Skip to main content
Log in

Interior energy error estimates for the weak Galerkin finite element method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Consider the Poisson equation in a polytopal domain \(\Omega \subset {\mathbb {R}}^d\) (\(d=2, 3\)) as the model problem. We study interior energy error estimates for the weak Galerkin finite element approximation to elliptic boundary value problems. In particular, we show that the interior error in the energy norm is bounded by three components: the best local approximation error, the error in negative norms, and the trace error on the element boundaries. This implies that the interior convergence rate can be polluted by solution singularities on the domain boundary, even when the solution is smooth in the interior region. Numerical results are reported to support the theoretical findings. To the best of our knowledge, this is the first local energy error analysis that applies to general meshes consisting of polytopal elements and hanging nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York, London (1975)

    Google Scholar 

  2. Apel, T., Nicaise, S.: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21(6), 519–549 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Băcuţă, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps. Numer. Math. 100(2), 165–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S .C., Scott, L .R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, second edition edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  5. Costabel, M., Dauge, M.: Weighted regularization of maxwell equations in polyehdral domains. a rehabilitation of nodal finite elements. Numer. Math. 93, 239–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costabel, M., Dauge, M., Nicaise, S.: Corner singularities of Maxwell interface and eddy current problems. In: Gohberg, I., Wendland, W., Ferreira dos Santos, A., Speck, FO., Teixeira, F.S. (eds.) Operator Theoretical Methods and Applications to Mathematical Physics. Operator Theory: Advances and Applications, vol. 147, pp. 241–256. Birkhäuser, Basel (2004)

  7. Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of \(hp\)-FEM for Maxwell equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15(4), 575–622 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

    MATH  Google Scholar 

  9. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  10. Grisvard, P.: Singularities in Boundary Value Problems. Research Notes in Applied Mathematics, vol. 22. Springer, New York (1992)

    MATH  Google Scholar 

  11. Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \(\mathbf{R}^3\). I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb. Sect. A 127(1), 77–126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, G., Li, H., Zhang, Q., Zou, Q.: Linear and quadratic finite volume methods on triangular meshes for elliptic equations with singular solutions. Int. J. Numer. Anal. Model. 13(2), 244–264 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Kondrat’ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Transl. Mosc. Math. Soc. 16, 227–313 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Li, H.: The \(W^1_p\) stability of the Ritz projection on graded meshes. Math. Comput. 86(303), 49–74 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H.: An anisotropic finite element method on polyhedral domains: interpolation error analysis. Math. Comput. https://doi.org/10.1090/mcom/3290

  16. Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  18. Mu, L., Wang, J., Wang, Y., Ye, X.: A weak Galerkin mixed finite element method for biharmonic equations. Numer. Solut. Partial Differ. Equ. Theory Algorithms Appl. 45, 247–277 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12, 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Mu, L., Wang, J., Ye, X.: A Weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285, 45–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nicaise, S., Li, H., Mazzucato, A.: Regularity and a priori error analysis of a Ventcel problem in polyhedral domains. Math. Methods Appl. Sci. 40(5), 1625–1636 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nitsche, J., Schatz, A.: Interior estimates for Ritz-Galerkin methods. Math. Comput. 28, 937–958 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains. I. Math. Comput. 32(141), 73–109 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains II. Refinements Math. Comput. 33(146), 465–492 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Schötzau, D., Schwab, C., Wihler, T.: \(hp\)-dGFEM for second-order mixed elliptic problems in polyhedra. Math. Comput. 85, 1051–1083 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wahlbin, L.: On the sharpness of certain local estimates for \( H^{1}\) projections into finite element spaces: influence of a re-entrant corner. Math. Comput. 42(165), 1–8 (1984)

    MathSciNet  MATH  Google Scholar 

  27. Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, vol. 1605. Springer, Berlin (1995)

    MATH  Google Scholar 

  28. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengguang Li.

Additional information

Hengguang Li: This research was supported in part by the National Science Foundation Grant DMS-1418853, by the Natural Science Foundation of China Grant 11628104, and by the Wayne State University Grants Plus Program.

Lin Mu: This research was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under award number ERKJE45; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC., for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

Xiu Ye: This research was supported in part by the National Science Foundation Grant DMS-1620016.

Appendix A

Appendix A

The proof of Lemma 4.4.

Proof

It follows from (4.8), (2.7), and \(\mathrm{supp}(\omega _1)\subseteq D_1\), that

$$\begin{aligned} a(\omega _1 z,v)= & {} a(z,\omega _1 v)+\sum _{T\in {\mathcal T}_{D_2}}(z_0\nabla \omega _1,\nabla v_0)_T+\sum _{T\in {\mathcal T}_{D_2}}(z_0,\nabla \cdot (v_0\nabla \omega _1))_T\nonumber \\&+\sum _{T\in {\mathcal T}_{D_2}}(\ell _T(z,v,\omega _1)-{\langle }z_0,v_0\nabla \omega _1\cdot \mathbf{n}{\rangle }_{\partial {T}})+\sum _{T\in {\mathcal T}_{D_2}} \zeta _T(z,v,\omega _1)\nonumber \\= & {} I_1+I_2+I_3+I_4+I_5. \end{aligned}$$
(A.1)

Below, we obtain estimates for each \(I_i\), \(1\le i\le 5\).

Recall \(\mathrm{supp}(\omega _1v)\subseteq D_1\). Then, using (2.11), (2.13), (2.14), (4.3), (3.3), and the inverse inequality, we have

$$\begin{aligned} |I_1|= & {} |a(z,\omega _1 v)|=|a(Q_hu-u_h, \omega _1v-Q_h(\omega _1v))+a(Q_hu-u_h, Q_h(\omega _1v))|\nonumber \\\le & {} |\!|\!| Q_hu-u_h|\!|\!|_{\tilde{D}_2} |\!|\!|\omega _1v-Q_h(\omega _1v)|\!|\!|_{\tilde{D}_2}+ Ch^t\Vert u\Vert _{t+1,D_2}|\!|\!| v|\!|\!|_{D_1}\nonumber \\\le & {} Ch|\!|\!| z|\!|\!|_{\tilde{D}_2}|\!|\!| v|\!|\!|_{\tilde{D}_2}+Ch^t\Vert u\Vert _{t+1,D_2}|\!|\!| v|\!|\!|_{\tilde{D}_2}\nonumber \\\le & {} C(h^t\Vert u\Vert _{t+1,D_2}+\Vert z_0\Vert _{0, \tilde{D}_2}+{h}s_{\tilde{D}_2}(z,z)^{1/2})|\!|\!| v|\!|\!|_{\tilde{D}_2}. \end{aligned}$$
(A.2)

Using the boundedness of \(\omega _1\), (3.2), and the Cauchy-Schwarz inequality, we have

$$\begin{aligned} |I_2|= & {} \left| \sum _{T\in {\mathcal T}_{D_2}}(z_0\nabla \omega _1,\nabla v_0)_T\right| \le C\Vert z\Vert _{0,\tilde{D}_2}|\!|\!| v|\!|\!|_{\tilde{D}_2} \end{aligned}$$
(A.3)

and

$$\begin{aligned} |I_3|= & {} \left| \sum _{T\in {\mathcal T}_{D_2}}(z_0,\nabla \cdot (v_0\nabla \omega _1))_T\right| \le C\Vert z\Vert _{0, \tilde{D}_2}|\!|\!| v|\!|\!|_{\tilde{D}_2}. \end{aligned}$$
(A.4)

Now, we estimate \(I_4\) and \(I_5\). Note that \(v_b=0\) on \(\partial \tilde{D}_2\). Therefore,

$$\begin{aligned} \sum _{T\in {\mathcal T}_{D_2}}{\langle }z_b, v_b\nabla \omega _1\cdot \mathbf{n}{\rangle }_{\partial {T}}=0. \end{aligned}$$

Then, we have

$$\begin{aligned} I_4= & {} \sum _{T\in {\mathcal T}_{D_2}}({\langle }z_0-z_b, \mathbb {Q}_h\nabla (\omega _1v_0)\cdot \mathbf{n}-\omega _1\nabla _wv\cdot \mathbf{n}{\rangle }_{\partial {T}}-{\langle }z_0,v_0\nabla \omega _1\cdot \mathbf{n}{\rangle }_{\partial {T}})\nonumber \\= & {} \sum _{T\in {\mathcal T}_{D_2}}({\langle }z_0-z_b, (\mathbb {Q}_h(\omega _1\nabla v_0)-\omega _1\nabla _wv)\cdot \mathbf{n}{\rangle }_{\partial {T}}\nonumber \\&+{\langle }z_0-z_b, (\mathbb {Q}_h (v_0\nabla \omega _1)-v_0\nabla \omega _1)\cdot \mathbf{n}{\rangle }_{\partial {T}}\nonumber \\&+{\langle }z_0-z_b,(v_0-v_b)\nabla \omega _1\cdot \mathbf{n}{\rangle }_{\partial {T}}-{\langle }v_0-v_b,z_0\nabla \omega _1\cdot \mathbf{n}{\rangle }_{\partial {T}})\nonumber \\= & {} A_1+A_2+A_3-A_4. \end{aligned}$$
(A.5)

By the Cauchy-Schwarz inequality, the trace inequality (3.1), the boundedness of \(\omega _1\), (2.5), the inverse inequality, and (3.2), we have

$$\begin{aligned} |A_2+A_3|\le & {} \sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0,\partial T}(\Vert (\mathbb {Q}_h (v_0\nabla \omega _1)-v_0\nabla \omega _1)\cdot \mathbf{n}\Vert _{0,\partial T}\nonumber \\&+\Vert (v_0-v_b)\nabla \omega _1\cdot \mathbf{n}\Vert _{0, \partial T})\nonumber \\\le & {} C\left( \sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0,\partial T}^2\right) ^{1/2} \left( \sum _{T\in \mathcal T_{D_2}}\Vert (\mathbb {Q}_h (v_0\nabla \omega _1)-v_0\nabla \omega _1)\cdot \mathbf{n}\Vert _{0,\partial T}^2\right. \nonumber \\&\left. +\Vert (v_0-v_b)\nabla \omega _1\cdot \mathbf{n}\Vert ^2_{0,\partial T}\right) ^{1/2}\nonumber \\\le & {} C \left( \sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0,\partial T}^2\right) ^{1/2} \left( \sum _{T\in \mathcal T_{D_2}}(h^{-1}\Vert \mathbb {Q}_h (v_0\nabla \omega _1)-v_0\nabla \omega _1\Vert ^2_{0, T}\right. \nonumber \\&\left. +h|\mathbb {Q}_h (v_0\nabla \omega _1)-v_0\nabla \omega _1|_{1, T}^2 +\Vert v_0-v_b\Vert ^2_{0,\partial T}\right) ^{1/2}\nonumber \\\le & {} C\left( \sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0, \partial T}^2\right) ^{1/2}\left( \sum _{T\in \mathcal T_{D_2}}h\Vert \nabla v_0\Vert _{0, T}^2+\Vert v_0-v_b\Vert ^2_{0,\partial T}\right) ^{1/2}\nonumber \\\le & {} C hs_{\tilde{D}_2}(z,z)^{1/2}|\!|\!| v|\!|\!|_{\tilde{D}_2}. \end{aligned}$$
(A.6)

Similarly, for \(A_4\), we have

$$\begin{aligned} |A_4|\le & {} C\left( \sum _{T\in \mathcal T_{D_2}}\Vert v_0-v_b\Vert ^2_{0, \partial T}\right) ^{1/2}\left( \sum _{T\in \mathcal T_{D_2}} h^{-1}\Vert z_0\nabla \omega _1\Vert ^2_{0,T}+h|z_0\nabla \omega _1|^2_{1,T}\right) ^{1/2}\nonumber \\\le & {} C\left( \sum _{T\in \mathcal T_{D_2}}h^{-1}\Vert v_0-v_b\Vert _{0,\partial T}\right) ^{1/2}\left( \sum _{T\in \mathcal T_{D_2}} \Vert z_0\Vert ^2_{0,T}\right) ^{1/2}\le C\Vert z_0\Vert _{0, \tilde{D}_2}|\!|\!| v|\!|\!|_{\tilde{D}_2}.\nonumber \\ \end{aligned}$$
(A.7)

Now, for \(A_1\), we first have

$$\begin{aligned} A_1= & {} \sum _{T\in {\mathcal T}_{D_2}}{\langle }z_0-z_b, (\mathbb {Q}_h(\omega _1\nabla v_0)-\omega _1\nabla _wv)\cdot \mathbf{n}{\rangle }_{\partial {T}}\nonumber \\= & {} \sum _{T\in {\mathcal T}_{D_2}}{\langle }z_0-z_b, \mathbb {Q}_h(\omega _1\nabla v_0-\omega _1\nabla _wv)\cdot \mathbf{n}{\rangle }_{\partial {T}}\nonumber \\&+\sum _{T\in {\mathcal T}_{D_2}}{\langle }z_0-z_b, (\mathbb {Q}_h(\omega _1\nabla _wv)-\omega _1\nabla _wv)\cdot \mathbf{n}{\rangle }_{\partial {T}}\nonumber \\= & {} A_{11}+A_{12}. \end{aligned}$$
(A.8)

For the second term \(A_{12}\), using the Cauchy-Schwarz inequality, the trace inequality (3.1), the boundedness of \(\omega _1\), (2.5), the fact \(\partial ^\alpha (\nabla _wv)=0\) on T for \(|\alpha |=k\), and the inverse inequality, we obtain

$$\begin{aligned} |A_{12}|\le & {} \sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0,\partial T}\Vert (\mathbb {Q}_h(\omega _1\nabla _wv)-\omega _1\nabla _wv)\cdot \mathbf{n}\Vert _{0, \partial T}\nonumber \\\le & {} C\Bigg (\sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0,\partial T}^2\Bigg )^{1/2}\Bigg (\sum _{T\in \mathcal T_{D_2}}h^{-1}\Vert \mathbb {Q}_h(\omega _1\nabla _wv)-\omega _1\nabla _wv \Vert _{0,T}^2 \nonumber \\&+h| \mathbb {Q}_h(\omega _1\nabla _wv)-\omega _1\nabla _wv |_{1, T}^2\Bigg )^{1/2}\nonumber \\\le & {} C\Bigg (\sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0,\partial T}^2\Bigg )^{1/2}\Bigg (\sum _{T\in \mathcal T_{D_2}}h^{2k-1}\Vert \nabla _w v\Vert ^2_{k-1, T}\Bigg )^{1/2}\nonumber \\\le & {} C\Bigg (\sum _{T\in \mathcal T_{D_2}}\Vert z_0-z_b\Vert _{0,\partial T}^2\Bigg )^{1/2}\Bigg (\sum _{T\in \mathcal T_{D_2}}h\Vert \nabla _w v\Vert ^2_{0, T}\Bigg )^{1/2} \le Chs_{\tilde{D}_2}(z, z)^{1/2}|\!|\!| v|\!|\!|_{\tilde{D}_2}.\nonumber \\ \end{aligned}$$
(A.9)

The estimate on \(A_{11}\) is more involved. Note that by (4.14), we have

$$\begin{aligned} A_{11}= & {} \sum _{T\in {\mathcal T}_{D_2}}{\langle }z_0-z_b, \mathbb {Q}_h(\omega _1\nabla v_0-\omega _1\nabla _wv)\cdot \mathbf{n}{\rangle }_{\partial {T}}\\= & {} \sum _{T\in {\mathcal T}_{D_2}}(\nabla z_0-\nabla _w z, \mathbb {Q}_h(\omega _1\nabla v_0-\omega _1\nabla _wv))_T\\= & {} \sum _{T\in {\mathcal T}_{D_2}}(\mathbb {Q}_h(\omega _1\nabla z_0-\omega _1\nabla _w z), \nabla v_0-\nabla _wv)_T\\= & {} \sum _{T\in {\mathcal T}_{D_2}}{\langle }v_0-v_b, \mathbb {Q}_h(\omega _1\nabla z_0-\omega _1\nabla _w z)\cdot \mathbf{n}{\rangle }_{\partial {T}}. \end{aligned}$$

Therefore, considering \(A_{11}\) and \(I_5\) together, by the Cauchy-Schwarz inequality, the trace inequality (3.1), the boundedness of \(\omega _1\), and (2.5), we obtain

$$\begin{aligned} |A_{11}+I_5|&= \left| \sum _{T\in {\mathcal T}_{D_2}}{\langle }v_0-v_b, \mathbb {Q}_h(\omega _1\nabla z_0-\omega _1\nabla _w z)\cdot \mathbf{n}{\rangle }_{\partial {T}}\right. \\&\left. \quad \quad +\sum _{T\in {\mathcal T}_{D_2}}{\langle }v_0-v_b, (\omega _1\nabla _wz-\mathbb {Q}_h(\omega _1\nabla z_0))\cdot \mathbf{n}{\rangle }_{\partial {T}}\right. \\&\left. \quad \quad +\sum _{T\in {\mathcal T}_{D_2}}{\langle }v_0-v_b, \mathbb {Q}_h (z_0\nabla \omega _1)\cdot \mathbf{n}{\rangle }_{\partial {T}}\right| \\&=\left| \sum _{T\in {\mathcal T}_{D_2}}{\langle }v_0-v_b, (\omega _1\nabla _wz-\mathbb {Q}_h(\omega _1\nabla _w z))\cdot \mathbf{n}{\rangle }_{\partial {T}}\right. \\&\left. \quad \quad +\sum _{T\in {\mathcal T}_{D_2}}{\langle }v_0-v_b, \mathbb {Q}_h (z_0\nabla \omega _1)\cdot \mathbf{n}{\rangle }_{\partial {T}}\right| \\&\le \sum _{T\in {\mathcal T}_{D_2}}\Vert v_0-v_b\Vert _{0, \partial T}\Vert \omega _1\nabla _wz-\mathbb {Q}_h(\omega _1\nabla _w z)\Vert _{0, \partial T} \\&\quad \quad +\sum _{T\in {\mathcal T}_{D_2}}\Vert v_0-v_b\Vert _{0,\partial T}\Vert \mathbb {Q}_h (z_0\nabla \omega _1)\Vert _{0, {\partial {T}}} \\&\le C\left( \sum _{T\in \mathcal T_{D_2}}\Vert v_0-v_b\Vert _{0,\partial T}^2\right) ^{1/2} \left( \sum _{T\in \mathcal T_{D_2}}h^{-1}\Vert \omega _1\nabla _wz-\mathbb {Q}_h(\omega _1\nabla _w z)\Vert _{0, T}^2\right. \\&\left. \quad \quad +h|\omega _1\nabla _wz-\mathbb {Q}_h(\omega _1\nabla _w z)|_{1, T}^2\right) ^{1/2} \\&\quad \quad + \left( \sum _{T\in \mathcal T_{D_2}}\Vert v_0-v_b\Vert _{0,\partial T}^2\right) ^{1/2} \left( \sum _{T\in \mathcal T_{D_2}}h^{-1}\Vert \mathbb {Q}_h (z_0\nabla \omega _1)\Vert _{0,T}^2+h|\mathbb {Q}_h (z_0\nabla \omega _1)|_{1, T}^2\right) ^{1/2} \\&\le C \left( \sum _{T\in \mathcal T_{D_2}}\Vert v_0-v_b\Vert _{0, \partial T}^2\right) ^{1/2}\Bigg (\left( \sum _{T\in \mathcal T_{D_2}}h^{-1+2k}\Vert \omega _1\nabla _wz\Vert _{k, T}^2\right) ^{1/2} \\&\quad \quad +\,\Bigg (\sum _{T\in \mathcal T_{D_2}}h^{-1}\Vert z_0\nabla \omega _1\Vert _{0,T}^2+h| z_0\nabla \omega _1|_{1, T}^2)^{1/2}\Bigg ). \end{aligned}$$

Thus, by the inverse inequality, (3.3), and the fact \(\partial ^\alpha (\nabla _wz)=0\) on T for \(|\alpha |=k\), we have

$$\begin{aligned} |A_{11}+I_5|\le & {} C \left( \sum _{T\in \mathcal T_{D_2}}\Vert v_0-v_b\Vert _{0,\partial T}^2\right) ^{1/2}\Bigg (\left( \sum _{T\in \mathcal T_{D_2}}h\Vert \nabla _wz\Vert _{0,T}^2\right) ^{1/2}\nonumber \\&+ \left( \sum _{T\in \mathcal T_{D_2}}h^{-1}\Vert z_0\Vert _{0,T}^2\right) ^{1/2}\Bigg )\nonumber \\\le & {} C|\!|\!| v|\!|\!|_{\tilde{D}_2}(\Vert z_0\Vert _{0, \tilde{D}_2}+hs_{\tilde{D}_2}(z, z)^{1/2}). \end{aligned}$$
(A.10)

It follows from the Cauchy-Schwarz inequality, the trace inequality, (2.3), (2.4), and the inverse inequality that

$$\begin{aligned} s_{\tilde{D}_2}(z,z)= & {} \sum _{T\in {\mathcal T}_{D_2}}s_T(Q_hu-u_h,z)= \sum _{T\in {\mathcal T}_{D_2}}s_T(Q_hu-u,z)-\sum _{T\in {\mathcal T}_{D_2}}s_T(u_h,z)\\\le & {} C \Bigg (\sum _{T\in {\mathcal T}_{D_2}}\left( h^{-2}\Vert u-Q_0u_0\Vert ^2_{0, T}+|u-Q_0u_0|_{1, T}^2+h^{-1}\Vert u-Q_bu_b\Vert _{0,{\partial {T}}}^2\right) ^{1/2}\\&+s_{\tilde{D}_2}(u_h,u_h)^{1/2}\Bigg )s_{\tilde{D}_2}(z,z)^{1/2}\\\le & {} C (h^t\Vert u\Vert _{t+1,D_2}+s_{\tilde{D}_2}(u_h,u_h)^{1/2})s_{\tilde{D}_2}(z,z)^{1/2}, \end{aligned}$$

which implies

$$\begin{aligned} s_{\tilde{D}_2}(z,z)^{1/2}\le & {} C (h^t\Vert u\Vert _{t+1,D_2}+s_{D_2}(u_h,u_h)^{1/2}). \end{aligned}$$
(A.11)

In addition, the triangle inequality implies

$$\begin{aligned} \Vert z_0\Vert _{0,\tilde{D}_2}\le \Vert Q_hu_0-u\Vert _{0,\tilde{D}_2}+\Vert u-u_0\Vert _{0,\tilde{D}_2}\le Ch^{t+1}\Vert u\Vert _{t+1, D_2}+\Vert u-u_0\Vert _{0,D_2}. \end{aligned}$$
(A.12)

Combining all the estimates (A.1)–(A.12), we have completed the proof for (4.15). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Mu, L. & Ye, X. Interior energy error estimates for the weak Galerkin finite element method. Numer. Math. 139, 447–478 (2018). https://doi.org/10.1007/s00211-017-0940-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0940-4

Keywords

Mathematics Subject Classification

Navigation