Skip to main content
Log in

A high-order meshless Galerkin method for semilinear parabolic equations on spheres

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We describe a novel meshless Galerkin method for numerically solving semilinear parabolic equations on spheres. The new approximation method is based upon a discretization in space using spherical basis functions in a Galerkin approximation. As our spatial approximation spaces are built with spherical basis functions, they can be of arbitrary order and do not require the construction of an underlying mesh. We will establish convergence of the meshless method by adapting, to the sphere, a convergence result due to Thomée and Wahlbin. To do this requires proving new approximation results, including a novel inverse or Nikolskii inequality for spherical basis functions. We also discuss how the integrals in the Galerkin method can accurately and more efficiently be computed using a recently developed quadrature rule. These new quadrature formulas also apply to Galerkin approximations of elliptic partial differential equations on the sphere. Finally, we provide several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. On \({\mathbb {S}}^2\), with \(\theta \) being the colatitude and \(\varphi \) being the longitude, the metric ds has the form \(ds^2 = d\theta ^2+ \sin ^2 \theta d\varphi ^2\). Thus the four entries of the tensor are \(g_{11}=1\), \(g_{12}=g_{21}=0\), and \(g_{22}=\sin \theta \).

  2. On \({\mathbb {S}}^2\), in colatitude–longitude coordinates, \(\Delta _* u= \frac{1}{\sin \theta }\frac{\partial }{\partial \theta }\big (\sin \theta \frac{\partial u }{\partial \theta }\big ) + \frac{1}{\sin ^2 \theta }\frac{\partial ^2 u}{\partial \varphi ^2 }\).

  3. One can establish this by showing that the asymptotic estimate in [24, Eq. 4.11], where \(s=m\), is equal to the right-hand side in that inequality.

  4. For d odd, it is an open question as to whether the exponential inequalities hold. There are however bounds in terms of powers of h. See [16, Theorem 5.5].

  5. This choice of \(r_0\) is large, in the sense that the ball \(B(\xi ,r_0)\) has to contain more Y points than the usual \(Kh_Y |\log (h_Y)|\). It should be possible to do better.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing. Acta Metal. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Barreira, M.R.: Numerical solution of non-linear partial differential equations on triangulated surfaces. Ph.D. Thesis, University of Sussex (2009)

  3. Baxter, B.J.C., Hubbert, S.: Radial basis functions for the sphere. In: Recent Progress in Multivariate Approximation (Witten-Bommerholz, 2000), Volume 137 of International Series of Numerical Mathematics, pp. 33–47. Birkhäuser, Basel (2001)

  4. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  5. Blowey, J.F., Elliott, C.M.: Curvature dependent phase boundary motion and parabolic double obstacle problems. In: Degenerate Diffusions (Minneapolis, MN, 1991), Volume 47 of IMA Volumes in Mathematics and its Applications, pp. 19–60. Springer, New York (1993)

  6. Choi, Y., Jeong, D., Lee, S., Yoo, M., Kim, J.: Motion by mean curvature of curves on surfaces using the Allen–Cahn equation. Int. J. Eng. Sci. 97, 126–132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  8. Fasshauer, G.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  9. Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, X., Hai-jun, W.: A posteriori error estimates and an adaptive finite element method for the Allen–Cahn equation and the mean curvature flow. J. Sci. Comput. 24(2), 121–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flyer, N., Wright, G.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flyer, N., Wright, G.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fuselier, E., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Kernel based quadrature on spheres and other homogeneous spaces. Numer. Math. 127(1), 57–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuselier, E.J., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Localized bases for kernel spaces on the unit sphere. SIAM J. Numer. Anal. 51, 2538–2562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giesl, P., Wendland, H.: Meshless collocation: error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45, 1723–1741 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hangelbroek, T., Narcowich, F.J., Ward, J.D.: Polyharmonic and related kernels on manifolds: interpolation and approximation. Found. Comput. Math. 12, 625–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, Z.M., Sonar, T. (eds.) Handbook of Geomathematics. Springer, Berlin (2010)

    Google Scholar 

  18. Le Gia, Q.T.: Approximation of parabolic PDEs on spheres using spherical basis functions. Adv. Comput. Math. 22, 377–397 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mhaskar, H.N., Narcowich, F.J., Prestin, J., Ward, J.D.: \(L^p\) bernstein estimates and approximation by spherical basis functions. Math. Comput. 79, 1647–1679 (2010)

    Article  MATH  Google Scholar 

  20. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Approximation properties of zonal function networks using scattered data on the sphere. Adv. Comput. Math. 11, 121–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morton, T.M., Neamtu, M.: Error bounds for solving pseudodifferential equatons on spheres by collocation with zonal kernels. J. Approx. Theory 114, 242–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Müller, C.: Spherical Harmonics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  23. Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Narcowich, F.J., Sun, X., Ward, J.D.: Approximaton power of RBFs and their associated SBFs: a connection. Adv. Comput. Math. 27, 107–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Narcowich, F.J., Sun, X., Ward, J.D., Wendland, H.: Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. J. Found. Comput. Math. 7, 369–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Narcowich, F.J., Rowe, S.T., Ward, J.D.: A novel Galerkin method for solving pdes on the sphere using highly localized kernel bases. Math. Comput. 86, 197–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York (1975). Translated from the Russian by John M. Danskin, Jr., Die Grundlehren der Mathematischen Wissenschaften, Band 205

  29. Sommariva, A., Womersley, R.S.: Integration by RBF over the sphere. Applied Mathematics Report AMR05/17, U. of New South Wales

  30. Taylor, M.E.: Partial Differential Equations III, Volume 117 of Applied Mathematical Sciences. Springer, New York (1996)

    Book  Google Scholar 

  31. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Thomée, V., Wahlbin, L.: On Galerkin methods in semilinear parabolic problems. SIAM J. Numer. Anal. 12, 378–389 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wendland, H.: A high-order approximation method for semilinear parabolic equations on spheres. Math. Comput. 82, 227–245 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Womersley, R.S.: Minimum energy points on the sphere \({\mathbb{S}}^2\) (2003). http://web.maths.unsw.edu.au/~rsw/Sphere/Energy/index.html. Accessed 6 June 2017

  35. Wright, G.B.: http://math.boisestate.edu/~wright/quad_weights/. Accessed: 6 June (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Wendland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F.J. Narcowich and J.D. Ward: Research supported by Grant DMS-1514789 from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Künemund, J., Narcowich, F.J., Ward, J.D. et al. A high-order meshless Galerkin method for semilinear parabolic equations on spheres. Numer. Math. 142, 383–419 (2019). https://doi.org/10.1007/s00211-018-01021-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-01021-7

Mathematics Subject Classification

Navigation