Skip to main content
Log in

Maximum-norms error estimates for high-order finite volume schemes over quadrilateral meshes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we perform \(L^\infty \) and \(W^{1,\infty }\) error estimates for a class of bi-k finite volume schemes on a quadrilateral mesh for elliptic equations, where \(k\ge 2\) is arbitrary. We show that the errors of the finite volume solution in both the \(L^\infty \) and \(W^{1,\infty }\) norms converge to zero with optimal orders, provided the solution \(u\in W^{k+2,\infty }\). Our analysis is based mainly on an estimate of the difference between the finite volume and the corresponding finite element bilinear forms, as well as some techniques derived for \(L^\infty \) and \(W^{1,\infty }\) estimates of the finite element method. Our theoretical findings are supported by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D., Boffi, D., Falk, R.: Approximation by quadrilateral finite elements. Math. Comput. 71, 909–922 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R.E., Rose, D.J.: Some error estimates for the box scheme. SIAM Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barth, T., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Encyclopedia of Computational Mechanics, vol. 1, chapter 15. Wiley (2004)

  4. Bacuta, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of high order finite elements on polyhedra I: a priori estimates. Numer. Funct. Anal. Optim. 26, 613–639 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of any order finite volume schemes for 1D general elliptic equations. J. Sci. Comput. 56, 1–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatzipantelidis, P.: A finite volume method based on the Crouzeix–Raviart element for elliptic PDEs in two dimensions. Numer. Math. 82, 409–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM Numer. Anal. 47, 4021–4043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37(2), 191–253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou, S.H., He, S.: On the regularity and uniformness conditions on quadrilateral grids. Comput. Meth. Appl. Mech. Eng. 191, 5149–5158 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chou, S.H., Kwak, D.Y., Li, Q.: \(L^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Patial Differ. Equ. 19, 463–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chou, S.H., Li, Q.: Error estimates in \(L^2, H^1\) and \(L^\infty \) in covolume methods for elliptic and parabolic problems: a unified approach mathematics of computation. Math. Comp. 69, 103–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  14. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Emonot, P.: Methods de volumes elements finis: applications aux equations de Navier–Stokes et resultats de convergence. Lyon (1992)

  16. Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  17. Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: Hubbard, B. (ed.) Numerical Solution of Partial Differential Equations III, SYNSPADE 1975, pp. 207–274. Academic Press, New York (1976)

  18. Guo, L., Li, H., Zou, Q.: Local error estimates of high order finite volume schemes. SIAM J Numer. Anal. (2017, submitted)

  19. Hackbusch, W.: On first and second order box methods. Computing 41, 277–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, W., Guan, X., Cui, J.: The local superconvergence of the trilinear element for the three-dimensional Poisson problem. J. Math. Anal. Appl. 388, 863–872 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, W., Shen, J., Cui, J.: The local ultraconvergence for high degree Galerkin finite element methods. J. Math. Anal. Appl. 446, 62–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, W., Zhang, Z.: \(2k\) superconvergence of \(Q_k\) finite element by anisotropic mesh approximation in weighted Sobolev spaces. Math. Comp. 86, 1693–1718 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hyman, J.M., Knapp, R., Scovel, J.C.: High order finite volume approximations of differential operators on nonuniform grids. Physica D 60, 112–138 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. John, F.: General properties of solutions of linear elliptic partial differential equations. In: Proceedings of the Symposium on Spectral Theory and Differential Problems, pp. 113–175. Oklahoma A&M College, Stillwater, Okla (1951)

  25. Lazarov, R., Michev, I., Vassilevski, P.: Finite volume methods for convection–diffusion problems. SIAM J. Numer. Anal. 33, 31–55 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  27. Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial differential Equations. Marcel Dikker, New York (2000)

    Google Scholar 

  28. Lin, Y., Yang, M., Zou, Q.: \(L^2\) error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J. Numer. Anal. 53, 2009–2029 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Li, Y., Li, R.: Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17, 653–672 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Lv, J., Li, Y.: \(L^{2}\) error estimate of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 33, 129–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50, 2397–2399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miranda, C.: Partial Differential Equations of Elliptic Type, 2nd edn. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  33. Nicolaides, R.A., Porsching, T.A., Hall, C.A.: Covolume methods in computational fluid dynamics. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review, pp. 279–299. Wiley, New York (1995)

    Google Scholar 

  34. Nitsche, J.A.: \(L^{\infty }\)- convergence of finite element approximations. In: Proceedings Second Conference on Finite Elements. Rennes (1975)

  35. Ollivier-Gooch, C., Altena, M.: A high-order-accurate unconstructed mesh finite-volume scheme for the advection–diffusion equation. J. Comput. Phys. 181, 729–752 (2002)

    Article  MATH  Google Scholar 

  36. Patanker, S.V.: Numerical Heat Transfer and Fluid Flow. Series on Computational Methods in Mechanics and Thermal Science. McGraw Hill, New York (1980)

    Google Scholar 

  37. Rannacher, R., Scott, R.: Some optimal error estimate for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domains, part I. Math. Comput. 32, 33–110 (1978)

    MATH  Google Scholar 

  39. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domains, part II. Math. Comput. 33, 465–492 (1979)

    MATH  Google Scholar 

  40. Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51, 271–292 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Scott, R.: Optimal \(L^\infty \) estimates for the finite element method on irregular meshes. Math. Comput. 30, 681–697 (1976)

    MathSciNet  MATH  Google Scholar 

  42. Süli, E.: The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comput. 59(359–382), 3 (1992)

    MathSciNet  MATH  Google Scholar 

  43. Xu, J., Zou, Q.: Analysis of linear and quadratic simplitical finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130, 363–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhu, Q., Lin, Q.: Theory of Superconvergence of Finite Elements. Hunan Science and Technology Press, Hunan (1989). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Li Guo for her careful reading and corrections of the paper, and to Dr. Waixiang Cao for her help in numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Zou.

Additional information

W. He: Research supported in part by NSFC Grant 11671304, and the Zhejiang Provincial Natural Science Foundation, China LY15A010015. Z. Zhang: Research supported in part by NSFC Grants 11471031 and 91430216, NASF Grant U1530401, and NSF Grant DMS-1419040. Q. Zou: Research supported in part by the following Grants: the special project High performance computing of National Key Research and Development Program 2016YFB0200604, NSFC 11571384, Guangdong Provincial NSF 2014A030313179, the Fundamental Research Funds for the Central Universities 16lgjc80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Zhang, Z. & Zou, Q. Maximum-norms error estimates for high-order finite volume schemes over quadrilateral meshes. Numer. Math. 138, 473–500 (2018). https://doi.org/10.1007/s00211-017-0912-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0912-8

Mathematics Subject Classification

Navigation