is appropriate to combine n single projection steps on randomly
and independently chosen coordinate directions into one iteration step. The iterates y(k) of this
method which we call for short single step randomized SOR iteration are now random variables.
Under the same assumptions as in Theorem 1, the following estimate for the expectation of the
squared energy semi-norm error can be deduced from [13]:

E(|y(k) − y∗|2B) ≤
(

1− (2− ω)ωλ1

nκ̄

)kn

|y(0) − y∗|2B , k ≥ 1. (5)

The two upper estimates (2) and (5) are obtained by different techniques, and although a rough
comparison of the upper bounds suggests that the single step randomized SOR beats the original
SOR, in practice this is generally not true, and depends on the given system and the ordering
of the equations in it.

In this paper, we consider two different randomization strategies for SOR closer to the original
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method. In the first, given the k-th iterate y(k), we choose (independently and randomly) a
permutation σ of {1, . . . , n}, and do one full SOR iteration step (1) with By = b and y(k)

replaced by Bσyσ = bσ and y
(k)
σ = Pσy

(k), where yσ = Pσy, bσ = Pσb. Then the original

order is restored by setting y(k+1) = P ∗
σy

(k+1)
σ . This approach which we call for short shuffled

SOR iteration is equivalent to a random ordering without repetition in each sweep of n steps
of the single step randomized SOR iteration. In practice, random ordering without repetition
is considered superior to random ordering with repetition although theoretical proof for this
observation is yet missing, see the conjectures in [12, 4]. In [15], where the counterpart of
the shuffled SOR iteration for coordinate descent methods in convex optimization appears as
algorithm EPOCHS, similar statements can be found.

It is also tempting to investigate the effect of a one-time reordering, followed by the application
of the SOR iteration in the classical, cyclic fashion (we call this preshuffled SOR iteration).
In other words, the preshuffled SOR iteration coincides with a shuffled SOR iteration if we
reuse the randomly generated σ from the iteration step at k = 0 for all further iteration steps at
k > 0. Observe that in terms of the Kaczmarz iteration these two schemes merely correspond to
shuffling the rows in the row-normalized matrix A, i.e., Ax = b is replaced by PσAx = Pσb. The
numerical experiments presented in [11] suggest that shuffled and preshuffled SOR iterations
often perform in expectation equally good, and better than the single step randomized iteration.

The present paper is an attempt to gain some insight into what can be expected from these
randomization strategies. Speaking in mathematical terms, if

Qσ = (I + ωLσ)
−1((1 − ω)I − ωL∗

σ),

denotes the error iteration matrix of the SOR method applied to Bσyσ = bσ, then we aim at
investigating the quantity

E[|Qy|2B ] :=
1

n!

∑

σ

|Qσyσ|2Bσ
, |y|B = 1, (6)

to obtain upper bounds for the expected square energy semi-norm error in the shuffled SOR
iteration.

As was outlined above, obtaining estimates for the norm behavior of Qσ, and of relevant averages
such as (6), must be closely related to studying the behavior of Lσ which will be at the heart of
our considerations in Section 2. In particular, we apply a corollary of the recently proved paving
conjecture to show that for any positive semi-definite B with D = I there is a permutation σ
(depending on B) with the property

‖Lσ‖ ≤ C1‖B‖, (7)

where C1 is an absolute constant. We further establish that

‖E[LL∗]‖ < ‖B‖2, E[LL∗] :=
1

n!

∑

σ

P ∗
σLσL

∗
σPσ , (8)

which will lead to bounds for (6).

In Section 3, we apply the results of Section 2 to establish two new error decay bounds for the
above mentioned shuffled SOR iterations. First of all, we show that the quantity in (6) satisfies

E(|Qy|2B) ≤ (1− (2− ω)ωλ1

(1 + ωλ1)2κ̄(B)
)|y|2B ,

which implies a bound for the expected square energy semi-norm error decay of the shuffled SOR
iteration that compares favorably with the bounds in Theorem 1, as the logarithmic dependence
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on n and r is removed. Next, we prove using (7) that there exists a σ such that the preshuffled
SOR iteration can achieve the same effect, i.e., replacing the 1

2⌊log2(2(n−1)⌋ resp. C0 ln r factor
by the constant C1 from (7). Although asymptotic in nature, and in case of the preshuffled
SOR iteration due to the currently available estimates for C1 not yet practical, the bounds
established in Theorem 4 should be viewed as theoretical support for the numerically observed
convergence behavior of shuffled and preshuffled SOR iterations.

2 Triangular Truncation and Reordering

If not stated otherwise, in this section B = L + D + L∗ belongs to Hn, the set of all n × n
Hermitian matrices, with no assumptions on positive semi-definiteness or normalization of its
diagonal elements (i.e., not assuming D = I). The notation of Section 1 is reused for this
slightly more general situation.

Theorem 2. If B ∈ Hn then the average operator E[LL∗] defined in (8) satisfies

‖E[LL∗]‖ ≤ 4‖B‖2.

Moreoever, if D = I and B is positive semi-definite, then (8) holds.

Proof. For given B ∈ Hn, set H = L+ L∗. Since ‖D‖ ≤ ‖B‖, we have

‖H‖ = ‖B −D‖ ≤ ‖B‖+ ‖D‖ ≤ 2‖B‖, (9)

while for positive semi-definite B

‖H‖ = ‖B − I‖ ≤ max(‖B‖ − 1, 1) ≤ ‖B‖. (10)

Thus, establishing (8) with B replaced by H is enough.

Straightforward computation shows that

(P ∗
σLσL

∗
σPσ)st =

min(s,t)−1
∑

k=1

Hsσ(k)Hσ(k)t, s, t = 1, . . . , n.

By counting the number of permutations for which σ(k) = l for some k = 1, . . . ,min(s, t) − 1
we get

1

n!

∑

σ

(P ∗
σLσL

∗
σPσ)st =

(n− 1)!

n!
(min(s, t)− 1)

n∑

l=1

HslHlt =
min(s, t)− 1

n
(H2)st.

Hence
1

n!

∑

σ

(P ∗
σLσL

∗
σPσ) =

1

n
K ◦H2,

where ◦ denotes Hadamard multiplication, and

K =


















0 0 0 . . . 0 0

0 1 1 . . . 1 1

0 1 2 . . . 2 2
...

...
...

. . .
...

...

0 1 2 . . . n− 2 n− 2

0 1 2 . . . n− 2 n− 1


















. (11)
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In other words, the above Hadamard product can be written as the linear combination of n− 1
diagonally projected submatrices of H2, each of norm ≤ ‖H2‖. This gives

‖ 1

n!

∑

σ

P ∗
σLσL

∗
σPσ‖ ≤ n− 1

n
‖H2‖ < ‖H‖2,

which completes the proof.

The following result was suggested to the first author by B. Kashin (Steklov Institute, Moscow),
and is included here with his permission.

Theorem 3. There is an absolute constant C2 such that for any B ∈ Hn there exists a permu-
tation σ for which

‖Lσ‖ ≤ C2‖B‖. (12)

Moreover, if D = I and B is positive semi-definite then (7) holds with an absolute constant
C1 ≤ C2.

Proof. Weaker versions of (12), where the spectral norm ‖L‖ = ‖L‖ℓn
2
→ℓn

2
is replaced by

‖L‖ℓn
2
→ℓnq with 1 ≤ q < 2, have been proved in [7] and [1].

For the proof of (12) we explore the following particular result on matrix paving, which for
a long time was known as Anderson’s Paving Conjecture for Hermitian matrices with small
diagonal. This conjecture is equivalent to the Kadison-Singer Problem, a positive solution of
which was recently given in [8]. We formulate it for B ∈ Hn with zero diagonal, and refer to
the recent expository paper [2] for details.

Theorem (Anderson’s Paving Conjecture). For any 0 < ǫ < 1, there is an integer γ(ǫ) ≥ 2
such that for any n ∈ N and any B ∈ Hn with zero diagonal, there exists a partition

w1 ∪ w2 . . . ∪ wγ = {1, 2, . . . , n}, wi ∩ wj = ∅, i 6= j,

into γ ≤ γ(ǫ) non-empty index subsets such that

‖Bwk
‖ ≤ ǫ‖B‖, k = 1, . . . , γ.

Here Bwk
is the |wk| × |wk| submatrix corresponding to the index set wk × wk.

Returning to the proof of Theorem 3, by (9) it is enough to consider matrices B ∈ Hn with zero
diagonal. For given 0 < ǫ < 1 we proceed by induction in n to establish (12) with a constant
Cǫ := (γ(ǫ)−1)/(1− ǫ), where γ(ǫ) is defined in the above paving theorem. To find an estimate
for the best constant C2 in (12), we then optimize with respect to ǫ resp. γ. Any σ will do for
n = 2 since Cǫ > 1 and in this case ‖L‖ = ‖B‖. Suppose the statement holds for all matrix
dimensions less than n. For B ∈ Hn with zero diagonal, consider the partition w1, w2, . . . , wγ

of in the above paving theorem, and denote by σ0 the permutation that makes Bσ0
contain the

submatrices Bwk
as consecutive diagonal blocks, as depicted in Figure 1 for γ = 3. Let Blk be

the rectangular submatrices below Bwk
in this Bσ0

, k = 1, . . . , γ − 1.

❅
❅

❅
❅
❅
❅
❅
❅
❅
❅
❅
❅

Bw1

Bw2

Bw3
Bl1 Bl2

Figure 1: Block structure of Bσ

6



For each k = 1, . . . , γ we have |wk| < n, and by the induction assumption there exist permuta-
tions σk such that

‖(Lwk
)σk

‖ ≤ Cǫ‖Bwk
‖, k = 1, . . . , γ,

where (Lwk
)σk

is the strictly lower triangular part of (Bwk
)σk

.

By superposing the permutations σk within each block with σ0, we get the desired σ: In each
diagonal block of Bσ we have now (Bwk

)σk
instead of Bwk

, and the rectangular submatrices B′
lk

below the diagonal blocks are row and column permuted copies of the previous Blk .

We split Lσ into the sum of a block-diagonal matrix L1 containing all (Lwk
)σk

, and another
lower triangular matrix L2 containing all rectangular submatrices B′

lk
. Since

‖L1‖ ≤ max
k=1,...,γ

‖(Lwk
)σk

‖ ≤ Cǫ max
k=1,...,γ

‖Bwk
‖ ≤ Cǫǫ‖B‖,

and

‖L2‖ ≤
γ−1
∑

k=1

‖B′
lk
‖ ≤ (γ − 1)‖B‖ ≤ Cǫ(1− ǫ)‖B‖

(note that each B′
lk

is a row and column permuted version of a rectangular submatrix of the
original B, thus ‖B′

lk
‖ ≤ ‖B‖). Therefore,

‖Lσ‖ ≤ ‖L1‖+ ‖L2‖ ≤ Cǫ‖B‖, (13)

which concludes the induction step.

To find numerical estimates for C2, we need bounds for γ(ǫ). The bounds given in [2, Section
4]) are very rough, therefore we rely on Corollary 26 from Tao’s blog on the Kadison-Singer
problem accessible at https://terrytao.wordpress.com/2013/11/04/ which implies the fol-
lowing: For given γ ≥ 2, there exists a partition into γ2 index subsets such that the statement
of Theorem 2 holds with ǫ = ǫ(γ) = 2/γ + 2

√

2/γ. For γ ≥ 12, one has ǫ < 1, and we conclude
that

C2 ≤ 2 inf
0<ǫ<1

C(ǫ) ≤ 2 inf
γ≥12

C(ǫ(γ)) = 2 min
γ≥12

γ2 − 1

1− 2/γ − 2
√

2/γ
= 2907,

with the minimum achieved for γ = 18. The factor 2 comes from taking into account (9). This
bound is overly pessimistic (note that results closer to the known lower bound γ(ǫ) ≥ 1/ǫ2

would result in much smaller values of C2).

It is therefore worth looking for improvements if B is positive semi-definite and has unit diagonal
D = I. Then B − I is a Hermitian matrix with zero diagonal and spectrum in [−1, ‖B‖ − 1]
satisfying (10), and Corollary 25 of Tao’s blog yields, for any γ ≥ 2, the existence of a partition
into γ index subsets such that in Theorem 2 we can take ǫ = ǫ′(γ) = 1/γ + 2/

√
γ. Repeating

the above proof steps for this case, we see that

C1 ≤ min
γ≥6

γ − 1

1− 1/γ − 2/
√
γ
≤ 32.42

(here ǫ′(γ) < 1 for γ ≥ 6, and the minimum is achieved for γ = 12).

It remains an open question if an inequality similar to (12) also holds for the average of the
norms ‖Lσ‖, namely if

E[‖L‖] := 1

n!

∑

σ

‖Lσ‖ ≤ Cn‖B‖, B ∈ Hn, (14)

holds for some (bounded or slowly increasing) sequence of positive constants Cn = o(ln(n))
(for a related result, see [1, Theorem 8.4]). A proof of (14) would imply improved asymptotic
estimates for the expected convergence rate of the preshuffled SOR iteration, and not only for
the best possible convergence rate, as established in Part b) of Theorem 4 below.
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3 Application to SOR Iterations

In this section we show a priori convergence estimates for the shuffled and preshuffled SOR
iterations that improve upon the one for the standard SOR iteration (1) stated in Theorem
1, at least asymptotically. These estimates are formulated in terms of the energy semi-norm
associated with B, and are equivalent to estimates in the usual Euclidian norm for the Kacz-
marz iteration applied to a consistent linear system Ax = b, where B = AA∗. The result is
summarized in the following

Theorem 4. Let By = b be a consistent linear system with positive semi-definite B = L+ I +
L∗ ∈ Hn, and denote by ȳ an arbitrary solution of it. Fix any ω ∈ (0, 2).

a) The expected squared energy semi-norm error of the shuffled SOR iteration converges expo-
nentially with the bound

E(|ȳ − y(k)|2B) ≤
(

1− ω(2− ω)λ1

(1 + ωλ1)2κ̄

)k

|ȳ − y(0)|2B , k ≥ 1,

for any ω ∈ (0, 2).

b) There exists some ordering σ such that the classical SOR iteration on the system Bσyσ = bσ
converges for any ω ∈ (0, 2)with square energy semi-norm error decay

|ȳ − y(k)|2B ≤
(

1− ω(2− ω)λ1

(1 + C1ωλ1)2κ̄

)k

|ȳ − y(0)|2B , k ≥ 1,

where the constant C1 satisfies (7).

Proof. We start with b). Take the σ for which ‖Lσ‖ ≤ C1‖B‖ according to (7). To simplify
notation, let us drop the subscript σ so that now Bσ = B = L + I + L∗, bσ = b, Pσ = I,
and ‖L‖ ≤ C1‖B‖. Recall the notation Q = I − ω(I + ωL)−1B for the error iteration matrix,
and check that C

n = U ⊕ V , where U = Ker(B) and V = (I + ωL)−1Ran(B) are Q-invariant
subspaces (obviously, Q is the identity when restricted to U). Write the SOR iterates as
y(k) = u(k) + v(k), u(k) ∈ U , v(k) ∈ V . Since y(k+1) = Qy(k) + ω(I + ωL)−1b, by induction it
follows that

u(k) = u(0), v(k) = Qkv(0) + ω(I +Q+ . . . +Qk−1)(I + ωL)−1b, k ≥ 1. (15)

Now, any solution ȳ of By = b can be written as ȳ = u+ v̄, where u ∈ U is arbitrary, and v̄ ∈ V
is unique. Because

|ȳ − y(k)|2B = 〈B(ȳ − y(k)), ȳ − y(k)〉 = 〈B(v̄ − v(k)), v̄ − v(k)〉 = |v̄ − v(k)|2B,

and v̄ − v(k+1) = v̄ − Qv(k) − ω(I + ωL)−1Bv̄ = Q(v̄ − v(k)), all we need is an estimate of the
form

|Qv|2B ≤ ρ|v|2B , v ∈ V.

By substituting ωB = (I + ωL) + (I + ωL∗)− (2− ω)I below, we get

|Qv|2B = 〈Bv, v〉 − ω〈B((I + ωL)−1 + (I + ωL∗)−1)Bv, v〉
+ω〈B(I + ωL∗)−1(ωB)(I + ωL)−1Bv, v〉

= 〈Bv, v〉 − ω(2− ω)‖(I + ωL)−1Bv‖2.

Using (7), the last term can be bounded from below as

‖(I + ωL)−1Bv‖2 ≥ ‖Bv‖2
‖I + ωL‖2 ≥ λr|v|2B

(1 + ωC1‖B‖)2 =
λ1|v|2B

(1 + ωC1λ1)2κ̄
.
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Therefore, we obtain

ρ = 1− ω(2− ω)λ1

(1 + ωC1λ1)2κ̄
,

which gives the bound stated in Part b). Moreover, since ‖v‖ and |v|B are equivalent norms on
V , we see that v(k) → v̄. According to (15)

y(k) → u(0) + v̄,

so the SOR iteration converges in the usual sense as well, with the U = Ker(B) component
in the limit depending on the starting vector y(0) if B is singular. Returning to the original
formulation as preshuffled SOR iteration, the Ker(B) component of the limit would also depend
on σ.

The result of Part a) requires a similar, yet slightly more subtle analysis. Recall that in each step
of the shuffled iteration, given the current iterate y(k), we choose a permutation σ at random,
apply the SOR step (with matrix Bσ = PσBP ∗

σ and right-hand side bσ = Pσb) to Pσy
(k), and

return afterwards to the original ordering by multiplying with P ∗
σ . In other words, the iteration

step is now

y(k+1) = P ∗
σ [(I − ω(I + ωLσ)

−1Bσ)Pσy
(k) + ω(I + ωLσ)

−1bσ]

= (I − ωP ∗
σ (I + ωLσ)

−1PσB
︸ ︷︷ ︸

=Qσ

)y(k) + ωP ∗
σ (I + ωLσ)

−1Pσb.

Thus, as before

|e(k+1)
σ |2B = |Qσ(ȳ − y(k))|2B = |e(k)|2B − ω(2− ω)‖(I + ωLσ)

−1PσB(e(k))‖2,

where for short we have set e
(k+1)
σ := ȳ − y(k+1) and e(k) := ȳ − y(k) (indicating that y(k+1)

depends on σ, while y(k) is considered fixed at the moment). The expected square semi-norm
error after k + 1 iterations (conditioned on the error e(k)) is thus

1

n!

∑

σ

|e(k+1)
σ |2B = |e(k)|2B − ω(2− ω)

n!

∑

σ

‖(I + ωLσ)
−1PσBe(k)‖2. (16)

We give a lower estimate for the last term in (16) with Be(k) temporarily replaced by any unit
vector z. Since for positive definite S ∈ Hn we have

〈Sy, y〉〈S−1y, y〉 ≥ 1, ‖y‖ = 1,

(indeed, 1 = ‖y‖4 = 〈S1/2y, S−1/2y〉2 ≤ ‖S1/2y‖2‖S−1/2y‖2), applying this inequality with
S = (I + ωLσ)(I + ωL∗

σ) and y = Pσz, we get

‖(I + ωLσ)
−1Pσz‖−2 ≤ ‖(I + ωL∗

σ)Pσz‖2 = 〈‖z‖2 + ω(Hz, z) + ω2(
1

n!

∑

σ

P ∗
σLσL

∗
σPσ)z, z〉

where as before H = B − I = L+ L∗. Thus, by the arithmetic-harmonic-mean inequality,

1

n!

∑

σ

‖(I + ωLσ)
−1Pσz‖2 ≥ n!

(
∑

σ

‖(I + ωLσ)
−1Pσz‖−2

)−1

≥ n!

(
∑

σ

‖(I + ωL∗
σ)Pσz‖2

)−1

=

(

(‖z‖2 + ω(Hz, z) + ω2(
1

n!

∑

σ

P ∗
σLσL

∗
σPσz, z)

)−1

.
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By Theorem 2, the sum in the last expression can be estimated by

‖z‖2 + ω(Hz, z) + ω2(
1

n!

∑

σ

P ∗
σLσL

∗
σPσz, z) ≤ (1 +w‖H‖)2 ≤ (1 + ωλ1)

2.

This gives the needed auxiliary result

1

n!

∑

σ

‖(I + ωLσ)
−1Pσz‖2 ≥ (1 + ωλ1)

−2, ‖z‖ = 1.

Going back to the notation of (16), we therefore have

1

n!

∑

σ

|e(k+1)
σ |2B = |e(k)|2B − ω(2− ω)

(1 + ωλ1)2
‖Be(k)‖2 ≤

(

1− ω(2− ω)λr

(1 + ωλ1)2

)

|e(k)|2B , (17)

which implies the desired estimate for the expected square energy semi-norm error after one
iteration step, conditioned on the previous iterate. Since the random choice of σ is considered
independent from iteration step to iteration step, we can take the expectation of |e(k)|2B in (17)
and arrive at the statement of Part a). Finally, we note that for singular B, the result of Part
a) only implies that the unique solution component in Ran(B) is recovered at an exponential
rate from the iterates (in expectation).

We conclude with a few further comments on the estimates for shuffled SOR iterations obtained
in Theorem 4. First of all, they are worst-case upper bounds for the class of all consistent
systems By = b with Hermitian positive semi-definite matrix B and normalization condition
D = I. As such, they improve upon the worst-case upper bounds for fixed cyclic ordering
from Theorem 1, at least in the asymptotic regime n → ∞. The current estimate C1 ≤ 32.42
entering the bound for the preshuffled SOR iteration is certainly too pessimistic compared to
our numerical experience reported in [11], it is due to our reliance on Theorem 2 for which
currently only suboptimal quantitative versions, i.e., crude estimates for γ(ǫ), are available.
Finding better estimates for γ(ǫ) and the constant C1 in (7), or replacing the use of simple
norm estimates for L by more subtle techniques, would be desirable. We leave this for future
work.

Another issue is the formal superiority of the bound (5) for the single-step randomized SOR
iteration compared to our results which is not reflected in the actual performance of the methods
in many tests, where shuffled and preshuffled SOR iterations compete well. The appearance of
an additional factor λ1 in the denominator of our convergence rate estimates in Theorems 1 and
4 compared to (5) is inherent to our approach of analyzing the error reduction per sweep rather
than estimating the single-step error reduction. Due to the assumed normalization D = I,
we have 1 ≤ λ1 ≤ n, however in many practical cases (and for typical ensembles of random
matrices) the actual value of λ remains close to 1 which partly mitigates the issue. We conclude
with an academic example showing that the extra λ1 factor in the denominator of the bound in
Theorem 1 is necessary (whether this is also true for the bounds in Theorem 4 remains open).

For each m ∈ N, consider the homogenous linear system By = 0, where B = AA∗ is induced by
the 2m× 2 matrix A with unit norm row vectors aj given by

aj =
(

cos((j − 1)θm), sin((j − 1)θm)
)

, j = 1, . . . , 2m, θm :=
π

2m
. (18)

It is easy to check that A∗A = mI. Thus, B has rank r = 2, essential condition number 1,
and spectral norm ‖B‖ = λ1 = m. As mentioned in the introduction, applying the Gauß-
Seidel method (ω = 1) to By = 0 is the same as applying the Kaczmarz aka ADM method to
Ax = 0. From a geometric point of view (see the figure below), since the 2m hyperplanes the
ADM method for Ax = 0 projects on split the plane with equal angles θm, the error reduction

10



rate per single step of the ADM iteration with cyclic ordering is simply cos θm, and becomes
increasingly slow as m grows. The convergence rate of the squared error per sweep is thus

(cos θm)2m ≈ (1− π2

8m2
)2m ≈ 1− π2

4m
, m → ∞.

This shows that without the λ1 = m factor in the denominator of the bound (2) from Theorem
1 we would arrive at a contradiction.
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Figure 2: Hyperplanes for ADM example with m = 4
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