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Analysis of Lavrentiev-Finite Element Methods

for Data Completion Problems.

F. Ben Belgacem∗, V. Girault†, F. Jelassi‡

May 13, 2016

Abstract

The variational finite element solution of Cauchy’s problem, expressed in the Steklov-Poincaré
framework and regularized by the Lavrentiev method, has been introduced and computationally
assessed in [Inverse Problems in Science and Engineering, 18, 1063–1086 (2011)]. The present
work concentrates on the numerical analysis of the semi-discrete problem. We perform the math-
ematical study of the error to rigorously establish the convergence of the global bias-variance
error.

keywords: Cauchy problem, ill posed problem, Lavrentiev regularization, finite

elements, bias-variance decomposition, error analysis

1 Introduction

Solving data completion problems consists in implementing numerical procedures for reconstructing

missing data on a portion of the boundary of the domain which is inaccessible to measurements.

The success of the (computational) reconstruction depends on the data that users are able to collect

along the accessible boundary; these are Cauchy’s data. As a matter of fact, ‘Cauchy’s problems’

is an alternative terminology for these models. The amount of necessary boundary data is tightly

related to the (partial) differential equation considered. When the differential equation is elliptic

such as the Laplace equation, the data completion problem turns out to be severely ill-posed (see

[33, 9]). In particular, numerical schemes cannot be accurate and stable at the same time. These

two properties should be carefully balanced to ensure satisfactory results. A wide literature exists

on the subject, in both theoretical and numerical analysis, and also in computations and applica-

tions. A non-exhaustive recent bibliography is [2, 28, 19, 43, 32, 37, 38, 25, 42, 27, 14, 41]. A list

of earlier works is found in [4]. Various computational methods have been designed and different
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†Université Paris Sorbonne. UPMC, UMR-CNRS 7598, Laboratoire Jacques-Louis Lions, F-75005, PARIS,
FRANCE (girault@ann.jussieu.fr)
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frameworks, variational or not, have been introduced. Many have been experimented and evaluated

with varying success. The quasi-reversibility [15, 16, 23], the complex method [19], the boundary

integral method [14], the method of the fundamental solution [44, 48], the least-squares or optimal

control formulation [47] are among popular approaches.

The variational framework elaborated in [8], letting aside its computational relevance, brings

about great facilities to the analysis and the proof of important properties related to the severe ill-

posedness of the problem. The variational problem introduced is set on the incomplete boundary

and is the result of the Kohn-Vogelius duplicating procedure associated to the Steklov-Poincaré

condensation concept. We refer to [4, 10, 26, 7] for a comprehensive exposition, especially when

Lavrentiev regularization is used. A finite-element discretization has also been presented in [3].

This reference discusses related computational issues such as existence and uniqueness criteria for

the resulting linear system, and presents a wide range of numerical experiments that show the reli-

ability and relevance of the numerical method. The ultimate goal, namely the convergence analysis

of the full approximation, turns out to be really hard, and thus was missing so far. Methodolog-

ically, we choose to explore the problem gradually(1) and the present work is a first step in this

direction. We consider the (semi-discrete) problem, where the use of finite elements is confined to

the incomplete boundary. This problem inherits and still suffers from the main instability features

of the continuous completion process. We focus on the complications specifically arising from the

ill-posedness and attempt to handle them in a mathematical way.

The outline of the paper is as follows. Section 2 recalls the variational formulation of Cauchy’s

problem, where the unknown is the missing Dirichlet boundary condition, and lists useful proper-

ties of the variational solution. Section 3 mainly describes the Lavrentiev regularization and its

Galerkin finite element approximation. In Section 4, we conduct the numerical analysis of the

discrete solution and state a convergence result in polygonally shaped domains. This study uses

sharp tools from the theory of elliptic regularity. We address afterward the effect of noisy data

and discuss how they affect the selection of the regularization parameter and the mesh-size, to

guarantee satisfactory computations. Finally, we investigate the issue of local convergence, away

from the incomplete boundary. By means of a Carleman inequality, Hölderian convergence rates

with respect to the regularizing parameter ̺ and mesh-size h are therefore derived.

Notation.— Let Ω be a bounded Lipschitzian domain in R
d, d = 2, 3. The symbol x denotes

the generic point of Ω. As usual, L2(Ω) is the Lebesgue space of square integrable functions, with

inner product (·, ·)L2(Ω) and associated norm ‖·‖L2(Ω). The Sobolev space H1(Ω) is the space of the

functions that are in L2(Ω) as well as their first order derivatives. Let Υ ⊂ ∂Ω be a closed subset

1Actually, have we the choice?
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(surface or curve) of the boundary. The space H1/2(Υ) is the set of the traces over Υ of all the

functions of H1(Ω) and we consider the notation H−1/2(Υ) for the dual space of H1/2(Υ). These

are the basic functional tools we use repeatedly here. We refer to [1] for further constructions of

fractional Sobolev spaces.
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2 Setting of the problem

Let Ω be a given domain, with boundary Γ = ∂Ω. To avoid unnecessary technicalities we assume

that Γ is divided into two disjoint components ΓC and ΓI (where C stands for complete and I for

incomplete) as indicated in Fig. 1. We have then ΓC∩ΓI = ∅. Unless explicitly stated, both portions

of the boundary ΓI and ΓC are taken smooth. We focus on the case when all measurements are

recorded on the complete boundary ΓC whereas data are missing on ΓI , the incomplete boundary.

The data completion model we study is therefore designed to recover the missing data on ΓI , by

using the abundant Cauchy data on ΓC .
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Figure 1: The boundary ΓC is accessible to measures and ΓI is out of reach

Let the conductivity function a be given in L∞(Ω) ; it is supposed smooth enough, say a ∈ C
1(Ω),

with a(x) ≥ a∗ > 0 for all x ∈ Ω. The following norm, equivalent to the H1(Ω) norm for functions

that vanish on ΓI (or on ΓC), is well adapted to our problem:

|v|a,H1(Ω) = ‖√a∇v‖
L

2(Ω), (1)

and shall be used in this work.

Now, let a pair of Cauchy’s boundary conditions (g, ϕ) ∈ H1/2(ΓC)×H−1/2(ΓC) be prescribed.

The Data Completion problem we propose to solve consists in the following: find u ∈ H1(Ω)

solution of
− div(a∇u) = 0 in Ω,

u = g, a∂nu = ϕ on ΓC .

u = ? on ΓI .

(2)

This Cauchy problem is ill-posed in the sense that it may not have a solution. If it has one then

by Holmgren’s theorem it is unique (see [34]). Thus there is always uniqueness but not always

existence. Existence depends on the data (g, ϕ), but the condition that guarantees existence can

hardly be checked on the data. Furthermore, the set of data (g, ϕ) for which (2) has a solution

is dense in H1/2(ΓC) ×H−1/2(ΓC), but the complementary set of pairs (g, ϕ) that does not yield

existence is also dense in H1/2(ΓC)×H−1/2(ΓC).
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In reference [8], problem (2) is set in a variational formulation derived by associating the dupli-

cation argument of Kohn-Vogelius [40] with the condensation Steklov-Poincaré approach (see [46]).

This variational formulation uses a pair of functions: the solution uD(µ, g) ∈ H1(Ω) of a Poisson

problem with pure Dirichlet boundary conditions,

− div(a∇uD(µ, g)) = 0 in Ω,

uD(µ, g) = g on ΓC ,

uD(µ, g) = µ on ΓI ,

(3)

and the solution uN (µ, ϕ) ∈ H1(Ω) of a Poisson problem with mixed Dirichlet–Neumann boundary

conditions,
− div(a∇uN (µ, ϕ)) = 0 in Ω,

a∂nuN (µ, ϕ) = ϕ on ΓC ,

uN (µ, ϕ) = µ on ΓI .

(4)

Both functions uD(µ, g) and uN (µ, ϕ) are well defined owing to the coerciveness of these problems

(3) and (4). The variational formulation we propose is then based on the following result:

Proposition 2.1 Problem (2) has a solution if and only if there exists λ ∈ H1/2(ΓI) for which the

following fluxes identity holds:

a∂nuD(λ, g) = a∂nuN (λ, ϕ), on ΓI . (5)

If (5) is satisfied then we have u = uD(λ, g) = uN (λ, ϕ).

Proof: Assume that (5) holds, then the difference w = uD(λ, g) − uN (λ, ϕ) satisfies the homoge-

neous data completion problem

− div(a∇w) = 0 in Ω,

w = 0, a∂nw = 0 on ΓI .

Holmgren’s theorem implies that necessarily w = 0. The converse is obvious. Details can be found

in [8].

The variational translation of the fluxes equality (5) prescribed on the incomplete boundary ΓI

reads then as: find λ ∈ H1/2(ΓI) such that

s(λ, µ) = ℓ(µ), ∀µ ∈ H1/2(ΓI), (6)

where the bilinear and linear forms s(·, ·) and ℓ(·) are respectively defined by: ∀χ, µ ∈ H1/2(ΓI),

s(χ, µ) =

∫

Ω
a∇uD(χ) · ∇uD(µ) dx−

∫

Ω
a∇uN (χ) · ∇uN (µ) dx,

ℓ(µ) = −
∫

Ω
a∇ŭD(g) · ∇uD(µ) dx− 〈ϕ, uN (µ)〉1/2,ΓC

.
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Here uN (µ) (respectively, uD(µ)) stands for uN (µ, 0) (respectively, uD(µ, 0)) and ŭN (ϕ) (respec-

tively, ŭD(g)) replaces uN (0, ϕ) (respectively, uD(0, g)). The forms s(·, ·) and ℓ(·) are made of two

contributions each, (sD(·, ·), sN (·, ·)) and (ℓD(·), ℓN (·)) with no ambiguity about their definitions.

The equation (6) is derived by suitable applications of Green’s formula and a substitution of (5).

Since sD(µ, µ) = |uD(µ)|2a,H1(Ω) for all µ ∈ H1/2(ΓI) (with the norm defined in (1)), the mapping

µ 7→
√

sD(µ, µ) is a norm equivalent to the natural norm ‖ · ‖H1/2(ΓI)
(see [46]). For convenience,

it is denoted by ‖ · ‖sD and it will be used in the sequel as norm on H1/2(ΓI),

‖µ‖sD =
√

sD(µ, µ), ∀µ ∈ H1/2(ΓI), (7)

with associated scalar product sD(·, ·).
Regarding the symmetric bilinear form s(·, ·), there holds that

s(λ, µ) ≤ |uD(λ)|a,H1(Ω)|uD(µ)|a,H1(Ω) + |uN (λ)|a,H1(Ω)|uN (µ)|a,H1(Ω).

Considering the bound,

|uN (µ)|a,H1(Ω) ≤ |uD(µ)|a,H1(Ω) = ‖µ‖sD ,

we finally obtain that

s(λ, µ) ≤ 2|uD(λ)|a,H1(Ω)|uD(µ)|a,H1(Ω) = 2 ‖λ‖sD‖µ‖sD . (8)

Thus s(·, ·) is continuous with respect to ‖ · ‖sD . Next, owing to the obvious identity
∫

Ω
a∇uN (µ) · ∇(uD(µ)− uN (µ)) dx = 0,

it can be stated that

s(µ, µ) =

∫

Ω
a∇
(

uD(µ)− uN (µ)
)

· ∇
(

uD(µ)− uN (µ)
)

dx.

Hence, we deduce that

s(µ, µ) = |uN (µ)− uD(µ)|2a,H1(Ω). (9)

It follows that the symmetric form s(·, ·) is non-negative. Moreover, the condition s(µ, µ) = 0

implies that uN (µ) = uD(µ)(= w). As a result, w satisfies the data completion problem with

homogeneous Cauchy data on ΓC . This problem has w = 0 as the only solution. This yields that

µ = 0. Therefore s(·, ·) determines an inner product with associated norm denoted by ‖ · ‖s,

‖µ‖s =
√

s(µ, µ), ∀µ ∈ H1/2(ΓI), (10)

but we must keep in mind that it is not a Hilbertian norm on H1/2(ΓI). The, with this very weak

norm, the following sharp bound holds

sup
µ∈H1/2(ΓI)

ℓ(µ)

‖µ‖s
= |ŭD(g)− ŭN (ϕ)|a,H1(Ω). (11)

This is useful when studying noisy data. The proof, which is not straightforward, can be found

in [10, Lemma 2.1].
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3 Lavrentiev-Finite Element Method

The inexact Cauchy conditions (g, ϕ) have inevitably dramatic effects on the quality of approxi-

mation of the problem. Indeed, even if (g, ϕ) belongs to the set where existence of a solution of

problem (6) is ensured, this existence may typically fail when (g, ϕ) is slightly perturbed, since the

set of non existence is dense in H1/2(ΓC) × H−1/2(ΓC). Crude computations are therefore risky

and should be avoided. Regularization is mandatory. To dampen the pollution that may damage

the solution λ, because Cauchy’s data suffer from noise, Lavrentiev method turns out to be well

suited to the symmetric positive-definite problem (6), as illustrated in [10].

3.1 Lavrentiev Regularization

Let ̺ be a small positive real parameter and consider the regularized problem: find λ̺ ∈ H1/2(ΓI)

such that,

̺sD(λ̺, µ) + s(λ̺, µ) = ℓ(µ), ∀µ ∈ H1/2(ΓI). (12)

The term ̺sD(·, ·) ensures the ellipticity of the problem, λ̺ exists in H1/2(ΓI) whatever the data

ℓ(·). For compatible data (g, ϕ), the convergence proof of the Lavrentiev solution λ̺ towards λ

may be found in [4]. We refer also to a more extensive study in [10] for the regularization strategy;

the Lavrentiev method strengthened by the Morozov Discrepancy Principle, and for the selection

of the parameter ̺.

Lemma 3.1 Assume that problem (6) has a solution λ ∈ H1/2(ΓI). There holds that

lim
̺→0

‖λ− λ̺‖sD
‖λ‖sD

= 0. (13)

Moreover, we have

lim
̺→0

1√
̺

‖λ− λ̺‖s
‖λ‖sD

= 0. (14)

Proof: The limit (13) is proved in [4, Proposition 3.2]. Let us prove (14). By subtracting (6) from

(12), we obtain

̺sD(λ̺ − λ, µ) + s(λ̺ − λ, µ) = −̺sD(λ, µ).

The choice µ = λ̺ − λ gives

̺‖λ̺ − λ‖2sD + ‖λ̺ − λ‖2s =
̺

2
[sD(λ, λ) + sD(λ̺ − λ, λ̺ − λ)− sD(λ̺, λ̺)] .

This yields
̺

2
‖λ̺ − λ‖2sD + ‖λ̺ − λ‖2s =

̺

2
(‖λ‖2sD − ‖λ̺‖2sD). (15)

Then the limit (14) follows by using (13).

Remark 3.1 Note that (15) implies the particular bound

∀̺ > 0, ‖λ̺‖sD ≤ ‖λ‖sD . (16)
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Remark 3.2 Apart from the convergence of λ̺ towards λ in the strong norm ‖ · ‖sD , no Hölderian

estimate can be expected. Without further regularity assumption on λ, the convergence result (13)

is the best we can aim at. In contrast, the gap (λ̺ − λ) decays faster than
√
̺, with respect to the

norm ‖ · ‖s. The extreme weakness of the norm ‖ · ‖s explains this result.

3.2 Finite Element semi-discretization

In practice, running computations for the numerical simulation of (12) prompts practitioners to

select a fitting approximation method. Here, we propose a finite element method of degree one.

However, since the numerical analysis of the full discretization of uD and uN is highly technical,

in this work we study a semi-discretization where only λ̺ is discretized while uD and uN are com-

puted by solving exactly (3) and (4) with these discrete boundary functions. Moreover, to avoid

inessential complications and to focus on difficulties inherent to Cauchy’s problem, especially the

approximation effects on the solution λ̺, we assume that the boundary ΓI is polygonal when d = 2

or polyhedral when d = 3. Thus there is no error in approximating the boundary, but the price

to pay is that a corner domain generally reduces the regularity of the solution of such problems

as (3) and (4). And as convergence results for finite element methods are tightly connected to the

regularity of the underlying functions (here uD and uN ), corners of the polygonal or polyhedral

domain will be responsible for lowering these convergence rates (see [49]), thus making the ultimate

results possibly suboptimal. We henceforth call the approximation a semi-discretization procedure.
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Figure 2: Polygonal incomplete boundary ΓI (left). The sub-domain Ωτ (right).

Let h > 0 be the discretization parameter and let Th be a subdivision of ΓI made of simplicial

elements with maximum mesh size (i.e., diameter h),

ΓI =
⋃

κ∈Th

κ.

We assume that Th is compatible with the polyhedral shape of ΓI in the sense that each κ is located

in exactly one face of ΓI . Each face is the exact union of elements in a subset of Th. In addition, we

suppose that Th is regular in the sense of Ciarlet [20]; there exists a constant σ > 0, independent
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of h such that
hκ
ρκ

:= σκ ≤ σ, ∀κ ∈ Th,

where hκ denotes the diameter of κ and ρκ the diameter of the ball inscribed in κ.

Let P1 be the space of polynomials with degree ≤ 1. We introduce the following finite elements

subspace on ΓI

Hh =
{

ψh ∈ C (ΓI) : ∀κ ∈ Th, (ψh)|κ ∈ P1

}

.

The discretization transforms the problem (12) into a linear system, where ill-posedness is circum-

vented by the Lavrentiev regularization method. The (semi) discrete problem to explore reads as

follows: find λ̺,h ∈ Hh such that

̺sD(λ̺,h, µh) + s(λ̺,h, µh) = ℓ(µh), ∀µh ∈ Hh. (17)

This is nothing but the Ritz-Galerkin discretization with exact integration

(1 + ̺)

∫

Ω
a∇uD(λ̺,h) · ∇uD(µh) dx−

∫

Ω
a∇uN (λ̺,h) · ∇uN (µh) dx

= −
∫

Ω
a∇ŭD(g) · ∇uD(µh) dx− (ϕ, uN (µh))1/2,ΓC

, ∀µh ∈ Hh.

In the remainder of this work, we investigate the behavior of λ̺,h as the parameters ̺ and h decay

both to zero. Our aim is to exhibit a sufficient condition on these parameters that ensures the

convergence of the Lavrentiev-finite element solution λ̺,h towards λ, the exact solution of (6), in

the case when this solution exists.

Remark 3.3 Note that Problem (17) still has a solution when ̺ = 0, whatever the Cauchy bound-

ary conditions. The reason is that ‖ · ‖s is a norm on the finite dimensional space Hh and therefore

the matrix of the linear system (17) is invertible. However, this invertibility is not uniform with

respect to h, things may go wrong for small h, and the computed solution may blow up and

regularization (by discretization) needs to be strengthened.
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4 Numerical Analysis

The purpose of this section is to bound the error (λ̺−λ̺,h), called the bias in the ill-posed problems

community. The variance, i.e., the error caused by noisy data is addressed later on. We thus assume

for a while that the data are exact and problem (6) has a unique solution λ. The starting point of

the analysis is Céa’s abstract result (see [20]).

Lemma 4.1 The following inequality holds for all µh ∈ Hh :

‖λ̺ − λ̺,h‖2sD +
1

̺
‖λ̺ − λ̺,h‖2s ≤ ‖λ̺ − µh‖2sD +

1

̺
‖λ̺ − µh‖2s.

Remark 4.1 The right-hand side of Céa’s estimate shows the critical effect of the division by the

parameter ̺. Indeed, in the computations ̺ is usually small, and the numerical analysis must take

into account its asymptotic decay to zero. Therefore the order of ‖λ̺ − µh‖2s as h tends to zero

must be strong enough to compensate the factor 1/̺. As in Remark 3.2, our hope is to obtain the

best convergence rate of this term with respect to h.

In view of Lemma 4.1, a bound is needed for the approximation error of λ̺ by a suitably chosen

µh. The L2-orthogonal projection on Hh will be selected, i.e. (µh = πhλ̺). The point is hence

to derive optimal approximation errors, for functions with low regularity. Let q be real-number in

[0, 1], we have

∀µ ∈ Hq(ΓI), ‖µ− πhµ‖L2(ΓI) ≤ Chq‖µ‖Hq(ΓI). (18)

This requires the use of some special ‘interpolation’ operators, rather than the standard Lagrange

interpolant. Indeed, the fact that point-wise values of µ may not be accessible because µ is not

necessarily smooth suggests using instead some sort of regularized approximation operator such

as the one introduced by Scott & Zhang type [50] and extended by Girault & Lions in [29] to

L1 functions. The proof of the approximation result (18) in fractional Sobolev spaces follows [21].

Adapting those proofs to our non planar polyhedral geometry of ΓI is checked out in [11]. Moreover,

optimal estimates hold in some dual Sobolev spaces. The proof is short and may be found in [13],

but for the sake of completeness, we provide it here.

Lemma 4.2 For any real numbers p, q ∈ [0, 1], the following estimate holds for all µ ∈ Hq(ΓI)

‖µ− πhµ‖H−p(ΓI) ≤ Chq+p‖µ‖Hq(ΓI). (19)

Proof: We use the duality Aubin-Nitsche argument. Let χ ∈ Hp(ΓI), we have

∫

ΓI

(µ− πhµ)χ dγ =

∫

ΓI

(µ− πhµ)(χ− πhχ) dγ ≤ ‖µ− πhµ‖L2(ΓI)‖χ− πhχ‖L2(ΓI).
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By estimate (18), we derive the bound
∫

ΓI

(µ− πhµ)χ dγ ≤ Chq‖µ‖Hq(ΓI)h
p‖χ‖Hp(ΓI) = Chq+p‖µ‖Hq(ΓI)‖χ‖Hp(ΓI).

Observing that

‖µ− πhµ‖H−p(ΓI) = sup
χ∈Hp(ΓI)

1

‖χ‖Hp(ΓI)

∫

ΓI

(µ− πhµ)χ dγ,

completes the proof.

The convergence of (µ − πhµ) in norms stronger than the L2 norm, such as the H1/2 norm,

follows from the stability of the operator πh established in the early works of Crouzeix & Thomée

in [22, 1987] or more recent publications by Bramble & Pasciak and Bank & Yserentant in [17, 6].

Thus, at the cost of a mild assumption on the meshes, by using these results and the equivalence

of the norms ‖ · ‖sD and ‖ · ‖H1/2(ΓI)
, we have the stronger convergence,

lim
h→0

‖µ− πhµ‖sD
‖µ‖sD

= 0. (20)

We do not describe accurately the criterion on the meshes, suffices it to know that the result is

available for a large class of meshes such as graded and refined meshes used in adaptativity.

Let us choose µh = πhλ̺ in Lemma 4.1. The convergence (20) can be used for the term

‖λ̺ − µh‖sD . But in contrast, convergence of ‖λ̺ − µh‖s, that follows from the continuity of the

bilinear form s(·, ·), is not sufficient because of the division by ̺. Recalling that both ̺ and h tend

to 0, a far better estimate of ‖λ̺ − µh‖s is required to compensate for this division. The quality

of the approximation depends in general upon the regularity of the function to approximate, λ̺ in

our case. However, due to the particular expression of the norm ‖ · ‖s, the effective regularity is

the smoothness of either uD(λ̺) or uN (λ̺) away from ΓI . Each of these functions enjoys more

regularity than expected at the vicinity of ΓC .

In the sequel, we need some elliptic regularity results for solutions to Poisson problems in polyhedral

domains. Even for boundary data that are very smooth, the regularity of the Poisson solutions

may be limited by the geometry. According to [35, 36], and assuming that the boundary data

are smooth enough on ΓC and ΓI , the solution of the Poisson problem belongs to the Sobolev

spaces H3/2+p(Ω), for any p < p∗, where the number p∗ ∈]0, 1/2[ depends on the geometry. Such

is the case for uD(µ, g) and uN (µ, ϕ), even if g, ϕ and µ are very smooth. No better results can be

expected. Then, p∗ is the Sobolev exponent that drives and limits the regularity of the solution of

Poisson problems, because of the geometry of ΓI . This exponent will be used in several places.

Remark 4.2 Things are well understood and documented in two dimensions, where p∗ depends on

the angles of the closed polygonal boundary ΓI (see [24, 30]). Indeed, let θi be the measure of the
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(internal) angle at the corners of ΓI (recall that ΓC is assumed to be smooth). There is of course

a finite number i∗ of corners and we denote by θ the largest angle, that is θ = max1≤i≤i∗ θi (see

Fig. 2). This angle lies in the interval ]π, 2π[. The angle 2π corresponds to a cusp which is not

allowed, since ΓI is a Lipschitz boundary. Then, the real number p∗, is given by

p∗ =
π

θ
− 1

2
∈
]

0,
1

2

[

.

4.1 Technical lemmas

Let µ be given in H1/2(ΓI), our aim is to extract more regularity than expected on the function

uD(µ) − uN (µ), in the vicinity of ΓI . This is related to the elliptic regularity in non smooth

geometries of the following problem: for ψ given in H1/2(ΓC), find v ∈ H1(Ω) solution of,

− div(a∇v) = 0 in Ω,

v = ψ on ΓC ,

v = 0 on ΓI .

This problem has a unique solution and this solution satisfies

‖v‖H1(Ω) ≤ C‖ψ‖H1/2(ΓC). (21)

Considering that ψ has no further smoothness than being in H1/2(ΓC), the function v cannot be

more globally regular than being in H1(Ω). Nevertheless, far away from ΓC , there is no reason why

v will not be smoother. This is the object of the following lemma:

Lemma 4.3 Let p < p∗ be any positive real number. Then, there exists a constant C, depending

only on Ω, such that

‖a∂nv‖Hp(ΓI) ≤ C‖ψ‖H1/2(ΓC). (22)

Proof: Let ξ be a smooth cut-off function defined in Ω, that takes the value one in a neighborhood

VI of ΓI , the value zero in a neighborhood VC of ΓC and intermediate values elsewhere in Ω, i.e.,

ξ(x) = 0, ∀x ∈ VC , ξ(x) = 1, ∀x ∈ VI , 0 ≤ ξ(x) ≤ 1, ∀x ∈ Ω.

Then, define vξ = ξv. Given that div(a∇v) = 0, it can be checked out that

− div(a∇vξ) = −v div(a∇ξ)− 2a∇v∇ξ in Ω,

vξ = 0 on ΓC ,

vξ = 0 on ΓI .

The right-hand side of the first equation lies in L2(Ω). Therefore, the elliptic regularity results

of [24] imply that vξ belongs to H
3/2+p(Ω) with the following stability, consequence of (21):

‖vξ‖H3/2+p(Ω) ≤ C‖v‖H1(Ω) ≤ C‖ψ‖H1/2(ΓC).

Owing to the fact that vξ coincides with v in VI , the estimate (22) is obtained by a trace theorem.

12



Recall that uN (µ) is a lifting to the whole domain Ω of a given trace µ on ΓI . The next result

provides a bound of the trace of uN (µ) on ΓC by the weak norm ‖µ‖s.

Lemma 4.4 The following holds: for all µ ∈ H1/2(ΓI),

‖uN (µ)‖H1/2(ΓC) ≤ C‖µ‖s. (23)

Proof: The trace theorem applied to the function (uD(µ)− uN (µ)) yields that

‖uN (µ)‖H1/2(ΓC) ≤ C|uD(µ)− uN (µ)|a,H1(Ω).

Then, (23) follows from (9) and (10).

From these two lemmas, we deduce the following estimate which will have a preponderant impact

on the subsequent analysis.

Lemma 4.5 Let p < p∗ be any positive real number. Then, there exists a constant C such that:

forall µ ∈ H1/2(ΓI),

‖a∂n(uD(µ)− uN (µ))‖Hp(ΓI) ≤ C‖µ‖s.

The constant C depends on p.

Proof: Let µ be given in H1/2(ΓI) and set v = uD(µ)− uN (µ). We have

− div(a∇v) = 0 in Ω,

v = −uN (µ) on ΓC ,

v = 0 on ΓI .

We know from the Lemma 4.3 that (a∂nv) lies in H
p(ΓI) and

‖a∂nv‖Hp(ΓI) ≤ C‖uN (µ)‖H1/2(ΓC).

The proof is completed by substituting the estimate of Lemma 4.4.

Remark 4.3 The estimate of Lemma 4.5 is strong because the norm ‖ · ‖s is very weak. Indeed,

the severe ill posedness of Cauchy’s problem suggests that this norm is weaker than any Sobolev

dual norm ‖ · ‖Hσ(ΓI) with σ < 0. No particular difficulty arises in checking out this claim when ΓI

is smooth.

4.2 Convergence Results

We have at hand the tools for deriving bounds of the approximation error, ‖λ̺ − πhλ̺‖s, without
any particular smoothness requirement on λ̺. This is the object of the next lemma.

13



Lemma 4.6 Let p < p∗ be any positive real number. There holds that

‖λ̺ − πhλ̺‖s ≤ Ch1/2+p‖λ̺‖sD .

Proof: Let η the residual function, η = λ̺ − πhλ̺. We start then from

‖η‖2s =
∫

Ω
a∇uD(η) · ∇uD(η) dx−

∫

Ω
a∇uN (η) · ∇uN (η) dx.

Applying Green’s formula, and after setting once more v = uD − uN , we obtain

‖η‖2s =
∫

ΓI

(a∂nv(η))η dγ =

∫

ΓI

(a∂nv(η))(λ̺ − πhλ̺) dγ.

But according to Lemma 4.3, a∂nv(η) belongs to H
p(ΓI), therefore we derive by duality that

‖η‖2s ≤ ‖a∂nv(η)‖Hp(ΓI)‖λ̺ − πhλ̺‖H−p(ΓI).

Owing to (19) with q = 1/2, we get the following estimate:

‖η‖2s ≤ C‖a∂nv(η)‖Hp(ΓI)h
1/2+p‖λ̺‖H1/2(ΓI)

= Ch1/2+p‖a∂nv(η)‖Hp(ΓI)‖λ̺‖sD .

Finally, the bound of Lemma 4.5 implies

‖η‖2s ≤ Ch1/2+p‖η‖s‖λ̺‖sD .

The proof is complete.

Remark 4.4 At least in two dimensions, a sharp study of the geometrical singularities responsible

for the limitation of the regularity allows to obtain a quasi-optimal estimate for the critical Sobolev

regularity exponent p∗. In fact, following [5], it should be possible to state that

‖λ̺ − πhλ̺‖s ≤ C h1/2+p
∗ | log h|b‖λ̺‖sD ,

for some b > 0, but that is beyond the scope of this work.

By combining Lemma 4.6 and the convergence (20), we come up with an estimate of the error

between the Lavrentiev and Lavrentiev-finite elements solutions.

Proposition 4.7 Let p < p∗. There exist two functions ǫ̺ and ǫh that tend to zero for small ̺

and h such that,

‖λ̺ − λ̺,h‖sD ≤ C

(

ǫ̺ + ǫh +

√

h1+2p

̺

)

‖λ‖sD .

Proof: First, by combining (16) (where the Lavrentiev solution is dominated by the exact one)

and Lemma 4.6, we infer,

1√
̺
‖λ̺ − πhλ̺‖s ≤ C

√

h1+2p

̺
‖λ‖sD ,
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with p is a real number such that p < p∗. Next, we bound ‖λ̺ − πhλ̺‖sD as follows:

‖λ̺ − πhλ̺‖sD ≤ ‖(λ̺ − λ)− πh(λ̺ − λ)‖sD + ‖λ− πhλ‖sD .

Owing to the uniform stability of πh given by (20), we deduce that

‖λ̺ − πhλ̺‖sD ≤ C‖λ̺ − λ‖sD + ‖λ− πhλ‖sD = (ǫ̺ + ǫh)‖λ‖sD .

The proof is complete after using (13), another application of (20), and Lemma 4.1.

Remark 4.5 A sufficient condition to ensure the convergence of the finite element solution λ̺,h

towards the Lavrentiev solution λ̺ is to fix the mesh size h = h(̺) so that

lim
̺→0

h1+2p

̺
= 0.

Now, when evaluated with respect to the weaker norm ‖ · ‖s, the error is bounded as follows:

‖λ̺ − λ̺,h‖s ≤ C
(

(ǫ̺ + ǫh)
√
̺+ h1/2+p

)

‖λ‖sD . (24)

This error decays towards zero provided that each of ̺ and h tends to zero independently. Notice

that the overall estimates derived here do not require any additional smoothness on the exact

solution λ.

Remark 4.6 We have already pointed out that a polygonal or polyhedral boundary ΓI slows down

substantially the convergence rate of the finite element method. Indeed, assume that ΓI is smooth

and the problem is discretized by curved finite elements of degree one, as defined in [12, section

2] and [20, Section 4.3]). On one hand, since these finite elements fit the exact shape of ΓI , they

induce no approximation error of the boundary. On the other hand, the smoothness of the exact

solution is not limited by the boundary. As a result, the analysis elaborated above permits to

take a full advantage of the finite element approximation estimates for smooth functions. The final

estimate is hence changed to

‖λ̺ − λ̺,h‖sD ≤ C

(

ǫ̺ + ǫh +

√

h5

̺

)

‖λ‖sD .

We refer to [26, Chapter 5] where this particular case is discussed.

The final error bound evaluates the difference between λ, the solution of equation (6), and λ̺,h,

the regularized-discrete solution of problem (17).

Theorem 4.8 Let p < p∗ be any positive real number. There exists two functions ǫ̺ and ǫh that

decay both towards zero, for small ̺ and h respectively, such that

‖λ− λ̺,h‖sD ≤ C

(

ǫ̺ + ǫh +

√

h1+2p

̺

)

‖λ‖sD .

Proof: The estimate is ensued after assembling results of Lemma 3.1 and Proposition 4.7.
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4.3 Noisy Data

Crude computations with problem (6), or rather with its discrete version, are certainly affected

by perturbations that fatally alter the data (g, ϕ), with high risk of irrelevant results. Thus,

regularization is necessary for a safe solution. We focus on this issue in the sequel and try to

control the effects of disturbances on the Lavrentiev-finite element approximation due to inexact

Cauchy data.

Assume we are given the polluted data (gǫ, ϕǫ) = (g, ϕ) + (δg, δϕ), with a known noise level ǫ > 0.

This means that

‖ŭD(δg)− ŭN (δϕ)‖H1(Ω) ≤ ǫ. (25)

It is true that the noise level should be evaluated in the natural norms of (δg, δϕ) which means

that

‖δg‖H1/2(ΓC) + ‖δϕ‖H−1/2(ΓC) ≤ Cǫ.

This bound implies necessarily (25). Conversely, it may be ensued from (25) if a statistical inde-

pendence assumption is added on the errors δg and δϕ. However, from a practical point of view,

the (statistical) evaluation in (25) is easier to obtain. Furthermore, as will be seen later on it is

well fitted to the Kohn-Vogelius approach we follow here. We refer to [10, Remark 5.1] for more

clues on this issue.

We consider now the Lavrentiev regularization in the finite element context applied to the

perturbed problem as follows: find λǫ̺,h ∈ Hh such that

̺sD(λ
ǫ
̺,h, µh) + s(λǫ̺,h, µh) = ℓǫ(µh), ∀µh ∈ Hh. (26)

The linear form ℓǫ is given by the same formula as ℓ with (gǫ, ϕǫ) instead of (g, ϕ). Our aim here

is to estimate the difference λ̺,h − λǫ̺,h, called the variance.

Lemma 4.9 There holds that

‖λ̺,h − λǫ̺,h‖sD ≤ ǫ

2
√
̺
.

Proof: For the sake of simplicity, we set ηǫ = λǫ̺,h−λ̺,h. By subtracting (17) from (26), we obtain

̺sD(ηǫ, µh) + s(ηǫ, µh) = ℓǫ(µh)− ℓ(µh), ∀µh ∈ Hh.

Let us set δℓ = ℓǫ − ℓ. The choice µh = ηǫ gives

̺‖ηǫ‖2sD + ‖ηǫ‖2s = (δℓ)(ηǫ). (27)

Using the stability (11) and accounting for (25) implies that

|(δℓ)(ηǫ)| ≤ ‖ŭD(δg)− ŭN (δϕ)‖H1(Ω)‖ηǫ‖s ≤ ǫ‖ηǫ‖s.
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Then Cauchy-Schwarz inequality yields that

|(δℓ)(ηǫ)| ≤
ǫ2

4
+ ‖ηǫ‖2s.

By substituting this inequality into identity (27), we obtain

̺‖ηǫ‖2sD ≤ ǫ2

4
,

hence the desired result. The proof is complete.

Remark 4.7 A by product of the proof is a bound on the weak norm of ηǫ,

‖ηǫ‖s = ‖λ̺,h − λǫ̺,h‖s ≤ ǫ. (28)

We are well equipped to give an estimate of the global error and state a sufficient condition to

ensure a convergence result when all the parameters involved (̺, h, ǫ) decay towards zero. We need

the bias-variance decomposition

‖λ− λǫ̺,h‖sD ≤ ‖λ− λ̺,h‖sD + ‖λ̺,h − λǫ̺,h‖sD .

We have the following final result, a straightforward consequence of the results of Theorem 4.8 and

Lemma 4.9.

Theorem 4.10 Let p < p∗ be any positive real number. There exist two functions ǫ̺ and ǫh, both

tending to zero, for small ̺ and h respectively, such that

‖λ− λǫ̺,h‖sD ≤ C

(

ǫ̺ + ǫh +

√

h1+2p

̺

)

‖λ‖sD +
ǫ

2
√
̺
.

Corollary 4.11 Let p < p∗ be any positive real number. There holds

‖u− uD(λ
ǫ
̺,h, g)‖H1(Ω) + ‖u− uN (λ

ǫ
̺,h, ϕ)‖H1(Ω) ≤ C

[(

ǫ̺ + ǫh +

√

h1+2p

̺

)

‖λ‖sD +
ǫ

2
√
̺

]

.

Remark 4.8 In general, the noise level ǫ drives the convergence. The above theorem brings about

a (sufficient) criterion for choosing the regularization parameters (̺, h) that ensure the convergence

of the Lavrentiev-finite-element approximation towards the exact solution. A sufficient condition

is to choose ̺ = ̺(ǫ) and h = h(ǫ) which satisfy

lim
ǫ→0

̺ = 0, lim
ǫ→0

ǫ√
̺
= 0, lim

ǫ→0

h1+2p

̺
= 0.

This suggests that ̺ cannot be chosen arbitrarily small, but depends on the noise magnitude ǫ.

In our opinion, the condition on (̺, ǫ) is more stringent and will prevail over the condition linking

(h, ̺). This means that h is in general small enough for fulfilling the last limit.

17



5 Local Super-Convergence

The study conducted above concludes to the convergence of the regularization-discretization method.

No convergence rates, of any form Hölderian or logarithmic, can be supplied in the global domain

without additional assumptions on the solution of (6). However, super-convergence holds far away

from the incomplete boundary, as observed in [18, 7]. We propose to establish super-convergence

results for λ̺,h and their incidence on the semi-discrete solution. The ideas we follow may be found

in [18] or in [39]. They have been successfully extended for the Lavrentiev solution of problem (12)

in [7].

The subsequent analysis needs slightly more regularity on the Neumann data ϕ; it must be in

L2(ΓC) instead of H−1/2(ΓC). This is consistent with the actual measurements on ϕ, since noise

affecting Neumann data is also estimated in the Lebesgue L2-norm. Consequently, we assume that

‖δg‖H1/2(ΓC) + ‖δϕ‖L2(ΓC) ≤ Cǫ. (29)

The pillar tool here is a fitting Carleman inequality. Let then ψ ∈ C
2(Ω) be a smooth function

defined in Ω that satisfies the following properties:

|∇ψ(x)| > 0, ∀x ∈ Ω, ψ(x) > 1, ∀x ∈ Ω \ ΓI ψ(x) = 1, ∀x ∈ ΓI . (30)

Thus the maximum of ψ is attained on ΓC . We shall use the following Carleman estimate, valid in

a bounded Lipschitz domain: for large ζ > 0,

∫

Ω

[

a(∇v)2 + ζ2v2
]

e2ζψ dx ≤ C
(1

ζ

∫

Ω

[

− div(a∇v) + v
]2
e2ζψ dx

+

∫

∂Ω

[

(a∂nv)
2 + ζ2v2

]

e2ζψ dγ
)

, ∀v ∈ H2(Ω). (31)

The constant C is independent of ζ. We refer to [51] for the proof. Next, for a given small parameter

τ > 0, we define

Ωτ =
{

x ∈ Ω : ψ(x) ≥ 1 + τ
}

.

Owing to the last condition in (30), the closure Ωτ does not intersect ΓI . Moreover, τ may be

chosen small enough so that Ω \ Ωτ determines a thin tubular neighborhood of ΓI . The right plot

of Fig. 2 illustrates the geometry of Ωτ . Now, for a given pair (τ, ν) with τ > ν > 0, we shall use

the smooth cut-off function ξτ,ν defined by the following:

ξτ,ν(x) = 1, ∀x ∈ Ωτ , ξτ,ν(x) = 0, ∀x ∈ Ω \ Ων , 0 ≤ ξτ,ν ≤ 1, ∀x ∈ Ω. (32)

Notice that the support of ξτ,ν is contained in Ων .
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5.1 The Bias

The local super-convergence analysis begins with the bias. We mainly resume and adapt the

arguments exposed and sharpened in [7]. The following estimate holds:

Lemma 5.1 Let β > 0 be a small parameter. There exists q = q(β) ∈ [0, 1/2[ and a constant

C = C(β) such that

|uN (λ̺,h, ϕ)− u|a,H1(Ωβ) ≤ C̺ q

√

1 +
h1+2p

̺
‖λ‖sD , (33)

for all pairs (̺, h) of small enough numbers.

Proof: In addition to the notation η̺ = λ̺,h − λ̺, we denote

wN,̺ = uN (λ̺,h, ϕ)− uN (λ̺, ϕ) = uN (λ̺,h − λ̺) = uN (η̺).

Then, we choose (τ, ν) with β > τ > ν > 0, and consider ξτ,ν , the cut-off function defined in (32).

To alleviate the presentation, we drop the indices N and τ,ν and we use ξw̺ instead of ξτ,νwN,̺.

As stated in Section 4, the function w̺ cannot be expected to belong to H2(Ω) for at least one of

two reasons: the trace η̺ of w̺ on ΓI lies in H1/2(ΓI) and ΓI is polygonal or polyhedral. However

these sources of singularities are both made ineffective by multiplication with the cut-off function

ξ and the product ξw̺ is indeed in H2(Ω). We can therefore apply Carleman’s estimate (31) to

ξw̺ ∈ H2(Ω). It yields

∫

Ωτ

[

a(∇(ξw̺))
2 + ζ2(ξw̺)

2
]

e2ζψ dx ≤ C
(1

ζ

∫

Ω

[

− div(a∇(ξw̺)) + ξw̺
]2
e2ζψ dx

+

∫

ΓC

[

(a∂n(ξw̺))
2 + ζ2(ξw̺)

2
]

e2ζψ dγ
)

.

By carrying out the calculations, observing that (a∂nw̺)|ΓI
= (a∂nwN,̺)|ΓI

= 0 together with the

fact that ξ ≡ 1 in Ωτ , we derive,

∫

Ωτ

[

a(∇(w̺))
2 + ζ2(w̺)

2
]

e2ζψ dx ≤ C
(1

ζ

∫

Ων\Ωτ

[

a(∇w̺)2 + (w̺)
2
]

e2ζψ dx

+
1

ζ

∫

Ωτ

(w̺)
2e2ζψ dx+ ζ2

∫

ΓC

(w̺)
2e2ζψ dγ

)

.

By choosing a large enough ζ, the integral over Ωτ in the right-hand side can be absorbed by the

same in the left-hand side, and we have

∫

Ωτ

[

a(∇(w̺))
2 + ζ2(w̺)

2
]

e2ζψ dx ≤ C
(1

ζ

∫

Ων\Ωτ

[

a(∇w̺)2 + (w̺)
2
]

e2ζψ dx

+ ζ2
∫

ΓC

(w̺)
2e2ζψ dγ

)

.
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The integral in the left-hand side can be restricted to Ωβ ; thus denoting σ = maxx∈ΓC
ψ(x)−1 > 0

and accounting for the specification of Ωβ ,Ωτ and Ων , we obtain

e2ζ(1+β)
∫

Ωβ

[

a(∇w̺)2 + ζ2(w̺)
2
]

dx ≤ C
(1

ζ
e2ζ(1+τ)

∫

Ων\Ωτ

[a(∇w̺)2 + (w̺)
2] dx

+ ζ2e2ζ(1+σ)
∫

ΓC

(w̺)
2 dγ

)

.

Then, obvious simplifications lead to

∫

Ωβ

[

a(∇w̺)2 + ζ2(w̺)
2
]

dx ≤ C
(1

ζ
e2ζ(τ−β)

∫

Ων\Ωτ

[a(∇w̺)2 + (w̺)
2] dx

+ ζ2e2ζ(σ−β)
∫

ΓC

(w̺)
2 dγ

)

.

On one hand the stability of w̺(= wN,̺) with respect to η̺, and Lemma 4.4 on the other hand,

give
∫

Ωβ

[

a(∇w̺)2 + ζ2(w̺)
2
]

dx ≤ C
(1

ζ
e−2ζ(β−τ)‖η̺‖2sD + ζ2e2ζ(σ−β)‖η̺‖2s

)

.

In view of (24), we have the following bound

∫

Ωβ

[

a(∇w̺)2 + ζ2(w̺)
2
]

dx ≤ C
(1

ζ
e−2ζ(β−τ)‖η̺‖2sD + ζ2e2ζ(σ−β)(̺+ h1+2p)‖λ‖2sD

)

.

Now, let t = 1
ζ e

−2ζ(β−τ). Since β − τ is positive, this quantity decays towards zero for large ζ and

the above estimate can be transformed into

|w̺|a,H1(Ωβ) ≤ C

(

t‖η̺‖2sD +
(̺+ h1+2p)

ts
‖λ‖2sD

)1/2

, (34)

where2 s = [(σ − β)/(β − τ)]+ and C = C(β, τ) is a positive constant.

Let us select t so as to minimize the right-hand side of (34). With this minimum value (34) becomes,

|w̺|a,H1(Ωβ) ≤ C(̺+ h1+2p)
1

2(1+s) ‖η̺‖
s

1+s
sD ‖λ‖

1
1+s
sD .

Hence, according to Proposition 4.7, we deduce

|w̺|a,H1(Ωβ) ≤ C(̺+ h1+2p)
1

2(1+s)

(

1 +
h1+2p

̺

)

s
2(1+s)

‖λ‖sD .

To close the proof of (33), we need the estimate established in [7, Theorem 3.2],

|uN (λ̺, ϕ)− u|a,H1(Ωβ) ≤ C̺ q‖λ‖sD ,

with the same exponent q = 1
2(1+s) . The proof is complete by the triangle inequality.

2The symbol α+ stand for any real number strictly larger than α.

20



Remark 5.1 The following bound holds true:

|uD(λ̺,h, g)− u|a,H1(Ωβ) ≤ C̺ q

√

1 +
h1+2p

̺
‖λ‖sD .

As a result, a sufficient condition to ensure the convergence in the sub-region Ωβ is as follows:

lim
̺→0

h1+2p

̺1−2q
= 0.

This is a weaker condition on the mesh-size h than the one reported earlier for the whole domain Ω.

5.2 The variance

In the same spirit, we derive a sharp convergence rate for the variance error, away from the in-

complete boundary. We retain the notation of Section 4.3 and set ηǫ = λ̺,h − λǫ̺,h. Then, we

define

wN,ǫ = uN (λ̺,h, ϕ)− uN (λ
ǫ
̺,h, ϕǫ) = uN (ηǫ, δϕ) = uN (ηǫ) + ŭN (δϕ).

We need the following preliminary result:

Lemma 5.2 The function wN,ǫ satisfies,

‖wN,ǫ‖H1/2(ΓC) ≤ Cǫ.

Proof: The inequality (29) gives the straightforward bound,

‖ŭN (δϕ)‖H1/2(ΓC) ≤ C‖δϕ‖H−1/2(ΓC) ≤ Cǫ.

On the other hand, owing to the stability of the trace and the fact that uD(ηǫ) vanishes on ΓC ,

uN (ηǫ) satisfies,

‖uN (ηǫ)‖H1/2(ΓC) ≤ C|uD(ηǫ)− uN (ηǫ)|a,H1(Ω) = ‖ηǫ‖s ≤ Cǫ.

The last bound is given in (28). The proof is obtained by the triangle inequality.

Lemma 5.3 Let β > 0 be a small parameter. There exists a constant C = C(β) such that

|uN (λǫ̺,h, ϕǫ)− uN (λ̺,h, ϕ)|a,H1(Ωβ) ≤ Cǫ̺−
1
2
+q,

where q = q(β) is defined as in Lemma 5.1.

Proof: We retain the notation of Lemma 5.1. The argument of the proof in inspired by [7, Theorem

3.5]. We apply Carleman’s estimate to ξτ,νwN,ǫ. Again, we drop the indices N and τ,ν . By taking
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v = ξwǫ (that belongs to H
2(Ω)) in (31), and proceeding as in the proof of Lemma 5.1, we arrive

at

∫

Ωβ

[

a(∇wǫ)2 + ζ2(wǫ)
2
]

dx ≤ C
(1

ζ
e2ζ(τ−β)

∫

Ων\Ωτ

[a(∇wǫ)2 + (wǫ)
2] dx

+ e2ζ(σ−β)
∫

ΓC

[(a∂nwǫ)
2 + ζ2(wǫ)

2] dγ
)

.

In the right-hand side, the first integral is bounded by using Lemma 4.9. Owing to (29), in the

last integral the normal derivative (a∂nwǫ) = δϕ is bounded by Cǫ and the bound on the trace wǫ

comes from Lemma 5.2. Assembling all the bounds leads to

∫

Ωβ

[

a(∇wǫ)2 + (wǫ)
2
]

dx ≤ C
(1

ζ
e−2ζ(β−τ) ǫ

2

̺
+ (1 + ζ2)e2ζ(σ−β)ǫ2

)

.

By introducing again t = 1
ζ e

−2ζ(β−τ), we obtain

|wǫ|2a,H1(Ωβ)
≤ Cǫ2(

t

̺
+

1

ts
).

Then the choice of t that minimizes the above right-hand side yields

|wǫ|a,H1(Ωβ) ≤ Cǫ̺
− s

2(s+1) .

Given that q = 1
2(1+s) , the final bound is expressed by Cǫ̺−

1
2
+q. The proof is complete.

5.3 Super-Convergence

According to the bias-variance decomposition principle, and after assembling the results of Lem-

mas 5.1 and 5.3, we are able to derive local convergence rates for the Lavrentiev-finite elements

solution.

Theorem 5.4 Let β > 0 be a small parameter. There exists q = q(β) ∈ [0, 1/2[ and a constant

C = C(β) such that the following bound holds

|uN (λǫ̺,h, ϕǫ)− u|a,H1(Ωβ) ≤ C̺q

(

√

1 +
h1+2p

̺
‖λ‖sD + ǫ̺−

1
2

)

.

6 Conclusion

The variational formulation, proposed in [8] for the Cauchy problem, provides a suitable framework

where Lavrentiev’s regularization has been successfully applied and studied (see [10]). The present

contribution, which yields the expected error estimates, establishes that this same framework is well

adapted to the convergence analysis of a semi-discrete Galerkin Finite Elements method. This is a
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first step in the theoretical confirmation of the work in [3] where the computational efficiency of the

fully discrete scheme has been assessed. We emphasize the fact that the overall results obtained are

valid in two and three dimensions. The next step will consist in extending the present analysis to

the fully discrete finite element approximation where all the intermediate Poisson problems are also

discretized. This work in progress, which will be the subject of a forthcoming article, is based on

non-standard, sharp local convergence results such as those proved by A. Schatz and his co-workers,

see for instance [45, 52].
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meshes RAIRO, Modélisation mathématique et analyse numérique, 21, 199-238, 1987.

[6] Bank, R. E. ; Yserentant, H. — On the H1-stability of the L2-projection onto finite element

spaces. Numer. Math., 126, 361–381 (2014).

[7] Ben Belgacem, F. ; Du, D. T. ; Jelassi, F. — Local Convergence of the Lavrentiev Method for

the Cauchy Problem via a Carleman Inequality Journal of Sci. Comp. , 53, 320–341 (2012).

[8] Ben Belgacem, F. ; El Fekih, H. — On Cauchy’s Problem. I. A Variational Steklov-Poincaré
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