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Abstract. For a large Hermitian matrix A ∈ CN×N , it is often the case

that the only affordable operation is matrix-vector multiplication. In such

case, randomized method is a powerful way to estimate the spectral density
(or density of states) of A. However, randomized methods developed so far

for estimating spectral densities only extract information from different ran-

dom vectors independently, and the accuracy is therefore inherently limited
to O(1/

√
Nv) where Nv is the number of random vectors. In this paper we

demonstrate that the “O(1/
√
Nv) barrier” can be overcome by taking advan-

tage of the correlated information of random vectors when properly filtered
by polynomials of A. Our method uses the fact that the estimation of the

spectral density essentially requires the computation of the trace of a series
of matrix functions that are numerically low rank. By repeatedly applying A

to the same set of random vectors and taking different linear combination of

the results, we can sweep through the entire spectrum of A by building such
low rank decomposition at different parts of the spectrum. Under some as-

sumptions, we demonstrate that a robust and efficient implementation of such

spectrum sweeping method can compute the spectral density accurately with
O(N2) computational cost and O(N) memory cost. Numerical results indi-

cate that the new method can significantly outperform existing randomized

methods in terms of accuracy. As an application, we demonstrate a way to
accurately compute a trace of a smooth matrix function, by carefully balancing

the smoothness of the integrand and the regularized density of states using a

deconvolution procedure.

1. Introduction

Given an N×N Hermitian matrix A, the spectral density, also commonly referred
to as the density of states (DOS), is formally defined as

(1) φ(t) =
1

N

N∑
i=1

δ(t− λi).

Here δ is the Dirac distribution commonly referred to as the Dirac δ-“function”
(see e.g. [1, 2, 3]), and the λi’s are the eigenvalues of A, assumed here to be labeled
non-decreasingly.

The DOS is an important quantity in many physics problems, in particular in
quantum physics, and a large volume of numerical methods were developed by
physicists and chemists [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for this purpose.
Besides being used as a qualitative visualization tool for understanding spectral
characteristics of the matrix, the DOS can also be used as to quantitatively compute
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2 L. LIN

the trace of a matrix function, as given in the formal formulation below

(2) Tr[f(A)] =

N∑
i=1

f(λi) ≡ N
∫ ∞
−∞

f(t)φ(t) dt.

Here f(t) is a smooth function, and the formal integral in Eq. (2) should be inter-
preted in the sense of distribution.

If one had access to all the eigenvalues of A, the task of computing the DOS
would become a trivial one. However, in many applications, the dimension of A
is large. The computation of its entire spectrum is prohibitively expensive, and a
procedure that relies entirely on multiplications of A with vectors is the only viable
approach. Fortunately, in many applications A only has O(N) nonzero entries, and
therefore the cost of matrix-vector multiplication, denoted by cmatvec, is O(N). In
some other cases the matrix is a dense matrix but fast matrix-vector multiplication
method still exists with O(N logpN) cost, where p is a integer that is not too
large. This is the case when the matrix-vector multiplication can be carried out
effectively with fast algorithms, such as the fast Fourier transform (FFT), the fast
multipole method (FMM) [16], the hierarchical matrix [17], and the fast butterfly
algorithm [18], to name a few.

Rigorously speaking, the DOS is a distribution and cannot be directly approx-
imated by smooth functions. In order to assess the accuracy of a given numerical
scheme for estimating the DOS, the DOS must be properly regularized. The basic
idea for estimating the DOS is to first expand the regularized DOS using simple
functions such as polynomials. Then it can be shown that the estimation of the
DOS can be obtained by computing the trace of a polynomial of A, which can then
be estimated by repeatedly applying A to a set of random vectors. This proce-
dure has been discovered more or less independently by statisticians [19] and by
physicists and chemists [8, 9], and will be referred to as Hutchinson’s method in
the following. In physics such method is often referred to as the kernel polynomial
method (KPM) [10] with a few different variants. A recent review on the choice
of regularization and different numerical methods for estimating the DOS is given
in [20]. There are also a variety of randomized estimators that can be used in
Hutchinson’s method, and the quality of different estimators is analyzed in [21].

Contribution. To the extent of our knowledge, all randomized methods so far
for estimating the DOS are based on different variants of Hutchinson’s method.
These methods estimate the DOS by averaging the information obtained from
Nv random vectors directly. The numerical error, when properly defined, decays
asymptotically as O(1/

√
Nv). As a result, high accuracy is difficult to achieve:

every extra digit of accuracy requires increasing the number of random vectors by
100 fold.

In this work, we demonstrate that the accuracy for estimating the regularized
DOS can be significantly improved by making use of the correlated information
obtained among different random vectors. We use the fact that each point of the
DOS can be evaluated as the trace of a numerically low rank matrix, and such trace
can be evaluated by repeatedly applying A to a small number of random vectors,
and by taking certain linear combination of the resulting vectors. If different set of
random vectors were needed for different points on the spectrum the method will
be prohibitively expensive. However, we demonstrate that it is possible to use the
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same set of random vectors to “sweep through” in principle the entire spectrum.
Therefore we call our method a “spectrum sweeping method”.

Our numerical results indicate that the spectrum sweeping method can signifi-
cantly outperform Hutchinson type methods in terms of accuracy, as the number of
random vectors Nv becomes large. However, the computational cost and the stor-
age cost can still be large when the DOS needs to be evaluated at a large number
of points. Furthermore, the accuracy of the spectrum sweeping method may be
compromised when the right number of randomized vectors is not known a priori.
We develop a robust and efficient implementation of the spectrum sweeping method
to overcome these two problems. Under certain assumption on the distribution of
eigenvalues of the matrix A, and the cost of the matrix-vector multiplication is
O(N), we demonstrate that the computational cost of the new method scales as
O(N2) and the storage cost scales as O(N) for increasingly large matrix dimension
N . We also demonstrate that the new method for evaluating the DOS can be useful
for accurate trace estimation as in Eq. (2).

Other related works. The spectrum sweeping method is not to be confused
with another set of methods under the name of “spectrum slicing” methods [22, 23,
24, 25, 26, 27]. The idea of the spectrum slicing methods is still to obtain a partial
diagonalization of the matrix A. The main advantage of spectrum slicing methods
is enhanced parallelism compared to conventional diagonalization methods. Due
to the natural orthogonality of eigenvectors corresponding to distinct eigenvalues
of a Hermitian matrix, the computational cost for each set of processors handling
different parts of the spectrum can be reduced compared to direct diagonalization
methods. However, the overall scaling for spectrum slicing methods is still O(N3)
when a large number of eigenvalues and eigenvectors are to be computed.

Notation. In linear algebra notation, a vector w ∈ Cm is always treated as a
column vector, and its conjugate transpose is denoted by w∗. For a randomized
matrix B ∈ Cm×n, its entry-wise expectation value is denoted by E[B] and its
entry-wise variance is denoted by Var[B]. We call B ∈ Cm×n a (real) random
Gaussian matrix, if each entry of B is real, and follows independently the normal
distribution N (0, 1). In the case when n = 1, B is called a (real) random Gaussian
vector. The imaginary unit is denoted by ı.

The paper is organized as follows. In section 2 we introduce the DOS estimation
problem. We also demonstrate the Delta-Gauss-Chebyshev (DGC) method, which
is a variant of the kernel polynomial method, to estimate the DOS. We develop in
section 3 the spectrum sweeping method based on the randomized estimation of
the trace of numerically low rank matrices, and demonstrate a robust and efficient
implementation of the spectrum sweeping method in section 4. We show how the
DOS estimation method can be used to effective compute the trace of a matrix
function in section 5. Following the numerical results in section 6, we conclude and
discuss the future work in section 7.

2. Density of state estimation for large matrices

Without loss of generality, we shall assume that the spectrum of A is contained
in the interval (−1, 1). For a general matrix with spectrum contained in the interval
(a, b), we can apply a spectral transformation

Ã =
2A− (a+ b)I

b− a
.
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The spectrum of Ã is contained in (−1, 1), and all the discussion below can be

applied to Ã. The fact that the spectral density φ(t) is defined in terms of
Dirac δ-functions suggests that no smooth function can converge to the spectral
density in the limit of high resolution, in the usual Lp norms (p ≥ 1) [20]. In
order to compare different numerical approximations to the spectral density in a
meaningful way, the DOS should be regularized. One simple method is to employ
a Gaussian regularization

(3) φσ(t) =

N∑
i=1

gσ(t− λi) = Tr[gσ(tI −A)].

Here

(4) gσ(s) =
1

N
√

2πσ2
e−

s2

2σ2

is a Gaussian function. In the following our goal is to compute the smeared DOS
φσ.

The key of computing the DOS is the estimation of the trace of a matrix function
without diagonalizing the matrix. To the extent of our knowledge, randomized
methods developed so far are based on Hutchinson’s method or its variants [19, 21].
The following simple and yet useful theorem is a simple variant of Hutchinson’s
method and explains how the method works.

Theorem 1 (Hutchinson’s method). Let A ∈ CN×N be a Hermitian matrix, and
w ∈ RN be a random Gaussian vector, then

(5) E[w∗Aw] = Tr[A], Var[w∗Aw] = 2
∑
i 6=j

(ReAij)
2.

Proof. First

E[w∗Aw] = E

∑
ij

wiwjAij

 =
∑
i

Aii = Tr[A].

Here we used that E[w] = 0, E[ww∗] = I and w is a real vector. This follows
directly from that each entry of w is independently distributed and follows the
Gaussian distribution N (0, 1).

Second,

Var[w∗Aw] =E
[
(w∗Aw)2 − (Tr[A])2

]
= E

∑
ijkl

wiwjwkwlAijAkl − (Tr[A])2


=
∑
ik

AiiAkk + 2
∑
i6=j

(ReAij)
2 − (

∑
i

Aii)
2 = 2

∑
i 6=j

(ReAij)
2.

�

Using Theorem 1, if we choose W ∈ RN×Nv to be a random Gaussian matrix,
then

Tr[gσ(tI −A)] ≈ 1

Nv
Tr[W ∗gσ(tI −A)W ].

In practice in order to compute gσ(A−tI)W , we can expand gσ(A−tI) into poly-
nomials of A for each t, and then evaluate the trace of polynomial of A. A stable and
efficient implementation can be obtained by using Chebyshev polynomials. Other
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choices of polynomials such as Legendre polynomials can be constructed similarly.
Using the Chebyshev polynomial, gσ(tI − A) is approximated by a polynomial of
degree M as

(6) gσ(tI −A) ≈ gMσ (tI −A) :=

M∑
l=0

µl(t)Tl(A).

The coefficients {µl(t)} need to be evaluated for each t. Since the Dirac δ-function
is regularized using a Gaussian function, following the notion in [20] we refer to
Eq. (6) as the “Delta-Gauss-Chebyshev” (DGC) expansion. Since gσ(t − ·) is a
smooth function on (−1, 1), the coefficient µl(t) in the DGC expansion can be
computed as

(7) µl(t) =
2− δl0
π

∫ 1

−1

1√
1− s2

gσ(t− s)Tl(s) ds.

Here δl0 is the Kronecker δ symbol. With change of coordinate s = cos θ, and use
the fact that Tl(s) = cos(l arccos(s)), we have

(8) µl(t) =
2− δl0

2π

∫ 2π

0

gσ(t− cos θ) cos(lθ) dθ.

Eq. (8) can be evaluated by discretizing the interval [0, 2π] using a uniform grid, and
the resulting quadrature can be efficiently computed by the Fast Fourier Transform
(FFT). This procedure is given in Alg. 1, and this procedure is usually inexpensive.

Algorithm 1 Computing the Delta-Gauss-Chebyshev (DGC) polynomial expan-
sion at a given point t.

Input: Chebyshev polynomial degree M ;
Number of integration points 2Nθ, with Nθ > M ;
Smooth function gσ(t− ·).

Output: Chebyshev expansion coefficients {µl(t)}Ml=0.

1: Let θj = jπ
Nθ
, j = 0, . . . , 2Nθ − 1.

2: gj = gσ(t− cos θj).
3: Compute ĝ = F [g], where F is the discrete Fourier transform. Specifically

ĝl =

2Nθ−1∑
j=0

e
− ı2πjl

2Nθ gj .

4: µl(t) = 2−δl0
2Nθ

Reĝl, l = 0, . . . ,M .

Using the DGC expansion and Hutchinson’s method, φσ(t) can be approximated
by

φ̃σ(t) := Tr[gMσ (tI −A)] ≈
M∑
l=0

µl(t)
1

Nv
Tr[W ∗Tl(A)W ] ≡

M∑
l=0

µl(t)ζl.

The resulting algorithm, referred to as the DGC algorithm in the following, is given
in Alg. 2.

We remark that the DGC algorithm can be viewed as a variant of the kernel
polynomial method (KPM) [10]. The difference is that KPM formally expands
the Dirac δ-function, which is not a well defined function but only a distribution.
Therefore the accuracy of KPM cannot be properly measured until regularization
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Algorithm 2 The Delta-Gauss-Chebyshev (DGC) method for estimating the DOS.

Input: Hermitian matrix A with eigenvalues between (−1, 1);

A set of points {ti}Nti=1 at which the DOS is to be evaluated;
Polynomial degree M ; Smearing parameter σ;
Number of random vectors Nv.

Output: Approximate DOS {φ̃σ(ti)}Nti=1.

1: for each ti do
2: Compute the coefficient {µl(ti)}Ml=0 for each ti, i = 1, . . . , Nt using Alg. 1.
3: end for
4: Initialize ζk = 0 for k = 0, · · · ,M .
5: Generate a random Gaussian matrix W ∈ RN×Nv .
6: Initialize the three term recurrence matrices Vm, Vp ← 0 ∈ CN×Nv , Vc ←W .
7: for l = 0, . . . ,M do
8: Accumulate ζl ← ζl + 1

Nv
Tr[W ∗Vc].

9: Vp ← (2− δl0)AVc − Vm.
10: Vm ← Vc, Vc ← Vp.
11: end for
12: for i = 1, . . . , Nt do

13: Compute φ̃σ(ti)←
∑M
l=0 µl(ti)ζl.

14: end for

is introduced [20]. On the other hand, DGC introduces a Gaussian regularization
from the beginning, and the DGC expansion (6) is not a formal expansion, and its
accuracy can be relatively easily analyzed. The proof of the accuracy of the DGC
expansion can be obtained via the same techniques used in e.g. [28, 29, 30], and is
given below for completeness.

Let k be a non-negative integer, and Pk be the set of all polynomials of degrees
less than or equal to k with real coefficients. For a real continuous function f on
[−1, 1], the best approximation error is defined as

(9) Ek(f) = min
p∈Pk

{
‖f − p‖∞ := max

−1≤x≤1
|f(x)− p(x)|

}
.

It is known that such best approximation error is achieved by Chebyshev polyno-
mials [31]. Consider an ellipse in the complex plane C with foci in −1 and 1, and
a > 1, b > 0 be the half axes so that the vertices of the ellipse are a,−a, ib,−ib,
respectively. Let the sum of the half axes be χ = a + b, then using the identity
a2 − b2 = 1 we have

a =
χ2 + 1

2χ
, b =

χ2 − 1

2χ
.

Thus the ellipse is determined only by χ, and such ellipse is denoted by Eχ. Then
Bernstein’s theorem [31] is stated as follows.

Theorem 2 (Bernstein). Let f(z) be analytic in Eχ with χ > 1, and f(z) is a real
valued function for real z. Then

(10) Ek(f) ≤ 2M(χ)

χk(χ− 1)
,
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where

(11) M(χ) = sup
z∈Eχ

|f(z)| .

Using Theorem 2, a quantitative description of the approximation properties for
Gaussian functions is given in Theorem 3.

Theorem 3. Let A ∈ CN×N be a Hermitian matrix with spectrum in (−1, 1). For
any t ∈ R, the error of a M -term DGC expansion (6) is

(12)
∣∣Tr[gσ(tI −A)]− Tr[gMσ (tI −A)]

∣∣ ≤ C1

σ
(1 + C2σ)−M ,

where C1, C2 are constants independent of A as well as σ,M, t.

Proof. For any t ∈ R, σ > 0, the Gaussian function gσ(t − ·) is analytic in any
ellipse Eχ with χ > 1, then

M(χ) = sup
z=x+iy∈Eχ

|gσ(t− (x+ iy))| ≤ 1

N
sup

z=x+iy∈Eχ
e
y2

2σ2 ≤ 1

N
e

(χ− 1
χ

)2

8σ2 .

For any α > 0, let

(13) χ = 1 + ασ,

then χ− 1
χ ≤ 2ασ, and

(14) M(1 + ασ) ≤ 1

N
e
α2

2 .

Then the error estimate follows from Theorem 2 that

EM (gσ(t− ·)) ≤ 2

Nασ
e
α2

2 (1 + ασ)−M .

Finally ∣∣Tr[gσ(tI −A)]− Tr[gMσ (tI −A)]
∣∣

≤N
∥∥gσ(tI −A)− gMσ (tI −A)

∥∥
2

=NEM (gσ(t− ·)) ≤ 2

ασ
e
α2

2 (1 + ασ)−M .

The theorem is then proved by defining C1 = 2
αe

α2

2 , C2 = α. Since α can be chosen
to be any constant due to the analyticity of the Gaussian function in the complex
plane, both C1 and C2 are independent of A as well as σ,M, t. �

Theorem 3 indicates that the error of the DGC algorithm is split into two parts:
the error of the Chebyshev expansion (approximation error) and the error due to
random sampling (sampling error). According to Theorem 3, it is sufficient to
choose M to be O(σ−1 |log σ|) to ensure that the error of the Chebyshev expansion
is negligible. Therefore the error of the DGC mainly comes from the sampling error,
which decays slowly as 1√

Nv
.
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3. Spectrum sweeping method for estimating spectral densities

In this section we present an alternative randomized algorithm called the spec-
trum sweeping method for estimating spectral densities. Our numerical results in-
dicate that the spectrum sweeping method can significantly outperform Hutchinson
type methods in terms of accuracy, as the number of random vectors Nv becomes
large. The main tool is randomized methods for low rank matrix decomposition
which is briefly introduced in section 3.1. The spectrum sweeping method is given
in section 3.2, and its complexity is analyzed in section 3.3.

3.1. Randomized method for low rank decomposition of a numerically
low rank matrix. Consider a square matrix P ∈ CN×N , and denote by r the
rank of P . If r � N , then P is called a low rank matrix. Many matrices from
scientific and engineering computations may not be exactly low rank but are close
to be a low rank matrix. For such matrices, the concept of numerical rank or
approximate rank can be introduced, defined by the closest matrix to P in the
sense of the matrix 2-norm. More specifically, the numerical ε-rank of a matrix P ,
denoted by rε with respect to the tolerance ε > 0 is (see e.g. [32] section 5.4)

rε = min{rank(Q) : Q ∈ CN×N , ‖P −Q‖2 ≤ ε}.
In the following discussion, we simply refer to a matrix P with numerical ε-rank
rε as a matrix with numerical rank r. For instance, this applies to the function
gσ(tI − A) with small σ, since the value gσ(t − λj) decays fast to 0 when λj is
away from t, and the corresponding contribution to the rank of gσ(tI − A) can be
neglected up to ε level. As an example, for the ModES3D 4 matrix to be detailed
in section 6, if we set σ = 0.01 and t = 1.0, then the values {gσ(tI − λ)} sorted in
non-increasing order is given in Fig. 1, where each λ is an eigenvalue of A. If we
set ε = 10−8, then the ε-rank of gσ(tI −A) is 59, much smaller than the dimension
of the matrix A which is 64000.

0 50 100 150

10
−15

10
−10

10
−5

10
0

index

g
σ
(t

−
λ
)

Figure 1. For the ModES3D 4 matrix, the values gσ(tI − λ)
sorted in non-increasing order plotted in log scale with σ =
0.01, t = 1.0. Only the first 128 values larger than 10−16 are shown.

For a numerically low rank matrix, its approximate singular value decomposition
can be efficiently evaluated using randomized algorithms (see e.g. [33, 34, 35]). The
idea is briefly reviewed as below, though presented in a slightly non-standard way.
Let P ∈ CN×N be a square matrix with numerical rank r � N , and W ∈ RN×Nv
be a random Gaussian matrix. If Nv is larger than r by a small constant, then
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with high probability, P projected to the column space of PW is very close to P
in matrix 2-norm. Similarly with high probability, P projected to the row space
of W ∗P is very close to P in matrix 2-norm. In the case when P is a Hermitian
matrix, only the matrix-vector multiplication PW is needed.

In order to construct an approximate low rank decomposition of a Hermitian
matrix P , let us denote by Z = PW , then an approximate low rank decomposition
of P is given by

(15) P ≈ ZBZ∗.

The matrix B is to be determined and can be computed in several ways. One choice
of B can be obtained by requiring Eq. (15) to hold when applying W ∗ and W to
the both sides of the equation, i.e.

KW := W ∗PW = W ∗Z ≈ (W ∗Z)B(W ∗Z)∗ = (W ∗Z)B(W ∗Z).

In the last equality we used that (W ∗Z) is Hermitian. Hence one can choose

(16) B = (W ∗Z)† ≡ K†W .

Here K†W is the Moore-Penrose pseudo-inverse (see e.g. [32], section 5.5) of the
matrix KW . In Alg. 3 we summarize the algorithm for constructing such a low
rank decomposition.

Remark. In the case when KW is singular, the pseudo-inverse should be handled
with care. This will be discussed in section 3.2. Besides the choice in Eq. (16),
another possible choice of the matrix B is given by requiring that Eq. (15) holds
when applying Z∗ and Z to the both sides of the equation, i.e.

Z∗PZ ≈ (Z∗Z)B(Z∗Z),

and hence one can choose

(17) B = (Z∗Z)†(Z∗PZ)(Z∗Z)†.

Note that Eq. (17) can also be derived from a minimization problem

min
B
‖ZBZ∗ − P‖2F .

However, the evaluation of Z∗PZ is slightly more difficult to compute, since the
matrix-vector multiplication PZ needs to be further computed. In the discussion
below we will adopt the choice of Eq. (16).

Algorithm 3 Randomized low rank decomposition algorithm.

Input: Hermitian matrix P ∈ CN×N with approximate rank r;

Output: Approximate low rank decomposition P ≈ ZBZ∗.

1: Generate a random Gaussian matrix W ∈ RN×Nv where Nv = r + c and c is a small
constant.

2: Compute Z ← PW .
3: Form B = (W ∗Z)†.
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3.2. Spectrum sweeping method. The approximate low rank decomposition
method can be used to estimate the DOS. Note that for each t, when the regular-
ization parameter σ is small enough, the column space of gσ(tI−A) is approximately
only spanned by eigenvectors of A corresponding to eigenvalues near t. Therefore
for each t, gσ(tI − A) is approximately a low rank matrix. Alg. 3 can be used to
construct a low rank decomposition. Motivated from the DGC method, we can use
the same random matrix W for all t.

gσ(tI −A) ≈ Z(t)(W ∗Z(t))†Z∗(t),

and its trace can be accurately estimated as

(18) Tr[gσ(tI −A)] ≈ Tr[(W ∗Z(t))†(Z∗(t)Z(t))].

Here Z(t) = gMσ (tI − A)W . We can use a Chebyshev expansion in Eq. (6) and
compute gMσ (tI −A).

The Chebyshev expansion requires the calculation of Tl(A)W, l = 0, . . . ,M .
Note that this does not mean that all Tl(A)W need to be stored for all l. Instead
we only need to accumulate Z(t) for each point t that the DOS is to be evaluated.
Tl(A) only need to be applied to one random W matrix, and we can sweep through
the spectrum of A just via different linear combination of all Tl(A)W for each t.
Therefore we refer to the algorithm a “spectrum sweeping” method.

As remarked earlier, the pseudo-inverse should be handled with care. There are

two difficulties associated with the evaluation of K†W . First, it is difficult to know a
priori the exact number of vectors Nv that should be used at each t, and Nv should
be chosen to be large enough to achieve an accurate estimation of the DOS. Hence
the columns of Z are likely to be nearly linearly dependent, and KW becomes singu-
lar. Second, although gσ(tI−A) is by definition a positive semidefinite matrix, the
finite term Chebyshev approximation gMσ (tI −A) may not be positive semidefinite
due to the oscillating tail of the Chebyshev polynomial. Fig. 2 (a) gives an example
of such possible failure. The test matrix is the ModES3D 1 matrix to be detailed
in section 6. The parameters are σ = 0.05, Nv = 50. When computing the pseudo-
inverse, all negative eigenvalues and positive eigenvalues with magnitude less than
10−7 times the largest eigenvalue of KW are discarded. Fig. 2 (a) demonstrates
that when a relatively small number of degrees of polynomials M = 400 is used, the
treatment of the pseudo-inverse may have large error near t = 0.9. This happens
mainly when the degrees of Chebyshev polynomials M is not large enough. Fig. 2
(b) shows that when M is increased to 800, the accuracy of the pseudo-inverse
treatment is much improved.

The possible difficulty of the direct evaluation of K†W can be understood as
follows. First, Theorem 4 suggests that for a strictly low rank matrix P , there is
correspondence between the trace of the form in Eq. (18) and the solution of a
generalized eigenvalue problem.

Theorem 4. Let P ∈ CN×N be a Hermitian matrix with rank r � N and with
eigen decomposition

P = USU∗.

Here U ∈ CN×r and U∗U = I. S ∈ Rr×r is a real diagonal matrix containing the
nonzero eigenvalues of P . For W ∈ CN×p (p > r) and assume W ∗U is a matrix
with linearly independent columns, then S can be recovered through the generalized
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0 0.2 0.4 0.6 0.8 1
0

0.01

0.02
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0.05

t

M = 400

Eig

Pinv
Exact

(a)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

t

M = 800

Eig

Pinv
Exact

(b)

Figure 2. For the ModES3D 1 matrix, compute the DOS using
the spectrum sweeping method by computing the pseudo-inverse
(“Pinv”) and by computing the generalized eigenvalue problem
(“Eig”) using (a) a low degree Chebyshev polynomial M = 400
(b) a high degree Chebyshev polynomial M = 800.

eigenvalue problem

(19) (W ∗P 2W )C = (W ∗PW )CΞ.

Here C ∈ Cp×r and Ξ ∈ Rr×r is a diagonal matrix with diagonal entries equal to
those of S up to reordering. Furthermore,

(20) Tr
[
(W ∗PW )†(W ∗P 2W )

]
= Tr[S] = Tr[P ].

Proof. Using the eigen decomposition of P ,

(W ∗P 2W )C = (W ∗U)S2(U∗WC), (W ∗PW )CΞ = (W ∗U)S(U∗WC)Ξ.

Since W ∗U ∈ Cp×r is a matrix with linearly independent columns, we have

S2(U∗WC) = S(U∗WC)Ξ,

or equivalently

S(U∗WC) = (U∗WC)Ξ.

Since S is a diagonal matrix we have S = Ξ up to reordering of diagonal entries.
To prove Eq. (20), note that

(W ∗PW )† = (U∗W )†S−1(W ∗U)†.

Therefore

Tr
[
(W ∗PW )†(W ∗P 2W )

]
= Tr

[
(U∗W )†S−1(W ∗U)†(W ∗U)S2(U∗W )

]
= Tr[S] = Tr[USU∗] = Tr[P ].

�
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Although Theorem 4 is stated for exactly low rank matrices, it provides an
practical criterion for removing some of the large, spurious contribution to the
DOS such as in Fig. 2 (a). For gσ(tI −A) which is numerically low rank, only the
generalized eigenvalues within the range of g, i.e. the interval [0, 1

N
√
2πσ2

] should

be selected. This motivated the use of Alg. 4 to solve the generalized eigenvalue
problem

(21) Z∗ZC̃ = (W ∗Z)C̃Ξ̃.

where Ξ̃ is a diagonal matrix only containing the generalized eigenvalues in the in-
terval [0, 1

N
√
2πσ2

]. Alg. 4 only keeps the generalized eigenvalues within the possible

range of gσ. Our numerical experience indicates that this procedure is more stable
than the direct treatment of the pseudo-inverse. The algorithm of the spectrum
sweeping method is given in Alg. 5.

Now consider the problematic point when using the pseudo-inverse in Fig. 2
(a). We find that the generalized eigenvalues Ξ at that problematic point has one
generalized eigenvalue 0.033, exceeding the maximally allowed range 1

N
√
2πσ2

=

0.008. After removing this generalized eigenpair, the error of the DOS obtained by
solving the generalized eigenvalue problem becomes smaller. Again when the degree
of the Chebyshev polynomial M increases sufficiently large to 800, the accuracy of
the generalized eigenvalue formulation also improves, and the result obtained by
using the pseudo-inverse and by using the generalized eigenvalue problem agrees
with each other, as illustrated in Fig. 2 (b). In such case, all generalized eigenvalues
fall into the range [0, 1

N
√
2πσ2

].

Algorithm 4 Solve the generalized eigenvalue problem for the spectrum sweeping
method.

Input: Matrices Z,W ∈ CN×Nv ;
Smearing parameter σ;
Truncation parameter τ .

Output: Generalized eigenvalues Ξ̃ and generalized eigenvectors C̃.

1: Compute the eigenvalue decomposition of the matrix

W ∗Z = USU∗.

S is a diagonal matrix with diagonal entries {si}.
2: Let S̃ be a diagonal matrix with all eigenvalues sj ≥ τ maxi si, and Ũ be the corre-

sponding eigenvectors.
3: Solve the standard eigenvalue problem

S̃−
1
2 Ũ∗Z∗ZŨS̃−

1
2X = XΞ.

Ξ is a diagonal matrix with diagonal entries {ξi}.
4: Let Ξ̃ be a diagonal matrix containing the generalized eigenvalues ξi ∈ [0, 1

N
√

2πσ2
],

and X̃ be the corresponding eigenvectors.

5: Compute the generalized eigenvectors C̃ = Ũ S̃−
1
2 X̃.

The SS-DGC method can be significantly more accurate compared to the DGC
method. This is because the spectrum sweeping method takes advantage that dif-
ferent columns of Z ≡ gσ(tI − A)W are correlated: The information in different
columns of Z saturates as Nv increases beyond the numerical rank of gσ(tI−A), and
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Algorithm 5 Spectrum sweeping method using the Delta-Gauss-Chebyshev ex-
pansion (SS-DGC) for estimating the DOS.

Input: Hermitian matrix A with eigenvalues between (−1, 1);

A set of points {ti}Nti=1 at which the DOS is to be evaluated;
Polynomial degree M ; Smearing parameter σ;
Number of random vectors Nv.

Output: Approximate DOS {φ̃σ(ti)}.

1: Compute the coefficient {µl(ti)}Ml=0 for each ti, i = 1, . . . , Nt using Alg. 1 with f(x) =
gσ(x− ti).

2: Generate a random Gaussian matrix W ∈ RN×Nv .
3: Initialize the three term recurrence matrices Vm, Vp ← 0 ∈ CN×Nv , Vc ←W .
4: Initialize Z(ti)← 0 ∈ CN×Nv , i = 1, . . . , Nt.
5: for l = 0, . . . ,M do
6: for i = 1, . . . , Nt do
7: Z(ti)← Z(ti) + µl(ti)Vc.
8: end for
9: Vp ← (2− δl0)AVc − Vm.

10: Vm ← Vc, Vc ← Vp.
11: end for
12: for i = 1, . . . , Nt do

13: Compute φ̃σ(ti) = Tr[Ξ̃(ti)] where Ξ̃(ti) is a diagonal matrix obtained by solving
the generalized eigenvalue problem

Z∗(ti)Z(ti)C̃(ti) = W ∗(ti)Z(ti)C̃(ti)Ξ̃(ti)

using Alg. 4.
14: end for

the columns of Z become increasingly linearly dependent. Comparatively Hutchin-
son’s method neglects such correlated information, and the asymptotic convergence

rate is only O(N
− 1

2
v ).

3.3. Complexity. The complexity of the DOS estimation is certainly problem
dependent. In order to measure the asymptotic complexity of Alg. 5 for a series of
matrices with increasing value of N , we consider a series of matrices are spectrally
uniformly distributed, i.e. the spectral width of each matrix is bounded between
(−1, 1), and the number of eigenvalues in any interval (t1, t2) is proportional to N .
In other words, we do not consider the case when the eigenvalues can asymptotically
be concentrated into one point. In the complexity analysis below, we neglect any
contribution on the order of logN . In section 4 we will give a detailed example for
which the assumption is approximately satisfied.

Alg. 5 scales as O(N3
v ) with respect to the number of random vectors Nv. There-

fore it can be less efficient to let Nv grow proportionally to the matrix size N . In-
stead it is possible to choose Nv to be a constant, and to choose the regularization
parameter σ to be O(N−1) so that gσ(tI − A) is a matrix of bounded numerical
rank as N increases. Eq. (12) then states that the Chebyshev polynomial degree
M should be O(N). We denote by cmatvec the cost of each matrix-vector multipli-
cation (matvec). We assume cmatvec ∼ O(N). We also assume that Nv is kept to
be a constant and is omitted in the asymptotic complexity count with respect to
N and Nt.
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Under the assumption of spectrally uniformly distributed matrices, the compu-
tational cost for applying the Chebyshev polynomial to the random matrix W is
cmatvecMNv ∼ O(N2). The cost for updating all {Z(ti)} is NtMNNv ∼ O(N2Nt).
The cost for computing the DOS by trace estimation is O(NtNN

2
v + NtN

3
v ) ∼

O(NtN). So the total cost is O(N2Nt).
The memory cost is dominated by the storage of the matrices {Z(ti)}, which

scales as O(NNtNv) ∼ O(NNt).
If the DOS is evaluated at a few points with Nt being small, the spectrum sweep-

ing method is very efficient. However, in some cases such as the trace estimation as
discussed in section 5, Nt should be chosen to be O(N). Therefore the computa-
tional cost of SS-DGC is O(N3) and the memory cost is O(N2). This is undesirable
and can be improved as in the next section with a more efficient implementation.

4. A robust and efficient implementation of the spectrum sweeping
method

The SS-DGC method can give very accurate estimation of the DOS. However,
it also has two notable disadvantages:

(1) The SS-DGC method requires a rough estimate of the random vectors Nv.
If the number of random vectors Nv is less than the numerical rank of
gσ(tI −A), then the estimated DOS will has O(1) error.

(2) The SS-DGC method requires the formation of the Z(t) matrix for each
point t. The computational cost scales as O(N2Nt) and the memory cost
is O(NNt). This is expensive if the number of points Nt is large.

In this section we provide a more robust and efficient implementation of the
spectrum sweeping (RESS) method to overcome the two problems above. The
main idea of the RESS-DGC method is to have

(1) a hybrid strategy for robust estimation of the DOS in the case when the
number of vectors Nv is insufficient at some points with at least O(1/

√
Nv)

accuracy.
(2) a consistent method for directly computing of the matrix Z∗(ti)Z(ti) for

each point ti and avoiding the computation and storage of Z(ti).

4.1. A robust and efficient implementation for estimating the trace of a
numerically low rank matrix. Given a numerically low rank matrix P , we may
apply Alg. 3 to compute its low rank approximation using a random matrix of size
N ×Nv. Let us denote the residual by

(22) R := P − ZBZ∗.

If Nv is large enough, then ‖R‖F should be very close to zero. Otherwise, Hutchin-
son’s method can be used to estimate the trace of R as the correction for the trace
of P . According to Theorem 1, if ZBZ∗ is relatively a good approximation to P ,
the variance for estimating Tr[R] can be significantly reduced.

To do this, we use another set of random vectors W̃ ∈ CN×Ñv , and

(23) Tr[R] ≈ 1

Ñv
Tr[W̃ ∗RW̃ ] =

1

Ñv

(
Tr[W̃ ∗PW̃ ]− Tr[(W̃ ∗Z)B(Z∗W̃ )]

)
.

Eq. (23) still requires the storage of Z. As explained above, storing Z can become

expensive if we use the same set of random vectors W and W̃ but evaluate the DOS
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at a large number of points {ti}. In order to reduce such cost, note that

Z∗Z = W ∗P ∗PZ = W ∗(P 2W ).

If we can compute both PW and P 2W , then Z does not need to be explicitly
stored. Instead we only need to store

KW = W ∗(PW ), KZ = W ∗(P 2W ).

This observation is used in section 4.2, where PW and P 2W are computed sepa-
rately with Chebyshev expansion.

Similarly, for the computation of the correction term (23), we can directly com-

pute the cross term due to W̃ as

KC = W̃ ∗Z = W̃ ∗(PW ), K
W̃

= W̃ ∗(PW̃ ).

Alg. 3 involves the computation of the pseudo-inverse of KW , which is in practice
computed by solving a generalized eigenvalue problem using Alg. 4. The hybrid
strategy in Eq. (23) is consistent with the generalized eigenvalue problem, in the
sense that

(24) Ew̃[w̃∗ZC̃C̃∗Z∗w̃] = Tr[ZC̃C̃∗Z∗] = Tr[C̃∗(Z∗Z)C̃] = Tr[Ξ̃].

The last equality of Eq. (24) follows from that Ξ̃, C̃ solve the generalized eigenvalue
problem as in Alg. 4.

In summary, a robust and efficient randomized method for estimating the trace
of a low rank matrix is given in Alg. 6.

Algorithm 6 Robust and efficient randomized method for estimating the trace of
a numerically low rank matrix.

Input: Hermitian matrix P ∈ CN×N ; Number of randomized vectors Nv, Ñv

Output: Estimated Tr[P ].

1: Generate random Gaussian matrices W ∈ RN×Nv and W̃ ∈ CN×Ñv .
2: Compute KW = W ∗(PW ), KZ = W ∗(P 2W ).

3: Compute KC = W̃ ∗(PW ),KW̃ = W̃ ∗(PW̃ ).
4: Solve the generalized eigenvalue problem

KZC̃ = KW C̃Ξ̃,

using Alg. 4.
5: Compute the trace

Tr[P ] ≈ Tr[Ξ̃] +
1

Ñv

(
Tr[KW̃ ]− Tr[KCC̃C̃

∗K∗C ]
)
.

4.2. Robust and efficient implementation of the spectrum sweeping method.
In order to combine Alg. 6 and Alg. 5 to obtain a robust and efficient implementa-
tion of the spectrum sweeping method, it is necessary to evaluate (gσ(tI −A))2W ,
where

(gσ(tI −A))2 ≡ 1

N22πσ2
e−

(tI−A)2

σ2 .
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In order to do this, one can directly compute (gσ(tI − A))2 using an auxiliary
Chebyshev expansion as follows

(25) (gσ(tI −A))2 ≈
M∑
l=0

νl(t)Tl(A).

Proposition 5 states that if the expansion is chosen carefully, the Chebyshev ex-
pansion (6) and (25) are fully consistent, i.e. if gσ is expanded by a Chebyshev

polynomial expansion of degree M/2 denoted by g
M/2
σ , we can expand (gσ)2 us-

ing a Chebyshev polynomial expansion of degree M denoted by g̃Mσ . These two

expansions are consistent in the sense that (g
M/2
σ )2 = g̃Mσ .

Proposition 5. Let M be an even integer, and P is a matrix polynomial function
of A

P =

M/2∑
l=0

µlTl(A).

Then

(26) P 2 =

M∑
l=0

νlTl(A),

where

νl =
2− δl0
π

∫ 1

−1

1√
1− x2

Tl(x)

M/2∑
k=0

µkTk(x)

2

dx, l = 0, . . . ,M.

Proof. Using the definition of P ,

P 2 =

M/2∑
p,q=0

µpµqTp(A)Tq(A).

Since 0 ≤ p+q ≤M , P 2 is a polynomial of A up to degree M , and can be expanded
using a Chebyshev polynomial of the form (26). �

The expansion coefficient νl’s can be obtained using Alg. 1 with numerical inte-
gration, and we have a consistent and efficient method for estimating the DOS.

Theorem 6. Let A ∈ CN×N be a Hermitian matrix, and W ∈ RN×Nv be a random

Gaussian matrix. For any t ∈ (−1, 1), let g
M/2
σ (tI−A) be the M/2 degree Chebyshev

expansion

(27) gM/2
σ (tI −A) =

M/2∑
l=0

µl(t)Tl(A),

and the coefficients {νl}Ml=0 are defined according to Proposition 5. Define Z(t) =

g
M/2
σ (tI −A)W , and

(28) KW (t) = W ∗Z(t), KZ(t) = W ∗

(
M∑
l=0

νl(t)Tl(A)W

)
.
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Let w̃ be a random Gaussian vector, and

(29) KC(t) = w̃∗Z(t), K
W̃

(t) = w̃∗gM/2
σ (tI −A)w̃.

Then

(30) Tr
[
gM/2
σ (tI −A)

]
= Ew̃

(
K
W̃

(t)−KC(t)C̃(t)C̃∗(t)K∗C(t)
)

+ Tr[Ξ̃(t)].

Here C̃(t), Ξ̃(t) solves the generalized eigenvalue problem

(31) KZ(t)C̃(t) = KW (t)C̃(t)Ξ̃(t),

using Alg. 4.

Proof. By Proposition 5,
(
g
M/2
σ (tI −A)

)2
can be exactly computed using a Cheby-

shev of degree M with coefficients {νl}Ml=0. Therefore

KZ(t) = Z∗(t)Z(t) = W ∗

(
M∑
l=0

νl(t)Tl(A)W

)
.

The consistency between Hutchinson’s method and the estimation of Tr[Ξ̃(t)] fol-
lows from Eq. (24). �

Following Theorem 6, the RESS-DGC algorithm is given in Alg. 7. Compared
to DGC and SS-DGC method, the RESS-DGC method introduces an additional

parameter Ñv. In the numerical experiments, in order to carry out a fair in the
sense the total number of random vectors used are the same, i.e. for RESS-DGC, we

always choose Nv+Ñv to be the same number of random vectors NDGC
v = NSS−DGC

v

used in DGC and SS-DGC, respectively. For instance, when NDGC
v is relatively

small, in RESS-DGC we can choose Nv = Ñv = 1
2N

DGC
v , i.e. half of the random

vectors are used for low rank approximation, and half for hybrid correction. When
we are certain that Nv is large enough, we can eliminate the usage of the hybrid

correction and take Nv = NDGC
v and Ñv = 0.

4.3. Complexity. Following the same setup in section 4.3, we assume that a series
of matrices are spectrally uniformly distributed. We assume the Chebyshev poly-
nomial degree M ∼ O(N), and cmatvec ∼ O(N). In the complexity analysis below,
we neglect any contribution on the order of logN . We also assume that Nv is kept
as a constant and is omitted in the asymptotic complexity count with respect to N
and Nt.

In terms of the computational cost, the computational cost for applying the
Chebyshev polynomial to the random matrix W is cmatvecMNv ∼ O(N2). The cost
for updating KW (ti) and KZ(ti) is NtMN2

v ∼ O(NNt). The cost for computing
the DOS by trace estimation for each ti is O(NtN

3
v ) ∼ O(Nt). So the total cost is

O(NNt +N2).
In terms of the memory cost, the advantage of using Alg. 7 also becomes clear

here. The matrices {Z(ti)} do not need to be computed or stored. Using the three-
term recurrence for Chebyshev polynomials, the matricesKW (t),KZ(t),KC(t),K

W̃
(t)

can be updated gradually, and the cost for storing these matrices are O(N2
vNt ∼

Nt). The cost for storing the matrix W is O(NNv) ∼ O(N). So the total storage
cost is O(N +Nt).

If we also assume Nt ∼ O(N) due to the vanishing choice of σ, then the compu-
tational cost scales as O(N2) and the storage cost scales as O(N).
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Algorithm 7 Robust and efficient spectrum sweeping with Delta-Gauss-Chebyshev
(RESS-DGC) method for estimating the DOS.

Input: Hermitian matrix A with eigenvalues between (−1, 1);

A set of points {ti}Nti=1 at which the DOS is to be evaluated;
Polynomial degree M ;
Smearing parameter σ;

Number of random vectors Nv, Ñv.
Output: Approximate DOS {φ̃σ(ti)}.

1: Compute the coefficient {µl(ti)}
M
2
l=0 for each ti, i = 1, . . . , Nt using Alg. 1 for Eq. (6),

and let µl(ti) = 0, l = M
2

+ 1, . . . ,M .

2: Compute the coefficient {νl(ti)}Ml=0 for each ti, i = 1, . . . , Nt using Alg. 1 for Eq. (25).

3: Generate random Gaussian matrices W ∈ RN×Nv and W̃ ∈ RN×Ñv .
4: Initialize the three term recurrence matrices Vm, Vp ← 0 ∈ CN×Nv , Vc ←W ; Ṽm, Ṽp ←

0 ∈ CN×Ñv , Ṽc ← W̃ .
5: Initialize matrices KW (ti),KZ(ti) ← 0 ∈ CNv×Nv , i = 1, . . . , Nt; KC(ti) ← 0 ∈

CÑv×Nv and KW̃ ← 0 ∈ CÑv×Ñv , i = 1, . . . , Nt.
6: for l = 0, . . . ,M do

7: Compute XW ←W ∗Vc, XC ← W̃ ∗Vc, XW̃ ← W̃ ∗Ṽc.
8: for i = 1, . . . , Nt do
9: Accumulate KW (ti)← KW (ti) + µl(ti)XW , KZ(ti)← KZ(ti) + νl(ti)XW .

10: Accumulate KC(ti)← KC(ti) + µl(ti)XC , KW̃ (ti)← KW̃ (ti) + µl(ti)XW̃ .
11: end for
12: Vp ← (2− δl0)AVc − Vm.
13: Vm ← Vc, Vc ← Vp.

14: Ṽp ← (2− δl0)AṼc − Ṽm.

15: Ṽm ← Ṽc, Ṽc ← Ṽp.
16: end for
17: for i = 1, . . . , Nt do

18: Compute φ̃σ(ti)← Tr

[
g
M
2
σ (tiI −A)

]
≈ 1

Ñv
Tr
[
KW̃ (ti)−KC(ti)C̃(ti)C̃

∗(ti)K
∗
C(ti)

]
+

Tr[Ξ̃(ti)], where Ξ̃(ti),C̃(ti) are computed from Alg. 4.
19: end for

5. Application to trace estimation of general matrix functions

As an application for the accurate estimation of the DOS, we consider the prob-
lem of estimating the trace of a smooth matrix function as in Eq. (2). In general
f(t) is not a localized function on the real axis, and Alg. 6 based on low rank
decomposition cannot be directly used to estimate Tr[f(A)].

However, if we assume that there exists σ > 0 so that the Fourier transform
of f(t) decays faster than the Fourier transform of gσ(t), where gσ is a Gaussian

function, then we can find a smooth function f̃(t) satisfying

(32) (f̃ ∗ gσ)(t) =

∫ ∞
−∞

f̃(s)gσ(t− s) ds = f(t).
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The function f̃(t) can be obtained via a deconvolution procedure. Formally

1

N
Tr[f(A)] =

∫ ∞
−∞

f(t)φ(t) dt =

∫ ∞
−∞

∫ ∞
−∞

f̃(s)gσ(t− s)φ(t) dtds

=

∫ ∞
−∞

f̃(s)φσ(s) ds.

(33)

Eq. (33) states that the trace of the matrix function f(A) can be accurately com-

puted from the integral of f̃(s)φσ(s), which is a now smooth function. Since the
spectrum of A is assumed to be in the interval (−1, 1), the integration range in
Eq. (33) can be replaced by a finite interval. The integral can be evaluated accu-
rately via a trapezoidal rule, and we only need the value of the DOS φσ evaluated on
the points requested by the quadrature. In such a way, we “transfer” the smooth-
ness of f(t) to the regularized DOS without losing accuracy.

The deconvolution procedure (32) can be performed via a Fourier transform.
Assume that the eigenvalues of A are further contained in the interval (−a, a) ⊂
(−1, 1) with 0 < a < 1. Then the Fourier transform requires that the function
f(t) is a periodic function on a interval containing (−a, a), which is in general not
satisfied in practice. However, note that the interval in Eq. (2) does not require the
exact function f(t). In fact

Tr[f(A)] =

∫ a

−a
f(t)φ(t) dt =

∫ a

−a
h(t)φ(t) dt

for any smooth function h(t) satisfying

(34) h(t) = f(t), t ∈ (−a, a).

In particular, h(t) can be extended to be a periodic function on the interval [−1, 1].
In this work, we construct h(t) as follows.

(35) h(t) = f(t)π(t) +
f(−1) + f(1)

2
(1− π(t)) .

We remark that the constant f(−1)+f(1)
2 in Eq. (35) is not important and can be

in principle any real number. Here π(t) is a function with π(t) = 1 for t ∈ (−a, a),
and smoothly goes to 0 outside (−a, a). It is easy to verify that such choice of h(t)
satisfies Eq. (34) and is periodic on (−1, 1). There are many choice of π(t), and
here we use

(36) π(t) =
1

2

[
erf

(
1 + a− 2t

σ̃

)
− erf

(
−1− a− 2t

σ̃

)]
.

Here erf is the error function. If σ̃ is chosen to be small enough, then π(t) as defined
in Eq. (36) satisfies the requirement.

Alg. 8 describes the procedure for computing the trace of a matrix function.
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Algorithm 8 Spectrum sweeping method for estimating the trace of a matrix
function.

Input: Hermitian matrix A with eigenvalues between (−a, a) where 0 < a < 1;
Smooth function f(t);
Smearing parameter σ, σ̃.

Output: Estimated value of Tr[f(A)].

1: Compute auxiliary function h(t) according to Eq. (35).

2: Compute {f̃(ti)}Nti=1 satisfying (f̃ ∗ gσ)(t) = h(t) on (−1, 1) through the Fourier trans-

form on a uniform set of points {ti}Nti=1 with spacing ∆t = t2 − t1.

3: Use one of the algorithms to compute {φ̃σ(ti)}.
4: Compute Tr[f(A)] ≈ N∆t

∑Nt
i=1 f̃(ti)φ̃σ(ti).

6. Numerical examples

In this section we demonstrate the accuracy and efficiency of the SS-DGC and
RESS-DGC methods for computing the spectral densities and for estimating the
trace. For the asymptotic scaling of the method, we need a series of matrices
that are approximately spectrally uniformly distributed. These are given by the
ModES3D X matrices to be detailed below. In order to demonstrate that the
methods are also applicable to general matrices, we also give test results for two
matrices obtained from the University of Florida matrix collection [36]. All the
computation is performed on a single computational thread of an Intel i7 CPU
processor with 64 gigabytes (GB) of memory using MATLAB.

As a model problem, we consider a second order partial differential operator Â
in a three-dimensional (3D) cubic domain with periodic boundary conditions. For

a smooth function u(x, y, z), Âu is given by

(Âu)(x, y, z) = −∆u(x, y, z) + V (x, y, z)u(x, y, z).

The matrix A is obtained from a 7-point finite difference discretization of Â. In
order to create a series of matrices, first we consider one cubic domain Ω = [0, L]3

and V (x, y, z) is taken to be a Gaussian function centered at (L/2, L/2, L/2)T . This
is called a “unit cell”. The unit cell is then extended by n times along the x, y, z
directions, respectively, and the resulting domain is [0, nL]3 and V (x, y, z) is the
linear combination of n3 Gaussian functions. Such matrix can be interpreted as a
model matrix for electronic structure calculation. Each dimension of the domain
is uniformly discretized with grid spacing h, and the resulting matrix A is denoted
by ModES3D X where X is the total number of unit cells. Here we take L = 6 and
h = 0.6. Some characteristics of the matrices, including the dimension, the smallest
and the largest eigenvalue are given in Table 1. Fig. 3 (a), (b) shows the isosurface
of one example of such potential for the matrix ModES3D 1, and ModES3D 8,
respectively. Fig. 4 shows the DOS corresponding to low lying eigenvalues for the
matrices with X = 1, 8, 27, 64 for a fixed regularization parameter σ = 0.02, which
indicate that the spectral densities is roughly uniform.

6.1. Spectral densities. In order to compare with the accuracy of the DOS, the
exact DOS is obtained by solving eigenvalues corresponding to the region of inter-
est for computing the DOS. We use the locally optimal block preconditioned con-
jugate gradient (LOBPCG) [37] method. The LOBPCG method is advantageous
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Matrix N min(ev) max(ev)
ModES3D 1 1000 -2.22 32.23
ModES3D 8 8000 -2.71 31.31
ModES3D 27 27000 -2.75 31.30
ModES3D 64 64000 -2.76 32.30

pe3k 9000 8× 10−6 127.60
shwater 81920 5.79 20.30

Table 1. Characteristics of the test matrices.

(a) ModES3D 1 (b) ModES3D 8

Figure 3. Isosurface for V (x, y, z).
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Figure 4. Shape of the DOS for a series of matrices with σ = 0.02.

for solving a large number of eigenvalues and eigenvectors since it can effectively
take advantage of the BLAS3 operations by solving all eigenvectors simultaneously.
The number of eigenvectors to be computed is set to be 35X for the test matrices
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ModES3D X with X = 1, 8, 27, 64, respectively, and the highest eigenvalue ob-
tained with such number of eigenvectors is slightly larger than 1.0. The tolerance
of LOBPCG is set to be 10−8 and the maximum number of iterations is set to be
1000.

We measure the error of the approximate DOS using the relative L1 error defined

as follows. Denote by φ̃σ(ti) the approximate DOS evaluated at a series of uniformly
distributed points ti, and by φσ(ti) the exact DOS obtained from the eigenvalues.
Then the error is defined as

(37) Error =

∑
i

∣∣∣φ̃σ(ti)− φσ(ti)
∣∣∣∑

i |φσ(ti)|
.

For the DGC and SS-DGC method, an M -th order Chebyshev polynomial is
used to evaluate Z(ti). For the RESS-DGC method, an M -th order Chebyshev
polynomial should be used to expand Z∗(ti)Z(ti). Following Theorem 6, only
an M/2-th order Chebyshev polynomial can be used to evaluate Z(ti). Similarly
when Nv random vectors are used for DGC and SS-DGC, RESS-DGC is a hybrid
method containing two terms. As discussed in section 4.2, the number of random
vectors used in DGC and SS-DGC are the same i.e. NDGC

v = NSS−DGC
v . For

RESS-DGC, we use NRESS−DG
v = 1

2N
DGC
v for the low rank approximation, and

ÑRESS−DGC
v = 1

2N
DGC
v for the hybrid correction. This setup makes sure that all

methods perform exactly the same number of matrix-vector multiplications.
Fig. 5 (a) shows the error of the three methods for the ModES3D 8 matrix when a

very small number of random vectors Nv = 40 is used, with increasing polynomial
degrees M from 200 to 3200. Here we use σ = 0.05. Note the relatively large
polynomial degree is mainly due to the relatively large spectral radius compared to
the desired resolution as in Table 1. This can be typical in practical applications.
DGC is slightly more accurate for low degree of polynomials, but as M increases,
RESS-DGC becomes more accurate. Fig. 5 (b) shows the error when a relatively
large number of random vectors Nv = 160 is used. When M is large enough,
both SS-DGC and RESS-DGC can be significantly more accurate than DGC. SS-
DGC is slightly more accurate here, because it uses the Chebyshev polynomials
and random vectors more optimally than RESS-DGC, though the computational
cost can be higher when spectral densities at a large number of points Nt need to
be evaluated.

Fig. 6 (a) shows the comparison of the accuracy of three methods for a rela-
tively low degree of polynomials M = 800 and with increasing number of random
vectors Nv. When Nv is small, SS-DGC has O(1) error, and this error is much
suppressed in RESS-DGC thanks to the hybrid correction scheme. It is interesting
to see that RESS-DGC outperforms DGC for all choices of Nv, but its accuracy is
eventually limited by the insufficient number of Chebyshev polynomials to expand
the Gaussian function. SS-DGC is more accurate than RESS-DGC when Nv is
large enough. This is because in such case the low rank decomposition captures
the correlation between the results obtained among different random vectors more
efficiently. On the contrary, Hutchinson’s method for which DGC relies on only
reduces the error only through direct Monte Carlo sampling. Fig. 6 (b) shows the
case when a relatively large number of polynomials M = 2400 is used. Again for
small Nv, RESS-DGC reduces the large error compared to the SS-DGC method,
while for large enough Nv both SS-DGC and RESS-DGC can be very accurate.
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Figure 5. For the ModES3D 8 matrix, the error of the DOS with
respect to increasing polynomial degrees for (a) A small number
of random vectors Nv = 40 (b) A large number of random vectors
Nv = 160.
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Figure 6. For the ModES3D 8 matrix, the error of the DOS with
respect to increasing random vectors for (a) A low polynomial de-
gree M = 800 (b) A high polynomial degree M = 2400.

In both SS-DGC and RESS-DGC methods, the parameter σ is important since
it determines both the degrees of Chebyshev polynomial to accurately expand gσ,
and the number of random vectors needed for accurate low rank approximation.
Fig. 7 shows the error of DGC, SS-DGC and RESS-DGC with σ varying from 0.02
to 0.1. Here we choose M = 120/σ and Nv = 3200σ. This corresponds to the
case when a relatively high degrees of Chebyshev polynomial and a relatively large
number of random vectors are used in the previous discussion. We observe that
the scaling M ∼ O(σ−1) and Nv ∼ O(σ) is important for spectrum sweeping type
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methods to be accurate, and SS-DGC and RESS-DGC can significantly outperform
DGC type methods in terms of accuracy.
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Figure 7. For the ModES3D 8 matrix, the error of the DOS with
respect to different choices of σ.

In order to study the weak scalability of the methods using the ModES3D X
matrices, as given in the complexity analysis, the polynomial degrees M should be
chosen to be proportional to X. Here M = 300X for X = 1, 8, 27, 64, respectively.
Correspondingly σ = 0.4/X and Nt = 5X. This allows us to use the same number
of random vectors Nv = 150 for all matrices. Fig. 8 shows the wall clock time
of the three methods. Both SS-DGC and LOBPCG are asymptotically O(N3)
methods with respect to the increase of the matrix size, and the cubic scaling
becomes apparent from X = 27 to X = 64. RESS-DGC is only slightly more
expensive than DGC and scales as O(N2). For ModES3D 64, the wall clock time
for DGC, RESS-DGC, SS-DGC and LOBPCG is 2535, 3293, 11979, 49389 seconds,
respectively. Here RESS-DGC is 15 times faster than LOBPCG and is the most
effective method. Fig. 8 (b) shows the accuracy in terms of the relative L1 error.
Both SS-DGC and RESS-DGC can be significantly more accurate than DGC. We
remark that since Nv is large enough in all cases here, the efficiency of RESS-DGC
can be further improved by noting that it only effectively uses half of the random
vectors here, due to the small contribution from the other half of random vectors
used for the hybrid correction.

6.2. Trace estimation. As discussed in section 5, the accurate calculation of the
regularized DOS can be used for trace estimation. To demonstrate this, we use the
same ModES3D X matrices, and let f(A) be the Fermi-Dirac function, i.e.

Tr[f(A)] = Tr

[
1

1 + exp(β(A− µI)

]
is to be computed. In electronic structure calculation, µ has the physical meaning
of chemical potential, and β is the inverse temperature. The trace of the Fermi-
Dirac distribution has the physical meaning of the number of electrons at chemical
potential µ. Here β = 10.0, µ = −1.0. The value of σ that can be used for the
deconvolution procedure in Eq. (33) should be chosen such that after deconvolution

f̃(s) is still a smooth function. Here we use σ = 0.05 for X = 1, and σ = 0.4/X for
X = 8, 27, 64, respectively. The value of σ̃ for the smearing function in Eq. (36) is
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Figure 8. (a) Wall clock time of the DGC, SS-DGC and
RESS-DGC methods compared with diagonalization method us-
ing LOBPCG. (b) The error of the DOS computed at RESS-DGC
and the DGC method.

0.016. Correspondingly the polynomial degree M = 300X. The number of random
vectors Nv is kept to be 100 for all calculations.

Fig. 9 shows the relative error of the trace for DGC, SS-DGC and RESS-DGC.
We observe that SS-DGC and RESS-DGC can be significantly more accurate com-
pared to DGC, due to the better use of the correlated information obtained among
different random vectors. Again when Nv is sufficiently large, SS-DGC is more
accurate since the hybrid strategy in RESS-DGC is no longer needed here.
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Figure 9. Relative error for estimating the trace of Fermi-Dirac
functions applied to ModES3D X matrices.
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6.3. Other matrices. In section 6.1, we verified that both SS-DGC and RESS-
DGC can obtain very accurate estimation of the DOS when the degrees of Cheby-
shev polynomial and the number of random vectors are large enough, and RESS-
DGC can lead to more efficient implementation. In this section we further verify
that RESS-DGC can achieve high accuracy for other test matrices, when the degrees
of polynomial and number of vectors Nv is large enough. The test matrices pe3k
and shwater are obtained from the University of Florida matrix collection [36], and
are used as test matrices in [20]. The character of the matrices is given in Table 1.

Fig. 10 shows the DOS obtained from RESS-DGC for the pe3k matrix, compared
to the DOS obtained by diagonalizing the matrix directly (“Exact”). The param-
eters are σ = 0.25,M = 4084,Nv = 300,Nt = 100. Since the goal is to demonstrate
high accuracy, we turn off the hybrid mode in the RESS-DGC method by setting

Ñv = 0. Fig. 10 shows that the error of RESS-DGC is less than 10−7 everywhere.
The relatively large error occurs at the two peaks of the DOS, which agrees with the
theoretical estimate that RESS-DGC needs more random vectors when the spec-
tral density is large. Similarly Fig. 11 shows the same comparison for the shwater

matrix, with σ = 0.005,M = 16240,Nv = 640,Ñv = 0, and Nt = 100. More detailed
comparison of the error and running time for the two matrices with increasing num-
ber of random vectors Nv is given in Table 2 and Table 3, respectively. We observe
that the error of RESS-DGC rapidly decreases with respect to the increase of the
number of random vectors, while the error of DGC only decreases marginally. We
find that RESS-DGC only introduces marginally extra cost compared to the cost
of the DGC method.
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Figure 10. For the pe3k matrix, (a) numerically computed DOS
by RESS-DGC, compared to the exact DOS, and (b) the error of
the DOS computed by RESS-DGC.

7. Conclusion and future work

For large Hermitian matrices that the only affordable operation is matrix-vector
multiplication, randomized algorithms can be an effective way for obtaining a rough
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Figure 11. For the shwater matrix, (a) numerically computed
DOS by RESS-DGC, compared to the exact DOS, and (b) the
error of the DOS computed by RESS-DGC.

Matrix Nv Error RESS-DGC Error DGC
pe3k 100 4.2× 10−2 1.7× 10−2

pe3k 200 4.0× 10−4 1.3× 10−2

pe3k 300 4.8× 10−7 1.1× 10−2

shwater 320 9.6× 10−3 5.7× 10−3

shwater 480 1.2× 10−4 4.8× 10−3

shwater 640 9.8× 10−7 3.7× 10−3

Table 2. Error of the DOS estimation for RESS-DGC and DGC
with different numbers of random vectors Nv.

Matrix Nv Time RESS-DGC (s) Time DGC (s)
pe3k 100 780 764
pe3k 200 1691 1576
pe3k 300 2825 2720

shwater 320 7371 5513
shwater 480 12310 9487
shwater 640 23479 18495

Table 3. Running time of the DOS estimation for RESS-DGC
and DGC with different numbers of random vectors Nv.

estimate the DOS. However, so far randomized algorithms are based on Hutchin-
son’s method, which does not use the correlated information among different ran-
dom vectors. The accuracy is inherently limited to O(1/

√
Nv) where Nv is the

number of random vectors.
We demonstrate that randomized low rank decomposition can be used as a dif-

ferent mechanism to estimate the DOS. By properly taking into account the cor-
related information among the random vectors, we develop a spectrum sweeping
(SS) method that can sweep through the spectrum with a reasonably small number
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of random vectors and the accuracy can be substantially improved compared to
O(1/

√
Nv). However, For spectrally uniformly distributed matrices with a large

number of points to evaluate the DOS, the direct implementation of the spectrum
sweeping method can have O(N3) complexity. We also present a robust and effi-
cient implementation of the spectrum sweeping method (RESS). For spectrally uni-
formly distributed matrices, the complexity for obtaining the DOS can be improved
to O(N2), and the extra robustness comes from a hybridization with Hutchinson’s
method for estimating the residual.

We demonstrate how the regularized DOS can be used for estimating the trace of
a smooth matrix function. This is based on a careful balance between the smooth-
ness of the function and that of the DOS. Such balance is implemented through a
deconvolution procedure. Numerical results indicate that this allows the accurate
estimate of the trace with again O(N2) scaling.

The current implementation of the spectrum sweeping method is based on Cheby-
shev polynomials. Motivated from the discussion in [20], Lanczos method would be
more efficient than Chebyshev polynomials for estimating the DOS, and it would be
interesting to extend the idea of spectrum sweeping to Lanczos method and compare
with Chebyshev polynomials. We also remark that the spectrum sweeping method
effectively builds a low rank decomposition near each point on the spectrum for
which the DOS is to be evaluated. Combining the deconvolution procedure as in
the trace estimation and the low rank decomposition could be potentially useful in
some other applications to directly estimate the whole or part of a matrix function.
For instance, in electronic structure calculation, the diagonal entries of the Fermi-
Dirac function is needed to evaluate the electron density. These directions will be
explored in the future.
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